References:
Ashok, R. P., Babaahmadi, M., Lesaffer, A., & Dewettinck, K. (2015).
Rheological profiling of organogels prepared at critical gelling
concentrations of natural waxes in a triacylglycerol solvent. Journal of
Agricultural and Food Chemistry, 63:4862-4869, 10.1021/acs.jafc.5b01548.
Backes, A. R., & Bruno, O. M. (2013). Texture analysis using
volume-radius fractal dimension. Applied Mathematics and Computation,
219:5870-5875, 10.1016/j.amc.2012.11.092.
Barnes, W. M. (1994). PCR AMPLIFICATION OF UP TO 35-KB DNA WITH
HIGH-FIDELITY AND HIGH-YIELD FROM LAMBDA-BACTERIOPHAGE TEMPLATES.
Proceedings of the National Academy of Sciences of the United States of
America, 91:2216-2220, 10.1073/pnas.91.6.2216.
Belury, M. A. (2002). Dietary conjugated linoleic acid in health:
Physiological effects and mechanisms of action. Annual Review of
Nutrition, 22:505-531, 10.1146/annurev.nutr.22.021302.121842.
Benchabane, A., & Bekkour, K. (2008). Rheological properties of
carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science,
286:1173-1180,
Çiftçi, D., Kahyaoglu, T., Kapucu, S., & Kaya, S. (2008). Colloidal
stability and rheological properties of sesame paste. Journal of Food
Engineering, 87:428-435,
Daubert, C. R. (2017). ’Rheological principles for food analysis.’ In,Food analysis (pp. 511-527). Springer.
Farshchi, A., Ettelaie, R., & Holmes, M. (2013). Influence of pH value
and locust bean gum concentration on the stability of sodium
caseinate-stabilized emulsions. Food Hydrocolloids, 32:402-411,
10.1016/j.foodhyd.2013.01.010.
Feng, Y.-x., Wang, Z.-c., Chen, J.-x., Li, H.-r., Wang, Y.-b., Ren,
D.-F., & Lu, J. (2021). Separation, identification, and molecular
docking of tyrosinase inhibitory peptides from the hydrolysates of
defatted walnut (Juglans regia L.) meal. Food Chemistry, 353:129471,
https://doi.org/10.1016/j.foodchem.2021.129471.
Fernandes, S. S., & Salas Mellado, M. d. l. M. (2018). Development of
Mayonnaise with Substitution of Oil or Egg Yolk by the Addition of Chia
(Salvia Hispanica L.) Mucilage. Journal of Food Science, 83:74-83,
10.1111/1750-3841.13984.
Gambaro, A., Raggio, L., Ellis, A. C., & Amarillo, M. (2014). Virgin
olive oil color and perceived quality among consumers in emerging
olive-growing countries. Grasas y Aceites, 65:e023 [028pp.]-e023
[028pp.],
Hadjistamov, D. (2019). Thixotropy of Systems with Shear Thinning and
Plastic Flow Behavior. J. of Mat. Sci. and Eng. B, 9:56-65,
Jose Moyano, M., Heredia, F. J., & Melendez-Martinez, A. J. (2010). The
Color of Olive Oils: The Pigments and Their Likely Health Benefits and
Visual and Instrumental Methods of Analysis. Comprehensive Reviews in
Food Science and Food Safety, 9:278-291,
Karinkanta, P. (2014). Dry fine grinding of Norway spruce (Picea abies)
wood in impact-based fine grinding mills. Oulun Yliopiston Tutkijakoulu,
Leskovar, D., Crosby, K., & Jifon, J. 2007. ”Impact of agronomic
practices on phytochemicals and quality of vegetable crops.” In II
International Symposium on Human Health Effects of Fruits and
Vegetables: FAVHEALTH 2007 841 , 317-322.
Liu, H., Xu, X., & Guo, S. D. (2007). Rheological, texture and sensory
properties of low-fat mayonnaise with different fat mimetics. LWT-Food
Science and Technology, 40:946-954,
Loncarevic, I., Pajin, B., Petrovic, J., Zaric, D., Sakac, M., Torbica,
A., . . . Omorjan, R. (2016). The impact of sunflower and rapeseed
lecithin on the rheological properties of spreadable cocoa cream.
Journal of Food Engineering, 171:67-77, 10.1016/j.jfoodeng.2015.10.001.
Lu, X., Chen, J., Guo, Z., Zheng, Y., Rea, M. C., Su, H., . . . Miao, S.
(2019). Using polysaccharides for the enhancement of functionality of
foods: A review. Trends in Food Science & Technology, 86:311-327,
Marti, I. (2004). ’Dairy fibre powders-Processing and application as
rheology modifiers in confectionery systems’, ETH Zurich.
Martínez, M. L., Mattea, M. A., & Maestri, D. M. (2008). Pressing and
supercritical carbon dioxide extraction of walnut oil. Journal of food
engineering, 88:399-404,
Mehdi, A., Hadi Eskandari, M., & Zahra, D. (2019). Application and
functions of fat replacers in low-fat ice cream: a review. Trends in
Food Science & Technology, 86:34-40, 10.1016/j.tifs.2019.02.036.
Mengjie, G., Tan, H., Qi, Z., Ahmed, T., Lang, Q., Wenhui, L., . . .
Hao, H. (2021). Effects of different nut oils on the structures and
properties of gel-like emulsions induced by ultrasound using soy protein
as an emulsifier. International Journal of Food Science & Technology,
56:1649-1660, 10.1111/ijfs.14786.
Miklos, R., Xu, X., & Lametsch, R. (2011). Application of pork fat
diacylglycerols in meat emulsions. Meat Science, 87:202-205,
10.1016/j.meatsci.2010.10.010.
Misawa, N. (2009). Pathway engineering of plants toward astaxanthin
production. Plant Biotechnology, 26:93-99,
10.5511/plantbiotechnology.26.93.
Mostafa, S.-N., Sara, N.-T., & Mozhdeh, S. (2019). Effect of emulsifier
on rheological, textural and microstructure properties of walnut butter.
Journal of Food Measurement and Characterization, 13:785-792,
10.1007/s11694-018-9991-1.
Mun, S., Kim, Y.-L., Kang, C.-G., Park, K.-H., Shim, J.-Y., & Kim,
Y.-R. (2009). Development of reduced-fat mayonnaise using
4αGTase-modified rice starch and xanthan gum. International journal of
biological macromolecules, 44:400-407,
Muresan, V., Danthine, S., Racolta, E., Muste, S., & Blecker, C.
(2014). THE INFLUENCE OF PARTICLE SIZE DISTRIBUTION ON SUNFLOWER TAHINI
RHEOLOGY AND STRUCTURE. Journal of Food Process Engineering, 37:411-426,
10.1111/jfpe.12097.
Nam, H. R., Kim, Y. J., Yang, S. S., & Ahn, J.-H. (2014). Ball-Milling
of Graphite and Multi-Wall Carbon Nanotubes. Journal of Nanoscience and
Nanotechnology, 14:9103-9107, 10.1166/jnn.2014.10096.
Nikzade, V., Tehrani, M. M., & Saadatmand-Tarzjan, M. (2012).
Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect
of using soy milk and some stabilizer by a mixture design approach. Food
Hydrocolloids, 28:344-352,
Ozrenk, K., Javidipour, I., Yarilgac, T., Balta, F., & Gundogdu, M.
(2012). Fatty acids, tocopherols, selenium and total carotene of
pistachios (P. vera L.) from Diyarbakir (Southestern Turkey) and walnuts
(J. regia L.) from Erzincan (Eastern Turkey). Food Science and
Technology International, 18:55-62, 10.1177/1082013211414174.
Qu, Q., Yang, X., Fu, M., Chen, Q., Zhang, X., He, Z., & Qiao, X.
(2016). Effects of three conventional drying methods on the lipid
oxidation, fatty acids composition, and antioxidant activities of walnut
(Juglans regia L.). Drying Technology, 34:822-829,
10.1080/07373937.2015.1081931.
Reza, F., Reza Salahi, M., & Maryam, A. (2019). Flow behavior,
thixotropy, and dynamic viscoelasticity of ethanolic purified basil
(Ocimum bacilicum L.) seed gum solutions during thermal treatment. Food
Science & Nutrition, 7:1623-1633, 10.1002/fsn3.992.
Sato, A. C. K., Perrechil, F. A., Costa, A. A. S., Santana, R. C., &
Cunha, R. L. (2015). Cross-linking proteins by laccase: Effects on the
droplet size and rheology of emulsions stabilized by sodium caseinate.
Food Research International, 75:244-251, 10.1016/j.foodres.2015.06.010.
Steffe, J. F. (1996). Rheological methods in food process
engineering Freeman press.
Steiner, D., Finke, J. H., Breitung-Faes, S., & Kwade, A. (2016).
Breakage, temperature dependency and contamination of Lactose during
ball milling in ethanol. Advanced Powder Technology, 27:1700-1709,
10.1016/j.apt.2016.05.034.
Strzalka, K., Kostecka-Gugala, A., & Latowski, D. (2003). Carotenoids
and environmental stress in plants: Significance of carotenoid-mediated
modulation of membrane physical properties. Russian Journal of Plant
Physiology, 50:168-172, 10.1023/a:1022960828050.
Sun, C., Liu, R., Wu, T., Liang, B., Shi, C., & Zhang, M. (2015).
Effect of superfine grinding on the structural and physicochemical
properties of whey protein and applications for microparticulated
proteins. Food Science and Biotechnology, 24:1637-1643,
10.1007/s10068-015-0212-y.
Sun, Q., Cheng, Y., Yang, G., Ma, Z. F., Zhang, H., Li, F., & Kong, L.
(2019). Stability and sensory analysis of walnut polypeptide liquid:
response surface optimization. International Journal of Food Properties,
22:853-862, 10.1080/10942912.2019.1611600.
Tisserand, C., Fleury, M., Brunel, L., Bru, P., & Meunier, G. (2012).
’Passive microrheology for measurement of the concentrated dispersions
stability.’ In, UK colloids 2011 (pp. 101-105). Springer.
Vardhanabhuti, B., & Ikeda, S. (2006). Isolation and characterization
of hydrocolloids from monoi (Cissampelos pareira) leaves. Food
Hydrocolloids, 20:885-891, 10.1016/j.foodhyd.2005.09.002.
Wagener, E. A., & Kerr, W. L. (2018). Effects of oil content on the
sensory, textural, and physical properties of pecan butter (Carya
illinoinensis). Journal of Texture Studies, 49:286-292,
10.1111/jtxs.12304.
Walker, R. M., Gumus, C. E., Decker, E. A., & McClements, D. J. (2017).
Improvements in the formation and stability of fish oil-in-water
nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. Journal
of Food Engineering, 211:60-68, 10.1016/j.jfoodeng.2017.05.004.
Wang, L., Liu, H.-M., Zhu, C.-Y., Xie, A.-J., Ma, B.-J., & Zhang, P.-Z.
(2019). Chinese quince seed gum: Flow behaviour, thixotropy and
viscoelasticity. Carbohydrate Polymers, 209:230-238,
10.1016/j.carbpol.2018.12.101.
Xu, L., Gu, L., Su, Y., Chang, C., Dong, S., Tang, X., . . . Li, J.
(2020). Formation of egg yolk-modified starch complex and its
stabilization effect on high internal phase emulsions. Carbohydrate
Polymers, 247, 10.1016/j.carbpol.2020.116726.
Yang, X., Gong, T., Lu, Y.-h., Li, A., Sun, L., & Guo, Y. (2020).
Compatibility of sodium alginate and konjac glucomannan and their
applications in fabricating low-fat mayonnaise-like emulsion gels.
Carbohydrate Polymers, 229, 10.1016/j.carbpol.2019.115468.
Yun, L., Wu, T., Liu, R., Li, K., & Zhang, M. (2018). Structural
variation and microrheological properties of a homogeneous
polysaccharide from wheat germ. Journal of agricultural and food
chemistry, 66:2977-2987,
Zhaohua, H., Baozhong, G., Chong, D., Shunjing, L., Chengmei, L., &
Xiuting, H. (2020). Stabilization of peanut butter by rice bran wax.
Journal of Food Science, 85:1793-1798, 10.1111/1750-3841.15176.