Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request

References

1     W. Baumann and B. Herberg-Liedtke (1996) Chemikalien in der Metallbearbeitung: Daten und Fakten zum Umweltschutz, Springer Berlin Heidelberg.
2     Kaur, R. and Liu, S. (2016) Antibacterial surface design – Contact kill. Progress in Surface Science, 91 (3), 136–153.
3     Cassini, A., Liselotte Diaz Högberg, et. al. (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet Infectious Diseases, 19 (1), 56–66.
4     Gastmeier, P., Stamm-Balderjahn, S., Hansen, S., Zuschneid, I., Sohr, D., Behnke, M., Vonberg, R.-P., Rüden, H. (2006) Where should one search when confronted with outbreaks of nosocomial infection? American journal of infection control, 34 (9), 603–605.
5     Voigt, M. (2017) Photoinduzierte Degradation pharmazeutisch relevanter Substanzen in Wässern - Kinetische, strukturchemische und ökotoxikologische Untersuchungen von Wirkstoffen und deren Abbauprodukten unter Anwendung von Advanced Oxidation Processes. Universität Duisburg-Essen.
6     Ren, Y., Han, Y., Li, Z., Liu, X., Zhu, S., Liang, Y., Yeung, K.W.K., Wu, S. (2020) Ce and Er Co-doped TiO2 for rapid bacteria- killing using visible light. Bioactive materials, 5 (2), 201–209.
7     Garrido-Cardenas, J.A., Esteban-García, B., Agüera, A., Sánchez-Pérez, J.A., Manzano-Agugliaro, F. (2019) Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. International journal of environmental research and public health, 17 (1).
8     Seyfert, U., Heisig, U., Teschner, G., Strümpfel, J. (2015) 40 Jahre industrielles Magnetron-Sputtern in Europa. Vakuum in Forschung und Praxis, 27 (6), 21–26.
9     Lake, M. (2009). In: Erich Wintermantel, Suk-Woo Ha. (eds) Medizintechnik. PVD-Beschichtungstechnologie, Springer, Berlin, Heidelberg.
10   Erkens, G. (2010) Plasmagestützte Oberflächenbeschichtung: Verfahren, Anlagen, Prozesse und Anwendungen, Verl. Moderne Industrie, Landsberg/Lech.
11   Frey, H. and Khan, H.R. (eds) (2015) Handbook of thin-film technology, Springer, Berlin, Heidelberg.
12   Energy, A. AE Pulsed DC Products: Precision Process Control | Advanced Energy. https://www.advancedenergy.com/globalassets/resources-root/brochures/en-ppg-the-pulsed-dc-advantage-brochure.pdf (14 March 2023).
13   Belkind, A., Freilich, A., Lopez, J., Zhao, Z., Zhu, W., Becker, K. (2005) Characterization of pulsed dc magnetron sputtering plasmas. New J. Phys., 7, 90.
14   A. Belkind, Z. Zhao, D. Carter, L. Mahoney, G. McDonough, G. Roche, R. Scholl and H. Walde (2000) Pulsed-DC Reactive Sputtering of Dielectrics: Pulsing Parameter Effects, 43rd Annual Technical Conference Proceedings—Denver, April 15–20, 2000: Society of Vacuum Coaters 505/856-7188 ISSN 0737-5921.
15   Jürgen Müller (2019) Presentation: Sputtern Grundlagen: Metaplas PVD Systeme, Grundlagen der Sputtertechnologie, Regelungssysteme für die Abscheidung von Oxiden, Krefeld.
16   J. Sícha, J. Musil, M. Meissner, R. Cerstvý (2008) Nanostructure of photocatalytic TiO2 films sputtered at temperatures below 200 8C. Applied Surface Science, 254, 3793–3800.
17   P. Zeman and S. Takabayashi (2002) Effect of total and oxygen partial pressures on structure of photocatalytic TiO films sputtered on unheated substrate 2. Surface and Coatings Technology, 153 (1), 93–99.
18   Guillén, C. and Herrero, J. (2017) TiO 2 coatings obtained by reactive sputtering at room temperature: Physical properties as a function of the sputtering pressure and film thickness. Thin Solid Films, 636, 193–199.
19   Sarma, B.K., Pal, A.R., Bailung, H., Chutia, J. (2013) Growth of nanocrystalline TiO2 thin films and crystal anisotropy of anatase phase deposited by direct current reactive magnetron sputtering. Materials Chemistry and Physics, 139 (2-3), 979–987.
20   P. Löbl, M. Huppertz, D. Mergel (1994) Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films, 251 (1), 72–79.
21   Barnes, M.C., Kumar, S., Green, L., Hwang, N.-M., Gerson, A.R. (2005) The mechanism of low temperature deposition of crystalline anatase by reactive DC magnetron sputtering. Surface and Coatings Technology, 190 (2-3), 321–330.
22   Toku, H., Pessoa, R.S., Maciel, H.S., Massi, M., Mengui, U.A. (2008) The effect of oxygen concentration on the low temperature deposition of TiO2 thin films. Surface and Coatings Technology, 202 (10), 2126–2131.
23   Ratova, M., Klaysri, R., Praserthdam, P., Kelly, P.J. (2017) Pulsed DC magnetron sputtering deposition of crystalline photocatalytic titania coatings at elevated process pressures. Materials Science in Semiconductor Processing, 71, 188–196.
24   Daviðsdóttir, S., Shabadi, R., Galca, A.C., Andersen, I.H., Dirscherl, K., Ambat, R. (2014) Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity. Applied Surface Science, 313, 677–686.
25   Varnagiris, S., Urbonavicius, M., Tuckute, S., Lelis, M., Milcius, D. (2017) Development of photocatalytically active TiO2 thin films on expanded polystyrene foam using magnetron sputtering. Vacuum, 143, 28–35.
26   T. Ohsaka, F. Izumi, Y. Fujiki (1978) Raman spectrum of anatase, TiO2. JOURNAL OF RAMAN SPECTROSCOPY, 7 (6), 321–324.
27   T. Ohsaka (1980) Temperature Dependence of the Raman Spectrum in Anatase TiO2. Journal of the Physical Society of Japan, 48 (5), 1661–1668.