Shockley W, Quiesser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961;32(3):510-519. Andreani LC, Bozzola A, Kowalczewsk P, et al. Silicon solar cells: toward the efficiency limits. Adv. Phys.:X 2019;4(1): 1548305. Bush KA, Palmstrom AF, Zhengshan JY, et al. 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. Nat. Energy 2017;2:1-7. Lal NN, Dkhissi Y, Li W, et al. Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017; 7:1602761. Sahli F, Werner J, Kamino BA, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 2018;17(9):820-826. Oxford PV perovskite solar cell achieves 28% efficiency. 2018 Press Release by Oxford PV. https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency Mazzarella L, Lin YH, Kirner S, et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25\%. Adv. Energy Mater. 2019;9: 1803241. Nogay G, Sahli F, Werner J, et al. 25.1\%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett. 2019;4:844-845. Zheng J, Mehrvarz H, Liao C, et al. Large-area 23\%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material. ACS Energy Lett. 2019;4:2623-2631. Kohnen E, Jost M, Morales-Vilches AB, et al. Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain. Energy Fuels 2019;3:1995-2005. Schmager R, Langenhorst M, Lehr J, et al. Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics. Opt. Express 2019;27:A507-A523. Liu Y, Li Y, Wu Y, et al. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mater Sci Eng: R: Reports, 2020;142:100579. Gharibzadeh S, Hossain IM, Fassl P, et al. 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four‐Terminal Tandems with Silicon and CIGS. Adv. Funct. Mater. 2020;30:1909919. Gota F, Langenhorst M, Schmager R, et al. Energy Yield Advantages of Three-Terminal Perovskite-Silicon Tandem Photovoltaics. Joule 2020;4:2387-2403. Oxford PV hits new world record for solar cell. 2020 Press Releases by Oxford PV. https://www.oxfordpv.com/news/oxford-pv-hits-new-world-record-solar-cell Al-Ashouri A, Kohnen E, Li B, et al.. Monolithic perovskite/silicon tandem solar cell with> 29\% efficiency by enhanced hole extraction. Sci. 2020;370(6522):1300-1309. Rohatgi A, Zhu K, Tong J, et al. 26.7% Efficient 4-Terminal Perovskite-Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE J. Photovolt. 2020;10:417-422. Park HH, Kim J, Kim G, et al. Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications. Small Methods 2020;4:2000074. Subbiah AS, Isikgor FH, Howells CT, et al. High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. ACS Energy Lett. 2020;5:3034-3040. Xu J, Boyd CC, Zhengshan JY, et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Sci. 2020;367:1097-1104. Chen B, Baek SW, Hou Y, et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020;11:1257. Wang Z, Zhu X, Zuo S, et al. 27%‐Efficiency Four‐Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh. Adv. Funct. Mater. 2020;30:1908298. Schulze PSC, Bett AJ, Bivour M, et al. 25.1\% High-Efficient Monolithic Perovskite Silicon Tandem Solar Cell with a High Band Gap Perovskite Absorber. Sol. RRL 2020;4:2000152. World Record: Efficiency of perovskite silicon tandem solar cell jumps to 29.15 per cent. 2020 Press release by HZB. https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21020;sprache=en. World record again at HZB: Almost 30 % efficiency for next-generation tandem solar cells. 2021 Press Releases by HZB. https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23248;sprache=en Liu J, Aydin E, Yin J, et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 2021;5(12):3169-3186. 2 New world records: perovskite-on-silicon-tandem solar cells. 2022 Press Releases by CSEM, EPFL. https://csem.cdn.prismic.io/csem/f46abbd1-6fe4-4554-9e0e-053152b390aa_CP2022-EPFL-worldrecord-EN.pdf Wu Y, Zheng P, Peng J, et al. 27.6% Perovskite/c-Si Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Adv. Energy Mater. 2022;12(27):2200821. Mariotti S, Jager K, Diederich M, et al. Monolithic Perovskite/Silicon Tandem Solar Cells Fabricated Using Industrial p-Type Polycrystalline Silicon on Oxide/Passivated Emitter and Rear Cell Silicon Bottom Cell Technology. Solar RRL 2022;6(4):2101066. Ying Z, Yang Z, Zheng J, et al. Monolthic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule 2022;6(11):2644-2661. Yao Y, Hang P, Li B, et al. Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small 2022;18(38): 2203319. World record back at HZB: Tandem solar cell achieves 32.5 percent efficiency. Press Release by HZB. https://www.helmholtz-berlin.de/pubbin/news_seite?nid=24348;sprache=en Lal NN, Dkhissi Y, Li W, et al. Perovskite tandem solar cells. Adv. Mat. 2017;7(18):1602761. Ko Y, Park HJ, Lee C, et al. Recent progress in interconnection layers for hybrid photovoltaic tandems. Adv. Mat. 2020;32(51):2002196. Li H, Zhang W. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chem. Rev. 2020;120(18):9835-9950. M. Jǒst, Kegelmann L, Korte L, et al. Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Adv. Mat. 2020;10(26): 1904102. Yang G, Ingenito A, Isabella O, et al. IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Sol. Energy Mater. Sol. Cells 2016;158:84-90. Haase F, Hollemann C, Schafer S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1\%-efficient POLO-IBC solar cells. Sol. Energy Mater. Sol. Cells 2018;186:184-193. Feldmann F, Reichel C, Muller R, et al. The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells. Sol. Energy Mater. Sol. Cells 2017;159:265-271. Richter A, Muller R, Benick J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses Nat. Energy 2021;6(4):429-438. JinkoSolar’s High-efficiency N-Type Monocrystalline Silicon Solar Cell Sets Our New Record with Maximum Conversion Efficiency of 26.4% . Press Release by Jinko Solar. https://www.jinkosolar.com/en/site/newsdetail/1827 Ingenito A, Nogay G, Stuckelberger J, et al. Phosphorous-Doped Silicon Carbide as Front-Side Full-Area Passivating Contact for Double-Side Contacted c-Si Solar Cells. IEEE J. Photovolt. 2018;9:346-354. Nogay G, Ingenito A, Rucavado E, et al. Crystalline Silicon Solar Cells With Coannealed Electron- and Hole-Selective SiCx Passivating Contacts. IEEE J. Photovolt. 2018;8(6):1478–1485. Stückelberger J, Nogay G, Wyss P, et al. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells Sol. Energy Mater. Sol. Cells 2016;158:2-10. Yang G, Guo P, Procel P, et al. Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cells Appl. Phys. Lett. 2018;112(19): 193904. Mewe A, Stodolny M, Anker J, et al. Full wafer size IBC cell with polysilicon passivating contacts. AIP Conf. Proc. 2018;1999(1): 040014. Van Der Vossen R, Feldmann F, Moldovan A, et al. Comparative study of differently grown tunnel oxides for p-type passivating contacts. Energy procedia 2017;124: 448-454. Lerch W, Kegel W, Niess J, et al. Scaling Requires Continuous Innovation in Thermal Processing: Low-Temperature Plasma Oxidation. ECS Trans 2012;45(6): 151. Singh M, Santbergen R, Mazzarella L, et al. Optical characterization of poly-SiOx and poly-SiCx carrier-selective passivating contacts. Sol. Energy Mater. Sol. Cells 2020;210:110507. Yang G, Han C, Procel P, et al. Oxygen-alloyed poly-Si passivating contacts for high-thermal budget c-Si heterojunction solar cells. Prog. Photovolt. 2022;30(2):141-151. Messmer C, Goraya, BS, Nold S, et al. The race for the best silicon bottom cell: Efficiency and cost evaluation of perovskite–silicon tandem solar cells. Prog. Photovolt. 2021;29(7):744-759. Nemeth B, Young DL, Page MR, et al. Polycrystalline silicon passivted tunneling contacts for high efficiency silicon solar cells. J. Mater. Res. 2016;31(6):671-681. Polzin JI, Lange S, Richter S, et al. Temperature-induced stoichiometric changes in thermally grown interfacial oxide in tunnel-oxide passivating contacts. Sol. Energy Mater. Sol. Cells 2020;218:110713. Rui Z, Zeng Y, Guo X, et al. On the passivation mechanism of poly-silicon and thin silicon oxide on crystal silicon wafers. Sol. Energy 2019;194:18-26. Temmler J, Polzin JI, Feldmann F, et al. Inline PECVD Deposition of Poly-Si-Based Tunnel Oxide Passivating Contacts. Phys. Status Solidi (a) 2018;215:1800449. Holman ZC, Filipič M, Descoeudres A, et al. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J. Appl. Phys. 2013;113(1):013107. Han C, Yang G, Montes A, et al. Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiOx/Poly-Si Passivating Contacts. ACS Appl. Energy Mater. 2020;3(9):8606-8618. Qiu D, Duan W, Lambertz A, et al. Effect of oxygen and hydrogen flow ratio on indium tin oxide films in Rear –junction silicon heterojunction solar cells. Sol. Energy 2022;231:578-585. Sinton RA, Cuevas A. Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 1996;69(17):2510-2512. Kerr MJ, Cuevas A, Sinton A. Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements. J. Appl. Phys. 2002;91(1):399-404. Phung N, Verheijen M, Todinova A, et al. Enhanced self-assempled monolayer surface coverage by ALD NiO in pin perovskite solar cells. ACS Appl. Mater. Interfaces. 2021;14(1):2166-2176. Phung N, Van Helvoirt C, Beyer W, et al. Effective hydrogenation of poly-Si passivating contacts by atomic layer deposited nickel oxide. IEEE J. Photovolt. 2022; 12(6):1377-1385. Al-Ashouri A, Magomedov A, RoꞴ M, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cell. Energy Environ. Sci. 2019;12(11):3356-3369. Wang J, Zardetto V, Datta K, et al. 16.8% monolithic all-perovskite triple junction solar cells via a universal two-step solution process. Nat. Commun. 2020;11(1):1-10. PhD Research thesis by Kunal Datta 2022. https://research.tue.nl/nl/persons/kunal-datta/publications/?type=%2Fdk%2Fatira%2Fpure%2Fresearchoutput%2Fresearchoutputtypes%2Fthesis%2Fdoc1(ISBN: 978-90-386-5558-1). 30% yield achieved with four terminal perovskite silicon pv tandem cells. 2022 press Release by TNO. https://www.tno.nl/nl/newsroom/2022/09/rendement-30-bereikt-vier-terminal/ Zhang D, Najafi M, Zardetto V, et al. High efficiency 4-terminal perovskite/c-Si tandem cells. Sol. Energy Mater. Sol. Cells 2018;188:1-5. Najafi M, Zardetto V, Zhang D, et al. Highly efficient and stable semi-transparent p-i-n planar perovskite solar cells by atmospheric pressure spatial atomic layer deposited ZnO. Solar RRL 2018;2:1800147. Coletti G, Luxembourg S, Geerligs LJ, et al. Bifacial four-terminal perovskite/silicon tandem solar cells and modules. ACS Energy Lett. 2020;5(5):1676-1680. Werner J, Barraud, L, Walter A, et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 2016;1(2): 474−480. Yang G, Gram R, Procel P, et al. Will SiOx-Pinholes for SiOx/poly-Si Passivating Contact Enhance the Passivation Quality?. Sol. Energy Mater. Sol. Cells 2023. doi: https://doi.org/10.1016/j.solmat.2023.112200 Stuckelberger J, Yan D, Phang SP, et al. Pre-annealing for improved LPCVD deposited boron-doped poly-Si hole-selective contacts. Sol. Energy Mater. Sol. Cells 2023;251:112123. Cluster JS, Thompson MO, Jacobson DC, et al. Density of amorphous Si. Appl. Phys. Lett. 1994;64(4):437-439. Datta K, Branco B, Zhao Y, et al. Efficient Continuous Light-Driven Electrochemical Water Splitting Enabled by Monolithic Perovskite-Silicon Tandem Photovoltaics. Adv. Mater. Technol. 2022;2201131.