References
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., &
Crump, S. E. (2018). Glaciation of alpine valleys: The glacier –
debris-covered glacier – rock glacier continuum. Geomorphology ,311 , 127–142.
https://doi.org/10.1016/j.geomorph.2018.03.015
Azócar, G. F., & Brenning, A. (2010). Hydrological and geomorphological
significance of rock glaciers in the dry Andes, Chile (27°–33°S).Permafrost and Periglacial Processes , 21 (1),
42–53 . https://doi.org/10.1002/ppp.669
Ballantyne, C. K. (2018). Periglacial geomorphology . Oxford UK:
John Wiley & Sons.
Bao, W., Liu, S., Wei, J., & Guo, W. (2015). Glacier changes during the
past 40 years in the West Kunlun Shan. Journal of Mountain
Science , 12 (2), 344–357 .
https://doi.org/10.1007/s11629-014-3220-0
Barboux, C., Delaloye, R., & Lambiel, C. (2014). Inventorying slope
movements in an Alpine environment using DInSAR. Earth Surface
Processes and Landforms , 39 (15), 2087–2099.
https://doi.org/10.1002/esp.3603
Barsch, D. (1996). Rockglaciers: indicators for the present and
former geoecology in high mountain environments (Vol. 16). Springer
Science & Business Media.
Berthling, I. (2011). Beyond confusion: Rock glaciers as
cryo-conditioned landforms. Geomorphology, 131 (3–4), 98–106.
https://doi.org/10.1016/j.geomorph.2011.05.002
Bertone, A., Barboux, C., Bodin, X., Bolch, T., Brardinoni, F., Caduff,
R., et al. (2022). Incorporating InSAR kinematics into rock glacier
inventories: insights from 11 regions worldwide. Cryosphere ,16 (7 ), 2769–2792.
https://doi.org/10.5194/tc-16-2769-2022
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., et al. (2019). Permafrost is warming at a global
scale. Nature Communications , 10 (1), 264.
https://doi.org/10.1038/s41467-018-08240-4
Brenning, A. (2005). Geomorphological, hydrological and climatic
significance of rock glaciers in the Andes of Central Chile
(33 –35°S). Permafrost and Periglacial Processes, 16(3),23 1–240. https://doi.org/10.1002/ppp.528
Cai, J., Wang, X., Liu, G., & Yu, B. (2021). A comparative study of
active rock glaciers mapped from geomorphic-and kinematic-based
approaches in daxue shan, southeast tibetan plateau. Remote
Sensing , 13 (23), 4931.
https://doi.org/10.3390/rs13234931
Capps, S. R. (1910). Rock Glaciers in Alaska. The Journal of
Geology , 18 (4), 359–375.
https://doi.org/10.1086/621746
Chen, C. W., & Zebker, H. A. (2002). Phase Unwrapping for Large Sar
Interferograms: Statistical Segmentation and Generalized Network Models.IEEE Transactions on Geoscience and Remote Sensing , 40 (8),
1709.
https://doi.org/10.1109/tgrs.2002.802453
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018).
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation. ArXiv .
Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., et al. (2019).
Characteristic, changes and impacts of permafrost on Qinghai-Tibet
Plateau. Chinese Science Bulletin , 64 (27), 2783–2795.
https://doi.org/10.1360/tb-2019-0191
Chudley, T. R., & Willis, I. C. (2019). Glacier surges in the
north-west West Kunlun Shan inferred from 1972 to 2017 Landsat imagery.Journal of Glaciology , 65 (249), 1–12.
https://doi.org/10.1017/jog.2018.94
Chueca, J. (1992). A statistical analysis of the spatial distribution of
rock glaciers, Spanish Central Pyrenees. Permafrost and Periglacial
Processes, 3(3), 261–265. https://doi.org/10.1002/ppp.3430030316
Cicoira, A., Beutel, J., Faillettaz, J., Gärtner-Roer, I., & Vieli, A.
(2019). Resolving the influence of temperature forcing through heat
conduction on rock glacier dynamics: A numerical modelling approach.
Cryosphere, 13(3), 927–942.
https://doi.org/10.5194/tc-13-927-2019
Cicoira, A., Beutel, J., Faillettaz, J., & Vieli, A. (2019). Water
controls the seasonal rhythm of rock glacier flow. Earth and
Planetary Science Letters , 528 , 115844.
https://doi.org/10.1016/j.epsl.2019.115844
Cui, Z. (1985). Discovery of Kunlunshan-type rock glaciers and the
classification of rock glaciers. Kexue Tongbao , 30 (3),
365–369. https://doi.org/10.1360/sb1985-30-3-365
Cui, Z., & Cheng, Z. (1988). Rock glaciers in the source region of
Urumqi River, middle Tian Shan, China (pp. 724–727). Presented at the
5th International Conference on Permafrost.
Delaloye, R., Lambiel, C., & Gärtner-Roer, I. (2010). Overview of rock
glacier kinematics research in the Swiss Alps: Seasonal rhythm,
interannual variations and trends over several decades.Geographica Helvetica , 65 (2), 135–145.
https://doi.org/10.5194/gh-65-135-2010
Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M.,
& Gachet, S. (2013). Rapidly moving rock glaciers in Mattertal.
Geographica Helvetica, 21–31.
Ellis, J. M., & Calkin, P. E. (1979). Nature and Distribution of
Glaciers, Neoglacial Moraines, and Rock Glaciers, East-Central Brooks
Range, Alaska. Arctic and Alpine Research , 11 (4),
403–420. https://doi.org/10.1080/00040851.1979.12004149
Everingham, M., Eslami, S. M. A., Gool, L. V., Williams, C. K. I., Winn,
J., & Zisserman, A. (2015). The Pascal Visual Object Classes Challenge:
A Retrospective. International Journal of Computer Vision ,111 (1), 98–136. https://doi.org/10.1007/s11263-014-0733-5
Falaschi, D., Castro, M., Masiokas, M., Tadono, T., & Ahumada, A. L.
(2014). Rock Glacier Inventory of the Valles Calchaquíes Region
(~ 25 °S), Salta, Argentina, Derived from ALOS
Data. Permafrost and Periglacial Processes, 25(1), 69–75.
https://doi.org/10.1002/ppp.1801
Geiger, S. T., Daniels, J. M., Miller, S. N., & Nicholas, J. W. (2014).
Influence of Rock Glaciers on Stream Hydrology in the La Sal Mountains,
Utah. Arctic, Antarctic, and Alpine Research , 46 (3),64 5–658. https://doi.org/10.1657/1938-4246-46.3.645
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb,
A., et al. (2006). Permafrost creep and rock glacier dynamics.
Permafrost and Periglacial Processes, 17(3), 189–214.
https://doi.org/10.1002/ppp.561
Haeberli, Wilfried. (2000). Modern Research Perspectives Relating to
Permafrost Creep and Rock Glaciers: A Discussion. Permafrost and
Periglacial Processes, 11(4), 290–293 .
https://doi.org/10.1002/1099-1530(200012)11:4<290::aid-ppp372>3.0.co;2-0
Hanssen, R. F. (2001). Radar interferometry : data interpretation
and error analysis . Dordrecht Boston: Kluwer Academic.
Harris, S. A., Zhijiu, C., & Guodong, C. (1998). Origin of a bouldery
diamiction, Kunlun pass, Qinghai-Xizang Plateau, People’s Republic of
China: gelifluction deposit or rock glacier? Earth Surface Processes and
Landforms, 23(10), 943–952.
https://doi.org/10.1002/(sici)1096-9837(199810)23:10<943::aid-esp913>3.0.co;2-7
Hu, Y., Liu, L., Wang, X., Zhao, L., Wu, T., Cai, J., et al. (2021).
Quantification of permafrost creep provides kinematic evidence for
classifying a puzzling periglacial landform. Earth Surface Processes and
Landforms, 46(2), 465–477.
https://doi.org/10.1002/esp.5039
Huang, L., Luo, J., Lin, Z., Niu, F., & Liu, L. (2020). Using deep
learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan
Plateau) from CubeSat images. Remote Sensing of Environment ,237 , 111534. https://doi.org/10.1016/j.rse.2019.111534
Huang, L., Liu, L., Luo, J., Lin, Z., & Niu, F. (2021). Automatically
quantifying evolution of retrogressive thaw slumps in Beiluhe (Tibetan
Plateau) from multi-temporal CubeSat images. International Journal
of Applied Earth Observation and Geoinformation , 102 , 102399.
https://doi.org/10.1016/j.jag.2021.102399
Humlum, O. (2000). The geomorphic significance of rock glaciers:
estimates of rock glacier debris volumes and headwall recession rates in
West Greenland. Geomorphology, 35(1–2), 41–67.
https://doi.org/10.1016/s0169-555x(00)00022-2
Ikeda, A., Matsuoka, N., & Kääb, A. (2008). Fast deformation of
perennially frozen debris in a warm rock glacier in the Swiss Alps: An
effect of liquid water. Journal of Geophysical Research: Earth
Surface , 113 (1). https://doi.org/10.1029/2007jf000859
IPCC (2021). Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change In V. Masson-Delmotte, P.
Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews,
T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Ed.)
Janke, J. R. (2007). Colorado Front Range rock glaciers: distribution
and topographic characteristics. Arctic, Antarctic, and Alpine Research,
39(1), 74–83.
Jones, D. B., Harrison, S., Anderson, K., & Betts, R. A. (2018).
Mountain rock glaciers contain globally significant water stores.Scientific Reports , 8 (1), 2834.
https://doi.org/10.1038/s41598-018-21244-w
Jones, D. B., Harrison, S., & Anderson, K. (2019). Mountain
glacier-to-rock glacier transition. Global and Planetary Change ,181 , 102999.
https://doi.org/10.1016/j.gloplacha.2019.102999
Jones, D. B., Harrison, S., Anderson, K., Shannon, S., & Betts, R. A.
(2021). Rock glaciers represent hidden water stores in the Himalaya.Science of The Total Environment , 793 , 145368.
https://doi.org/10.1016/j.scitotenv.2021.145368
Potter Jr., N. (1972). Ice-cored rock glacier, Galena Creek, northern
Absaroka Mountains, Wyoming. Bulletin of the Geological Society of
America , 83 (10), 3025–3058.
https://doi.org/10.1130/0016-7606(1972)83[3025:irggcn]2.0.co;2
Kääb, A., Treichler, D., Nuth, C., & Berthier, E. (2015). Brief
Communication: Contending estimates of 2003–2008 glacier mass balance
over the Pamir–Karakoram–Himalaya. The Cryosphere , 9 (2),
557–564. https://doi.org/10.5194/tc-9-557-2015
Kenner, R., Pruessner, L., Beutel, J., Limpach, P., & Phillips, M.
(2020). How rock glacier hydrology, deformation velocities and ground
temperatures interact: Examples from the Swiss Alps. Permafrost and
Periglacial Processes, 31(1), 3–14.
https://doi.org/10.1002/ppp.2023
Kofler, C., Mair, V., Comiti, F., Zebisch, M., Schneiderbauer, S., &
Steger, S. (2022). Towards a sediment transfer capacity index of rock
glaciers: Examples from two catchments in South Tyrol, (Eastern Italian
Alps). Catena , 216 , 106329.
https://doi.org/10.1016/j.catena.2022.106329
Kummert, M., & Delaloye, R. (2018). Mapping and quantifying sediment
transfer between the front of rapidly moving rock glaciers and
torrential gullies. Geomorphology, 309 , 60–76.
https://doi.org/10.1016/j.geomorph.2018.02.021
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,521 (7553), 436–444. https://doi.org/10.1038/nature14539
Li, J. (1986). Tibetan glaciers . Beijing: Science Press.
Li, K., Chen, J., Zhao, L., Zhang, X., Pang, Q., Fang, H., & Liu, G.
(2012 ). Permafrost distribution in typical area of West Kunlun
Mountains derived from a comprehensive survey. Journal of
Glaciology and Geocryology , 34 (2), 447–454.
Li, S., & Shi, Y. (1992). Glacial and lake fluctuations in the area of
the west Kunlun mountains during the last 45000 years. Annals of
Glaciology , 16 , 79–84.
Liu, L., Millar, C. I., Westfall, R. D., & Zebker, H. A. (2013).
Surface motion of active rock glaciers in the Sierra Nevada, California,
USA: Inventory and a case study using InSAR. Cryosphere, 7(4),11 09–1119. https://doi.org/10.5194/tc-7-1109-2013
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T.,
Obregon, R., & Schoeneich, P. (2021). Rock glaciers throughout the
French Alps accelerated and destabilised since 1990 as air temperatures
increased. Communications Earth and Environment , 2 (1), 81.
https://doi.org/10.1038/s43247-021-00150-6
Marcer, Marco. (2020). Rock glaciers automatic mapping using optical
imagery and convolutional neural networks. Permafrost and Periglacial
Processes, 31(4), 561–566. https://doi.org/10.1002/ppp.2076
Millar, C.I., & Westfall, R. D. (2008). Rock glaciers and related
periglacial landforms in the Sierra Nevada, CA, USA; inventory,
distribution and climatic relationships. Quaternary
International , 188 (1), 90–104.
https://doi.org/10.1016/j.quaint.2007.06.004
Millar, Constance I., Westfall, R. D., & Delany, D. L. (2013). Thermal
and hydrologic attributes of rock glaciers and periglacial talus
landforms: Sierra Nevada, California, USA. Quaternary International,310 , 169–180. https://doi.org/10.1016/j.quaint.2012.07.019
Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W., Fidler, S., et
al. (2014). The role of context for object detection and semantic
segmentation in the wild. In Computer Vision and Pattern
Recognition (pp. 891–898). Columbus, OH.
Müller, J., Vieli, A., & Gärtner-Roer, I. (2016). Rock glaciers on the
run - Understanding rock glacier landform evolution and recent changes
from numerical flow modeling. Cryosphere, 10(6), 2865–2886.
https://doi.org/10.5194/tc-10-2865-2016
Ni, J., Wu, T., Zhu, X., Hu, G., Zou, D., Wu, X., et al. (2021).
Simulation of the Present and Future Projection of Permafrost on the
Qinghai‐Tibet Plateau with Statistical and Machine Learning Models.Journal of Geophysical Research: Atmospheres , 126 (2).
https://doi.org/10.1029/2020jd033402
Onaca, A., Ardelean, F., Urdea, P., & Magori, B. (2017). Southern
Carpathian rock glaciers: Inventory, distribution and environmental
controlling factors. Geomorphology, 293, 391–404.
https://doi.org/10.1016/j.geomorph.2016.03.032
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world
map of the Köppen-Geiger climate classification. Hydrology and
Earth System Sciences , 11 (5), 1633–1644.
https://doi.org/10.5194/hess-11-1633-2007
Quincey, D. J., Glasser, N. F., Cook, S. J., & Luckman, A. (2015).
Heterogeneity in Karakoram glacier surges. Journal of Geophysical
Research: Earth Surface, 120 (7), 1288–1300.
https://doi.org/10.1002/2015jf003515
Ran, Z., & Liu, G. (2018). Rock glaciers in Daxue Shan, south-eastern
Tibetan Plateau: an inventory, their distribution, and their
environmental controls. The Cryosphere, 12(7), 2327–2340.
https://doi.org/10.5194/tc-12-2327-2018
Rangecroft, S., Harrison, S., Anderson, K., Magrath, J., Castel, A. P.,
& Pacheco, P. (2014). A First Rock Glacier Inventory for the Bolivian
Andes. Permafrost and Periglacial Processes, 25(4), 333–343.
https://doi.org/10.1002/ppp.1816
Reinosch, E., Gerke, M., Riedel, B., Schwalb, A., Ye, Q., & Buckel, J.
(2021). Rock glacier inventory of the western Nyainqêntanglha Range,
Tibetan Plateau, supported by InSAR time series and automated
classification. Permafrost and Periglacial Processes, 32(4), 657–672.
https://doi.org/10.1002/ppp.2117
RGIK. (2022). Towards standard guidelines for inventorying rock
glaciers: baseline concepts (Version 4.2.2) (p. 13).
Robson, B. A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P., &
Schaffer, N. (2020). Automated detection of rock glaciers using deep
learning and object-based image analysis. Remote Sensing of Environment,250 , 112033. https://doi.org/10.1016/j.rse.2020.112033
Roer, I., & Nyenhuis, M. (2007). Rockglacier activity studies on a
regional scale: comparison of geomorphological mapping and
photogrammetric monitoring. Earth Surface Processes and Landforms,
32(12), 1747–1758. https://doi.org/10.1002/esp.1496
Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., & Valois, R.
(2019). Rock glaciers as a water resource in a changing climate in the
semiarid Chilean Andes. Regional Environmental Change ,19 (5), 1263–1279.
https://doi.org/10.1007/s10113-018-01459-3
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm,
D., & Wester, P. (2015). Assessment of permafrost distribution maps in
the Hindu Kush Himalayan region using rock glaciers mapped in Google
Earth. The Cryosphere, 9(6), 2089–2099.
https://doi.org/10.5194/tc-9-2089-2015
Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., & Crosta, G. B.
(2013). A regional inventory of rock glaciers and protalus ramparts in
the central Italian Alps. Geomorphology, 186 , 136–149.
https://doi.org/10.1016/j.geomorph.2012.12.028
Shi, Y. (2006). The quaternary glaciations and environmental
variations in China . Shijiazhuang: Hebei Science & Technology Press.
Sorg, A., Kääb, A., Roesch, A., Bigler, C., & Stoffel, M. (2015).
Contrasting responses of Central Asian rock glaciers to global warming.
Scientific Reports, 5(1), 8228. https://doi.org/10.1038/srep08228
Thibert, E., & Bodin, X. (2022). Changes in surface velocities over
four decades on the Laurichard rock glacier (French Alps). Permafrost
and Periglacial Processes, 33(3), 323–335.
https://doi.org/10.1002/ppp.2159
Villarroel, C. D., Beliveau, G. T., Forte, A. P., Monserrat, O., &
Morvillo, M. (2018). DInSAR for a regional inventory of active rock
glaciers in the Dry Andes Mountains of Argentina and Chile with
sentinel-1 data. Remote Sensing, 10(10), 1588.
https://doi.org/10.3390/rs10101588
Wang, X., Liu, L., Zhao, L., Wu, T., Li, Z., & Liu, G. (2017). Mapping
and inventorying active rock glaciers in the northern Tien Shan of China
using satellite SAR interferometry. Cryosphere, 11(2), 997–1014.
https://doi.org/10.5194/tc-11-997-2017
Wang, Y., Hou, S., Huai, B., An, W., Pang, H., & Liu, Y. (2018).
Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan
Plateau, since the 1970s. Journal of Glaciology, 64(246), 624–636.
https://doi.org/10.1017/jog.2018.53
Whalley, W. B., & Azizi, F. (1994). Rheological models of active rock
glaciers: Evaluation, critique and a possible test. Permafrost and
Periglacial Processes, 5(1), 37–51.
https://doi.org/10.1002/ppp.3430050105
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I.,
Gubler, S., & Vieli, A. (2016). Short-term velocity variations at three
rock glaciers and their relationship with meteorological conditions.Earth Surface Dynamics , 4 (1), 103–123.
https://doi.org/10.5194/esurf-4-103-2016
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., & Wan, G. (2010).
Permafrost degradation and its environmental effects on the Tibetan
Plateau: A review of recent research. Earth-Science Reviews ,103 (1–2), 31–44.
https://doi.org/10.1016/j.earscirev.2010.07.002
Yang, M., Wang, X., Pang, G., Wan, G., & Liu, Z. (2019). The Tibetan
Plateau cryosphere: Observations and model simulations for current
status and recent changes. Earth-Science Reviews, 190 , 353–369.
https://doi.org/10.1016/j.earscirev.2018.12.018
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., et al.
(2018). Recent Third Pole’s rapid warming accompanies cryospheric melt
and water cycle intensification and interactions between monsoon and
environment: multi-disciplinary approach with observation, modeling and
analysis Recent Third Pole’s rapid warming accompanies cryospheric melt
and water cycle intensification and interactions between monsoon and
environment: multi-disciplinary approach with observation, modeling and
analysis. Bulletin of the American Meteorological Society ,100 (3), 423–444. https://doi.org/10.1175/bams-d-17-0057.1
Yasuda, T., & Furuya, M. (2015). Dynamics of surge‐type glaciers in
West Kunlun Shan, Northwestern Tibet. Journal of Geophysical Research:
Earth Surface, 120(11), 2393–2405.
https://doi.org/10.1002/2015jf003511
Zhang, E., Liu, L., Huang, L., & Ng, K. S. (2021). An automated,
generalized, deep-learning-based method for delineating the calving
fronts of Greenland glaciers from multi-sensor remote sensing imagery.
Remote Sensing of Environment, 254 , 112265.
https://doi.org/10.1016/j.rse.2020.112265
Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C. K., et al.
(2020). Response of Tibetan Plateau lakes to climate change: Trends,
patterns, and mechanisms. Earth-Science Reviews, 208 , 103269.
https://doi.org/10.1016/j.earscirev.2020.103269
Zhang, X., Feng, M., Zhang, H., Wang, C., Tang, Y., Xu, J., et al.
(2021). Detecting rock glacier displacement in the central himalayas
using multi-temporal insar. Remote Sensing, 13(23), 4738.
https://doi.org/10.3390/rs13234738
Zhao, L., & Sheng, Y. (2019). Permafrost in the Qinghai-Tibet
plateau and its changes . Beijing: Science Press.
Zhao, L., Zou, D., Hu, G., Du, E., Pang, Q., Xiao, Y., et al. (2020).
Changing climate and the permafrost environment on the Qinghai–Tibet
(Xizang) plateau. Permafrost and Periglacial Processes, 31(3), 396–405.
https://doi.org/10.1002/ppp.2056
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., et al. (2021). A
synthesis dataset of permafrost thermal state for the Qinghai–Tibet
(Xizang) Plateau, China. Earth System Science Data , 13 (8),
4207–4218. https://doi.org/10.5194/essd-13-4207-2021
Zhou, Y., Li, Z., Li, J., Zhao, R., & Ding, X. (2018). Glacier mass
balance in the Qinghai–Tibet Plateau and its surroundings from the
mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sensing of
Environment, 210 , 96–112.
https://doi.org/10.1016/j.rse.2018.03.020
Zhu, C., Zhang, J., & Cheng, P. (1996). Rock glaciers in the Central
Tianshan Mountains, China. Permafrost and Periglacial Processes, 7(1),
69–78.
https://doi.org/10.1002/(sici)1099-1530(199601)7:1<69::aid-ppp210>3.0.co;2-b
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., et al. (2017). A
new map of permafrost distribution on the Tibetan Plateau. The
Cryosphere, 11(6), 2527–2542.
https://doi.org/10.5194/tc-11-2527-2017