References
Abdala‐Roberts, L., Moreira, X., Rasmann, S., Parra‐Tabla, V. and Mooney, K.A. 2016. Test of biotic and abiotic correlates of latitudinal variation in defences in the perennial herb Ruellia nudiflora . —J. Ecol. 104: 580-590.
Aldrich, P. R. and Cavender-Bares, J. 2011. Quercus, Wild Crop Relatives: Genomic and Breeding Resources. — Springer, pp: 89-129.
Ali A., Sanaei A., Li M., Nalivan O. A., Pour M. J., Valipour A., Karami J., Aminpour M., Kaboli H. and Askari Y. 2020. Big-trees–Energy mechanism underlies forest diversity and aboveground biomass. — Forest Ecol. Manag. 461: 117968.
Amada, G., Kobayashi, K., Izuno, A., Mukai, M., Ostertag, R., Kitayama, K. and Onoda, Y. 2019. Leaf trichomes in Metrosideros polymorphacan contribute to avoiding extra water stress by impeding gall formation. — Ann. Bot. 125: 533-542.
Amada, G., Kosugi, Y., Kitayama, K. and Onoda, Y. 2020. Roles of leaf trichomes in heat transfers and gas‐exchange characteristics across environmental gradients. — Authorea Preprints. https://doi.org/10.22541/au.160794364.42389606/v1.
Bertolino, L. T., Caine, R. S. and Gray, J. E. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. — Front. Plant Sci. 10: 225.
Bickford, C. P. 2016. Ecophysiology of leaf trichomes. — Funct. Plant Biol. 43: 807-814.
Cach-Pérez, M. J., Andrade, J. L., Cetzal-Ix, W. and Reyes-García, C. 2016. Environmental influence on the inter-and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula. — Bot. J. Linn. Soc. 181: 441-458.
Chen, D., Zhang, X., Kang, H., Sun, X., Yin, S., Du, H., Yamanaka, N., Gapare, W., Wu, H. X. and Liu, C. 2012. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. — PLoS ONE 7, e47268.
Dalin, P., Ågren, J., Björkman, C., Huttunen, P. and Kärkkäinen, K. 2008. Leaf trichome pormation and plant resistance to herbivory. — In: A. Schaller (Editor), Induced Plant Resistance to Herbivory. Springer Netherlands, Dordrecht, 89-105 p.
Deans, R. M., Brodribb, T. J., Busch, F. A. and Farquhar, G. D. 2020. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. — Nat. Plants 6: 1116-1125.
Du, B., Zhu, Y., Kang, H. and Liu, C. 2021. Spatial variations in stomatal traits and their coordination with leaf traits in Quercus variabilis across eastern Asia. — Sci. Total Environ 789: 147757.
Ehleringer, J., Bjorkman, O. and Mooney, H. 1976. Leaf pubescence: Effects on absorptance and photosynthesis in a desert shrub. — Science 192: 376-377.
Ehleringer, J. R. 1988. Comparative ecophysiology of Encelia farinosa and Encelia frutescens . — Oecologia 76: 553-561.
Fauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J. P., Aidar, M. P. M., Joly, C. A., Phillips, O. L., Vieira, S. A. and Gloor, M. U. 2018. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. — Plant Cell Environ. 41: 1618-1631.
Fernández, V., Sancho-Knapik, D., Guzmán, P., Peguero-Pina, J. J., Gil, L., Karabourniotis, G., Khayet, M., Fasseas, C., Heredia-Guerrero, J. A. and Heredia, A. 2014. Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age. — Plant Physiol. 166: 168-180.
Galdon-Armero, J., Fullana-Pericas, M., Mulet, P. A., Conesa, M. A., Martin, C. and Galmes, J. 2018. The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum(tomato). — Plant J. 96: 607-619.
Gasparini, K., Souto, A. C. R., da Silva, M. F., Costa, L. C., Figueiredo, C. R. F., Martins, S. C. V., Peres, L. E. P. and Zsögön, A. 2021. The Lanata trichome mutation increases stomatal conductance and reduces leaf temperature in tomato. — J. Plant Physiol. 260: 153413.
Hetherington, A. M. and Woodward, F. I. 2003. The role of stomata in sensing and driving environmental change. — Nature 424: 901-908.
Holroyd, G. H., Hetherington, A. M. and Gray, J. E. 2002. A role for the cuticular waxes in the environmental control of stomatal development. — New Phytol. 153: 433-439.
Jon, A. and Douglas, S. 1994. Evolution of trichome number in a Naturalized Population of Brassica rapa. — Am. Nat. 143: 1-13.
Kessler, M., Siorak, Y., Wunderlich, M. and Wegner, C. 2007. Patterns of morphological leaf traits among pteridophytes along humidity and temperature gradients in the Bolivian Andes. — Funct. Plant Biol. 34: 963-971.
Konrad, W., Burkhardt, J., Ebner, M. and Roth‐Nebelsick, A. 2015. Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. — Ecohydrology 8: 480-492.
Lefcheck J. S. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. — Methods Ecol. Evol. 7: 573-579.
Li, Y., Reich, P. B., Schmid, B., Shrestha, N., Feng, X., Lyu, T., Maitner, B. S., Xu, X., Li, Y. and Zou, D. 2020. Leaf size of woody dicots predicts ecosystem primary productivity. — Ecol. Lett. 23: 1003-1013.
Moles, A. T., Laffan, S. W., Keighery, M., Dalrymple, R. L., Tindall, M. L. and Chen, S. C. 2020. A hairy situation: Plant species in warm, sunny places are more likely to have pubescent leaves. — J. Biogeogr. 47: 1934-1944.
Paulino, M. S., de Souza, E. R., Lins, C. M. T., Dourado, P. R. M., de Carvalho Leal, L. Y., Monteiro, D. R., Junior, F. R. and de Carvalho Silva, C. U. 2020. Influence of vesicular trichomes of Atriplex nummulari a on photosynthesis, osmotic adjustment, cell wall elasticity and enzymatic activity. — Plant Physiol. Bioch. 155: 177-186.
Pérez-Estrada, L. B., Cano-Santana, Z. and Oyama, K. 2000. Variation in leaf trichomes of Wigandia urens : environmental factors and physiological consequences. — Tree Physiol. 20: 629-632.
Piritta, H., Katri, K., Geir, L., Pasi, R. and Jon, Å. 2010. Leaf trichome production and responses to defoliation and drought inArabidopsis lyrata (Brassicaceae). — Ann. Bot. Fenn. 47: 199-207.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. and Villar, R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. — New Phytol. 182: 565-588.
Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K. and Sanders, N. J. 2014. Convergent effects of elevation on functional leaf traits within and among species. — Funct. Ecol. 28: 37-45.
Ripley, B. S., Pammenter, N. and Smith, V. R. 1999. Function of leaf hairs revisited: the hair layer on leaves Arctotheca populifoliareduces photoinhibition, but leads to higher leaf temperatures caused by lower transpiration rates. — J. Plant Physiol. 155: 78-85.
Russo, S. E., Cannon, W. L., Elowsky, C., Tan, S. and Davies, S. J. 2010. Variation in leaf stomatal traits of 28 tree species in relation to gas exchange along an edaphic gradient in a Bornean rain forest. — Am. J. Bot. 97: 1109-1120.
Sack, L. and Buckley, T. N. 2020. Trait multi-functionality in plant stress response. — Integ. Comp. Biol. 60: 98-112.
Silva, H., Martinez, J., Baginsky, C. and Pinto, M. 1999. Effect of water stress on the leaf anatomy of six cultivars of the common beanPhaseolus vulgaris . — Revista Chilenda de Historia Natural 72: 219-235.
Simon, N. M. L., Sugisaka, J., Honjo, M. N., Tunstad, S. A., Tunna, G., Kudoh, H. and Dodd, A. N. 2020. Altered stomatal patterning accompanies a trichome dimorphism in a natural population of Arabidopsis. — Plant Direct 4: e00262.
Skelton, R., Midgley, J., Nyaga, J. M., Johnson, S. and Cramer, M. 2012. Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait? — Aust. J. Bot. 60: 104-113.
Stotz, G. C., Salgado-Luarte, C., Escobedo, V. M., Valladares, F. and Gianoli, E. 2021. Global trends in phenotypic plasticity of plants. — Ecol. Lett. 24: 2267-2281.
Thitz, P., Possen, B. J., Oksanen, E., Mehtätalo, L., Virjamo, V. and Vapaavuori, E. 2017. Production of glandular trichomes responds to water stress and temperature in silver birch (Betula pendula ) leaves. — Can. J. For. Res. 47: 1075-1081.
Xing, K., Niinemets, Ü., Rengel, Z., Onoda, Y., Xia, J., Chen, H.Y. H., Zhao, M., Han, W. and Li, H. 2021. Global patterns of leaf construction traits and their covariation along climate and soil environmental gradients. — New Phytol. 232: 1648-1660.
Zhu, Y., Kang, H., Xie, Q., Wang, Z., Yin, S. and Liu, C. 2012. Pattern of leaf vein density and climate relationship of Quercus variabilis populations remains unchanged with environmental changes. — Trees 26: 597-607.