References
Abdallah, A.M. et al. (2007) ‘Type VII secretion–mycobacteria show the way.’, Nature reviews. Microbiology , 5(11), pp. 883–891. Available at: https://doi.org/10.1038/nrmicro1773.
Abdallah, A.M. et al. (2011) ‘Mycobacterial Secretion Systems ESX-1 and ESX-5 Play Distinct Roles in Host Cell Death and Inflammasome Activation’, The Journal of Immunology , 187(9), pp. 4744 LP – 4753. Available at: https://doi.org/10.4049/jimmunol.1101457.
Aguilo, J.I. et al. (2013) ‘ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis’, Cellular Microbiology , 15(12), pp. 1994–2005. Available at: https://doi.org/10.1111/cmi.12169.
Amaral, E.P. and Andrade, B.B. (2017) ‘Nuclear Factor κ B Activation Pathways During Mycobacterium tuberculosis Infection’. Available at: https://doi.org/10.1177/1179568917695833.
Augenstreich, J. et al. (2017) ‘ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis’, Cellular Microbiology , 19(7), p. e12726. Available at: https://doi.org/10.1111/cmi.12726.
Bansal, K. et al. (2010) ‘PE_PGRS Antigens of Mycobacterium tuberculosis Induce Maturation and Activation of Human Dendritic Cells’,The Journal of Immunology , 184(7), pp. 3495 LP – 3504. Available at: https://doi.org/10.4049/jimmunol.0903299.
Basu, S. et al. (2007) ‘Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by toll-like receptor 2-dependent release of tumor necrosis factor-α’, Journal of Biological Chemistry , 282(2), pp. 1039–1050. Available at: https://doi.org/10.1074/jbc.M604379200.
Brennan, M.J. (2017) ‘The Enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination’, Infection and Immunity . Edited by A.T. Maurelli, 85(6), pp. e00969-16. Available at: https://doi.org/10.1128/IAI.00969-16.
Cadieux, N. et al. (2011) ‘Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein’, Microbiology , 157(3), pp. 793–804. Available at: https://doi.org/10.1099/mic.0.041996-0.
Cao, B. et al. (2006) ‘Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.’,Bioinformatics (Oxford, England) , 22(3), pp. 303–309. Available at: https://doi.org/10.1093/bioinformatics/bti784.
Capriotti, E., Fariselli, P. and Casadio, R. (2005) ‘I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.’, Nucleic acids research , 33(Web Server issue), pp. W306-10. Available at: https://doi.org/10.1093/nar/gki375.
Chai, Q. et al. (2019) ‘A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy.’, Nature communications , 10(1), p. 1973. Available at: https://doi.org/10.1038/s41467-019-09955-8.
Chai, Q., Wang, L. and Liu, C.H. (2020) ‘New insights into the evasion of host innate immunity by Mycobacterium tuberculosis’, Cellular & Molecular Immunology [Preprint], (July). Available at: https://doi.org/10.1038/s41423-020-0502-z.
Chen, T. et al. (2013) ‘Mycobacterium tuberculosis PE_PGRS17 promotes the death of host cell and cytokines secretion via Erk kinase accompanying with enhanced survival of recombinant Mycobacterium smegmatis.’, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research , 33(8), pp. 452–458. Available at: https://doi.org/10.1089/jir.2012.0083.
Chmiela, M. and Gonciarz, W. (2017) ‘Molecular mimicry in Helicobacter pylori infections’, World journal of gastroenterology , 23(22), pp. 3964–3977. Available at: https://doi.org/10.3748/wjg.v23.i22.3964.
Cole, S.T. et al. (1998) ‘Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence’,Nature , 393(6685), pp. 537–544. Available at: https://doi.org/10.1038/31159.
Davis, J.M. et al. (2002) ‘Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos’, Immunity , 17(6), pp. 693–702.
Desler, C. et al. (2009) ‘In Silico screening for functional candidates amongst hypothetical proteins’, BMC Bioinformatics , 10(1), p. 289. Available at: https://doi.org/10.1186/1471-2105-10-289.
Dorhoi, A. and Kaufmann, S.H.E. (2014) ‘Tumor necrosis factor alpha in mycobacterial infection’, Seminars in Immunology , 26(3), pp. 203–209. Available at: https://doi.org/https://doi.org/10.1016/j.smim.2014.04.003.
Doytchinova, I.A. and Flower, D.R. (2007) ‘VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines.’, BMC bioinformatics , 8, p. 4. Available at: https://doi.org/10.1186/1471-2105-8-4.
Fayyazi, A. et al. (2000) ‘Apoptosis of macrophages and T cells in tuberculosis associated caseous necrosis’, The Journal of pathology , 191(4), pp. 417–425.
Gey Van Pittius, N.C. et al. (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions , BMC Evolutionary Biology . Available at: https://doi.org/10.1186/1471-2148-6-95.
Gleeson, L.E. et al. (2016) ‘Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication’,The Journal of Immunology , 196(6), pp. 2444 LP – 2449. Available at: https://doi.org/10.4049/jimmunol.1501612.
Grover, S. et al. (2018) ‘The PGRS domain of Mycobacterium tuberculosis PE_PGRS protein Rv0297 is involved in Endoplasmic reticulum stress-mediated apoptosis through toll-like receptor 4’,mBio , 9(3). Available at: https://doi.org/10.1128/mBio.01017-18.
Hackett, E.E. et al. (2020) ‘Mycobacterium tuberculosis Limits Host Glycolysis and IL-1β by Restriction of PFK-M via MicroRNA-21’,Cell Reports , 30(1), pp. 124-136.e4. Available at: https://doi.org/https://doi.org/10.1016/j.celrep.2019.12.015.
Hasan, S. et al. (2006) ‘Prioritizing Genomic Drug Targets in Pathogens: Application to Mycobacterium tuberculosis’, PLOS Computational Biology , 2(6), p. e61. Available at: https://doi.org/10.1371/journal.pcbi.0020061.
Horng, T. et al. (2002) ‘The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors’, Nature , 420(6913), pp. 329–333. Available at: https://doi.org/10.1038/nature01180.
Hu, Q. et al. (2014) ‘Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome’, Proceedings of the National Academy of Sciences of the United States of America . 2014/10/13, 111(46), pp. 16254–16261. Available at: https://doi.org/10.1073/pnas.1418000111.
Kruh, N.A. et al. (2010) ‘Portrait of a Pathogen: The Mycobacterium tuberculosis Proteome In Vivo’, PLOS ONE , 5(11), p. e13938. Available at: https://doi.org/10.1371/journal.pone.0013938.
Kumar, K. et al. (2014) ‘Functional annotation of putative hypothetical proteins from Candida dubliniensis’, Gene , 543(1), pp. 93–100. Available at: https://doi.org/https://doi.org/10.1016/j.gene.2014.03.060.
Laskowski, R.A. et al. (1996) ‘AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR.’,Journal of biomolecular NMR , 8(4), pp. 477–486. Available at: https://doi.org/10.1007/BF00228148.
Li, H. et al. (2016) ‘Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis’,Apoptosis : an international journal on programmed cell death , 21(7), pp. 795–808. Available at: https://doi.org/10.1007/s10495-016-1249-y.
Liu, S. et al. (2020) ‘PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.’, Frontiers in microbiology , 11, p. 845. Available at: https://doi.org/10.3389/fmicb.2020.00845.
Lüthy, R., Bowie, J.U. and Eisenberg, D. (1992) ‘Assessment of protein models with three-dimensional profiles.’, Nature , 356(6364), pp. 83–85. Available at: https://doi.org/10.1038/356083a0.
Manček-Keber, M. and Jerala, R. (2015) ‘Postulates for validating TLR4 agonists’, European Journal of Immunology , 45(2), pp. 356–370. Available at: https://doi.org/https://doi.org/10.1002/eji.201444462.
Mashiach, E. et al. (2008) ‘FireDock: a web server for fast interaction refinement in molecular docking’, Nucleic acids research . 2008/04/19, 36(Web Server issue), pp. W229–W232. Available at: https://doi.org/10.1093/nar/gkn186.
McGuire, A.M. et al. (2012) ‘Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis’, BMC Genomics , 13(1). Available at: https://doi.org/10.1186/1471-2164-13-120.
Medha, Joshi, H., et al. (2022) ‘Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis’, Journal of Biomolecular Structure and Dynamics , pp. 1–17.
Medha, Priyanka, et al. (2022) ‘Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis.’, Apoptosis : an international journal on programmed cell death , pp. 1–30. Available at: https://doi.org/10.1007/s10495-022-01778-1.
Medha, Sharma, S. and Sharma, M. (2021) ‘Acta Tropica Proline-Glutamate / Proline-Proline-Glutamate ( PE / PPE ) proteins of Mycobacterium tuberculosis : The multifaceted immune-modulators’, Acta Tropica , 222(April), p. 106035. Available at: https://doi.org/10.1016/j.actatropica.2021.106035.
Mishra, B.B. et al. (2010) ‘Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome’,Cellular Microbiology , 12(8), pp. 1046–1063. Available at: https://doi.org/https://doi.org/10.1111/j.1462-5822.2010.01450.x.
Murphy, D.J. and Brown, J.R. (2007) ‘Identification of gene targets against dormant phase Mycobacterium tuberculosis infections’, BMC Infectious Diseases , 7(1), p. 84. Available at: https://doi.org/10.1186/1471-2334-7-84.
Pan, H. et al. (2005) ‘Ipr1 gene mediates innate immunity to tuberculosis’, Nature , 434(7034), pp. 767–772.
Próchnicki, T. and Latz, E. (2017) ‘Inflammasomes on the Crossroads of Innate Immune Recognition and Metabolic Control’, Cell Metabolism , 26(1), pp. 71–93. Available at: https://doi.org/https://doi.org/10.1016/j.cmet.2017.06.018.
Ramachandran, S. et al. (2011) ‘Automated minimization of steric clashes in protein structures.’, Proteins , 79(1), pp. 261–270. Available at: https://doi.org/10.1002/prot.22879.
Ramakrishnan, L. (2012) ‘Revisiting the role of the granuloma in tuberculosis’, Nature Reviews Immunology , 12(5), pp. 352–366.
Roy, A., Kucukural, A. and Zhang, Y. (2010) ‘I-TASSER: a unified platform for automated protein structure and function prediction’,Nature Protocols , 5(4), pp. 725–738. Available at: https://doi.org/10.1038/nprot.2010.5.
Saini, N.K. et al. (2016) ‘Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47’, Nature Microbiology , 1(9), p. 16133. Available at: https://doi.org/10.1038/nmicrobiol.2016.133.
Sánchez, D. et al. (2010) ‘Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death’,Cellular Immunology , 260(2), pp. 128–136. Available at: https://doi.org/https://doi.org/10.1016/j.cellimm.2009.10.007.
Saraav, I. et al. (2017) ‘Mycobacterium tuberculosis MymA is a TLR2 agonist that activate macrophages and a TH1 response’,Tuberculosis , 106, pp. 16–24. Available at: https://doi.org/https://doi.org/10.1016/j.tube.2017.05.005.
Saunders, B.M. and Britton, W.J. (2007) ‘Life and death in the granuloma: immunopathology of tuberculosis’, Immunology & Cell Biology , 85(2), pp. 103–111. Available at: https://doi.org/10.1038/sj.icb.7100027.
Schneidman-Duhovny, D. et al. (2005) ‘PatchDock and SymmDock: servers for rigid and symmetric docking’, Nucleic acids research , 33(Web Server issue), pp. W363–W367. Available at: https://doi.org/10.1093/nar/gki481.
Seimon, T.A. et al. (2010) ‘Induction of ER Stress in Macrophages of Tuberculosis Granulomas’, PLOS ONE , 5(9), p. e12772. Available at: https://doi.org/10.1371/journal.pone.0012772.
Sharma, N. et al. (2021) ‘Mycobacterium tuberculosis Protein PE6 (Rv0335c), a Novel TLR4 Agonist, Evokes an Inflammatory Response and Modulates the Cell Death Pathways in Macrophages to Enhance Intracellular Survival’, Frontiers in immunology , 12, p. 696491. Available at: https://doi.org/10.3389/fimmu.2021.696491.
Sonia, M. et al. (2021) ‘Molecular Mimicry: a Paradigm of Host-Microbe Coevolution Illustrated by Legionella’, mBio , 11(5), pp. e01201-20. Available at: https://doi.org/10.1128/mBio.01201-20.
Tian, W. et al. (2018) ‘CASTp 3.0: computed atlas of surface topography of proteins.’, Nucleic acids research , 46(W1), pp. W363–W367. Available at: https://doi.org/10.1093/nar/gky473.
Tiwari, B., Ramakrishnan, U.M. and Raghunand, T.R. (2015) ‘The Mycobacterium tuberculosis protein pair PE9 (Rv1088)–PE10 (Rv1089) forms heterodimers and induces macrophage apoptosis through Toll-like receptor 4’, Cellular Microbiology , 17(11), pp. 1653–1669. Available at: https://doi.org/10.1111/cmi.12462.
Urán Landaburu, L. et al. (2020) ‘TDR Targets 6: driving drug discovery for human pathogens through intensive chemogenomic data integration’, Nucleic Acids Research , 48(D1), pp. D992–D1005. Available at: https://doi.org/10.1093/nar/gkz999.
Volkman, H.E. et al. (2004) ‘Tuberculous Granuloma Formation Is Enhanced by a Mycobacterium Virulence Determinant’, PLOS Biology , 2(11), p. e367. Available at: https://doi.org/10.1371/journal.pbio.0020367.
WHO (2021) WHO Global TB Report . World Health Organization.
Yamamoto, M. et al. (2002) ‘Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4’,Nature , 420(6913), pp. 324–329. Available at: https://doi.org/10.1038/nature01182.
van Zundert, G.C.P. et al. (2016) ‘The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes.’,Journal of molecular biology , 428(4), pp. 720–725. Available at: https://doi.org/10.1016/j.jmb.2015.09.014.