References
Abedi-Lartey, M., Dechmann, D. K. N., Wikelski, M., Scharf, A. K., &
Fahr, J. (2016). Long-distance seed dispersal by straw-coloured fruit
bats varies by season and landscape. Global Ecology and
Conservation , 7 , 12–24.
https://doi.org/10.1016/j.gecco.2016.03.005
Alexander, G. J., & Maritz, B. (2015). Sampling interval affects the
estimation of movement parameters in four species of African snakes.Journal of Zoology , 297(4), 309-318.
Allan, B., Arnould, J., Martin, J., & Ritchie, E. (2013). A
cost-effective and informative method of GPS tracking wildlife.Wildlife Research , 40 . https://doi.org/10.1071/WR13069
Altobelli, J. T., Dickinson, K. J. M., Godfrey, S. S., & Bishop, P. J.
(2022). Methods in amphibian biotelemetry: Two decades in review.Austral Ecology , 47 (7), 1382–1395.
https://doi.org/10.1111/aec.13227
Andrews, R. D., Baird, R. W., Calambokidis, J., Goertz, C. E., Gulland,
F. M., Heide-Jorgensen, M. P., … & Zerbini, A. N. (2019). Best
practice guidelines for cetacean tagging. J. Cetacean Res.
Manage ., 20(1), 27-66.
Aslan, C. E., Zavaleta, E. S., Tershy, B., & Croll, D. (2013).
Mutualism Disruption Threatens Global Plant Biodiversity: A Systematic
Review. PLOS ONE , 8 (6), e66993.
https://doi.org/10.1371/journal.pone.0066993
Baguette, M., & Van Dyck, H. (2007). Landscape connectivity and animal
behavior: functional grain as a key determinant for dispersal.Landscape ecology , 22(8), 1117-1129.
Bairlein, F. (2002). How to get fat: Nutritional mechanisms of seasonal
fat accumulation in migratory songbirds. Naturwissenschaften ,89 (1), 1–10. https://doi.org/10.1007/s00114-001-0279-6
Barron, D. G., Brawn, J. D., & Weatherhead, P. J. (2010). Meta-analysis
of transmitter effects on avian behaviour and ecology. Methods in
Ecology and Evolution , 1 (2), 180–187.
https://doi.org/10.1111/j.2041-210X.2010.00013.x
Barros, F. M., Peres, C. A., Pizo, M. A., & Ribeiro, M. C. (2019).
Divergent flows of avian-mediated ecosystem services across
forest-matrix interfaces in human-modified landscapes. Landscape
Ecology , 34 (4), 879–894.
https://doi.org/10.1007/s10980-019-00812-z
Bartoń K (2022). _MuMIn: Multi-Model Inference_. R package version
1.47.1,https://CRAN.R-project.org/package=MuMIn
Beckman, N. G., & Muller-Landau, H. C. (2007). Differential Effects of
Hunting on Pre-Dispersal Seed Predation and Primary and Secondary Seed
Removal of Two Neotropical Tree Species. Biotropica ,39 (3), 328–339. https://doi.org/10.1111/j.1744-7429.2007.00273.x
Beirne, C., Nuñez, C. L., Baldino, M., Kim, S., Knorr, J., Minich, T.,
Jin, L., Xiao, S., Mbamy, W., Obiang, G. N., Masseloux, J., Nkoghe, T.,
Ebanega, M. O., Rundel, C., Wright, J. P., & Poulsen, J. R. (2019).
Estimation of gut passage time of wild, free roaming forest elephants.Wildlife Biology , 2019 (1), wlb.00543.
https://doi.org/10.2981/wlb.00543
Bender, I. M. A., Kissling, W. D., Böhning-Gaese, K., Hensen, I., Kühn,
I., Wiegand, T., Dehling, D. M., & Schleuning, M. (2017). Functionally
specialised birds respond flexibly to seasonal changes in fruit
availability. Journal of Animal Ecology , 86 (4), 800–811.
https://doi.org/10.1111/1365-2656.12683
Biro, P. A. (2013). Are most samples of animals systematically biased?
Consistent individual trait differences bias samples despite random
sampling. Oecologia , 171 (2), 339–345.
https://doi.org/10.1007/s00442-012-2426-5
Blake, S., Deem, S. L., Strindberg, S., Maisels, F., Momont, L., Isia,
I.-B., Douglas-Hamilton, I., Karesh, W. B., & Kock, M. D. (2008).
Roadless Wilderness Area Determines Forest Elephant Movements in the
Congo Basin. PLOS ONE , 3 (10), e3546.
https://doi.org/10.1371/journal.pone.0003546
Blake, S., Wikelski, M., Cabrera, F., Guezou, A., Silva, M.,
Sadeghayobi, E., … & Jaramillo, P. (2012). Seed dispersal by
Galápagos tortoises. Journal of Biogeography , 39(11), 1961-1972.
Blanco, J., Bellón, B., Fabricius, C., de O. Roque, F., Pays, O.,
Laurent, F., Fritz, H., & Renaud, P.-C. (2020). Interface processes
between protected and unprotected areas: A global review and ways
forward. Global Change Biology , 26 (3), 1138–1154.
https://doi.org/10.1111/gcb.14865
Bodey, T. W., Cleasby, I. R., Bell, F., Parr, N., Schultz, A., Votier,
S. C., & Bearhop, S. (2018). A phylogenetically controlled
meta-analysis of biologging device effects on birds: Deleterious effects
and a call for more standardized reporting of study data. Methods
in Ecology and Evolution , 9 (4), 946–955.
https://doi.org/10.1111/2041-210X.12934
Bodmer, R., & Ward, D. (2006). Frugivory in large mammalian
herbivores . 232–260. https://doi.org/10.1017/CBO9780511617461.010
Borah, B., & Beckman, N. G. (2022). Studying seed dispersal through the
lens of movement ecology. Oikos , 2022 (2).
https://doi.org/10.1111/oik.08310
Bouten, W., Baaij, E. W., Shamoun-Baranes, J., & Camphuysen, K. C. J.
(2013). A flexible GPS tracking system for studying bird behaviour at
multiple scales. Journal of Ornithology , 154 (2), 571–580.
https://doi.org/10.1007/s10336-012-0908-1
Bridge, E. S., Thorup, K., Bowlin, M. S., Chilson, P. B., Diehl, R. H.,
Fléron, R. W., Hartl, P., Kays, R., Kelly, J. F., Robinson, W. D., &
Wikelski, M. (2011). Technology on the Move: Recent and Forthcoming
Innovations for Tracking Migratory Birds. BioScience ,61 (9), 689–698. https://doi.org/10.1525/bio.2011.61.9.7
Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I.,
Gardiner, B., González-Olabarria, J. R., Lyver, P. O., Meurisse, N.,
Oxbrough, A., Taki, H., Thompson, I. D., van der Plas, F., & Jactel, H.
(2017). Forest biodiversity, ecosystem functioning and the provision of
ecosystem services. Biodiversity and Conservation , 26 (13),
3005–3035. https://doi.org/10.1007/s10531-017-1453-2
Brown, D. D., Kays, R., Wikelski, M., Wilson, R., & Klimley, A. P.
(2013). Observing the unwatchable through acceleration logging of animal
behavior. Animal Biotelemetry , 1(1), 1-16.
Browne, L., & Karubian, J. (2018). Habitat loss and fragmentation
reduce effective gene flow by disrupting seed dispersal in a neotropical
palm. Molecular Ecology , 27 (15), 3055–3069.
https://doi.org/10.1111/mec.14765
Byers, K. A., Lee, M. J., Donovan, C. M., Patrick, D. M., & Himsworth,
C. G. (2017). A novel method for affixing Global Positioning System
(GPS) tags to urban Norway rats (Rattus norvegicus): Feasibility, health
impacts and potential for tracking movement. Journal of Urban
Ecology , 3 (1), jux010. https://doi.org/10.1093/jue/jux010
Camargo, P. H. S. A., Pizo, M. A., Brancalion, P. H. S., & Carlo, T. A.
(2020). Fruit traits of pioneer trees structure seed dispersal across
distances on tropical deforested landscapes: Implications for
restoration. Journal of Applied Ecology , 57 (12),
2329–2339. https://doi.org/10.1111/1365-2664.13697
Campbell, H. A., Urbano, F., Davidson, S., Dettki, H., & Cagnacci, F.
(2016). A plea for standards in reporting data collected by animal-borne
electronic devices. Animal Biotelemetry , 4(1), 1-4.
Campos-Arceiz, A., Traeholt, C., Jaffar, R., Santamaria, L., & Corlett,
R. T. (2012). Asian Tapirs Are No Elephants When It Comes To Seed
Dispersal. Biotropica , 44 (2), 220–227.
https://doi.org/10.1111/j.1744-7429.2011.00784.x
Carlo, T. A., & Morales, J. M. (2016). Generalist birds promote
tropical forest regeneration and increase plant diversity via
rare-biased seed dispersal. Ecology , 97 (7), 1819–1831.
https://doi.org/10.1890/15-2147.1
Carnicer, J., Jordano, P., & Melián, C. J. (2009). The temporal
dynamics of resource use by frugivorous birds: A network approach.Ecology , 90 (7), 1958–1970.
https://doi.org/10.1890/07-1939.1
Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest
Regeneration in an Age of Deforestation. In Second Growth .
University of Chicago Press. https://doi.org/10.7208/9780226118109
Cooke, S. J., Lennox, R. J., Brownscombe, J. W., Iverson, S. J.,
Whoriskey, F. G., Millspaugh, J. J., … & Harcourt, R. (2021). A case
for restoring unity between biotelemetry and bio-logging to enhance
animal tracking research. Facets , 6(1), 1260-1265.
Côrtes, M. C., & Uriarte, M. (2013). Integrating frugivory and animal
movement: A review of the evidence and implications for scaling seed
dispersal. Biological Reviews , 88 (2), 255–272.
https://doi.org/10.1111/j.1469-185X.2012.00250.x
Davidson, S. C., Bohrer, G., Gurarie, E., LaPoint, S., Mahoney, P. J.,
Boelman, N. T., … & Hebblewhite, M. (2020). Ecological insights from
three decades of animal movement tracking across a changing Arctic.Science , 370(6517), 712-715.
DeCesare, N. J., Squires, J. R., & Kolbe, J. A. (2005). Effect of
forest canopy on GPS-based movement data. Wildlife Society
Bulletin , 33 (3), 935–941.
https://doi.org/10.2193/0091-7648(2005)33[935:EOFCOG]2.0.CO;2
Dent, D. H., & Estrada-Villegas, S. (2021). Uniting niche
differentiation and dispersal limitation predicts tropical forest
succession. Trends in Ecology & Evolution , 36 (8),
700–708. https://doi.org/10.1016/j.tree.2021.04.001
Dressler, F., Ripperger, S., Hierold, M., Nowak, T., Eibel, C., Cassens,
B., Mayer, F., Meyer-Wegener, K., & Kolpin, A. (2016). From radio
telemetry to ultra-low-power sensor networks: Tracking bats in the wild.IEEE Communications Magazine , 54 (1), 129–135.
https://doi.org/10.1109/MCOM.2016.7378438
Durães, R., Carrasco, L., Smith, T. B., & Karubian, J. (2013). Effects
of forest disturbance and habitat loss on avian communities in a
Neotropical biodiversity hotspot. Biological Conservation ,166 , 203–211. https://doi.org/10.1016/j.biocon.2013.07.007
Estrada, A., & Coates-Estrada, R. (2002). Bats in continuous forest,
forest fragments and in an agricultural mosaic habitat-island at Los
Tuxtlas, Mexico. Biological Conservation , 103 (2),
237–245. https://doi.org/10.1016/S0006-3207(01)00135-5
Falcón, W., Moll, D., & Hansen, D. M. (2020). Frugivory and seed
dispersal by chelonians: a review and synthesis. Biological
Reviews , 95(1), 142-166.
Fehlmann, G., O’Riain, M. J., Hopkins, P. W., O’Sullivan, J., Holton, M.
D., Shepard, E. L. C., & King, A. J. (2017). Identification of
behaviours from accelerometer data in a wild social primate.Animal Biotelemetry , 5 (1), 6.
https://doi.org/10.1186/s40317-017-0121-3
Fischer, M., Parkins, K., Maizels, K., Sutherland, D. R., Allan, B. M.,
Coulson, G., & Stefano, J. D. (2018). Biotelemetry marches on: A
cost-effective GPS device for monitoring terrestrial wildlife.PLOS ONE , 13 (7), e0199617.
https://doi.org/10.1371/journal.pone.0199617
Flack, A., Fiedler, W., Blas, J., Pokrovsky, I., Kaatz, M., Mitropolsky,
M., Aghababyan, K., Fakriadis, I., Makrigianni, E., Jerzak, L., Azafzaf,
H., Feltrup-Azafzaf, C., Rotics, S., Mokotjomela, T. M., Nathan, R., &
Wikelski, M. (2016). Costs of migratory decisions: A comparison across
eight white stork populations. Science Advances, 2(1), e1500931.https://doi.org/10.1126/sciadv.1500931
Fleming, T. H., Breitwisch, R., & Whitesides, G. H. (1987). Patterns of
Tropical Vertebrate Frugivore Diversity. Annual Review of Ecology
and Systematics , 18 (1), 91–109.
https://doi.org/10.1146/annurev.es.18.110187.000515
Galetti, M., Guevara, R., Côrtes, M. C., Fadini, R., Von Matter, S.,
Leite, A. B., Labecca, F., Ribeiro, T., Carvalho, C. S., Collevatti, R.
G., Pires, M. M., Guimarães, P. R., Brancalion, P. H., Ribeiro, M. C.,
& Jordano, P. (2013). Functional Extinction of Birds Drives Rapid
Evolutionary Changes in Seed Size. Science , 340 (6136),
1086–1090. https://doi.org/10.1126/science.1233774
Galimberti, A., Spinelli, S., Bruno, A., Mezzasalma, V., de mattia, F.,
Cortis, P., & Labra, M. (2016). Evaluating the efficacy of restoration
plantings through DNA barcoding of frugivorous bird diets.Conservation Biology , 30 .
https://doi.org/10.1111/cobi.12687
Galindo-González, J., Guevara, S., & Sosa, V. J. (2000). Bat- and
Bird-Generated Seed Rains at Isolated Trees in Pastures in a Tropical
Rainforest. Conservation Biology , 14 (6), 1693–1703.
https://doi.org/10.1111/j.1523-1739.2000.99072.x
García-Rodríguez, A., Albrecht, J., Farwig, N., Frydryszak, D., Parres,
A., Schabo, D. G., & Selva, N. (2022). Functional complementarity of
seed dispersal services provided by birds and mammals in an alpine
ecosystem. Journal of Ecology , 110 (1), 232–247.
https://doi.org/10.1111/1365-2745.13799
Gentry, A. H. (1988). Changes in Plant Community Diversity and Floristic
Composition on Environmental and Geographical Gradients. Annals of
the Missouri Botanical Garden , 75 (1), 1–34.
https://doi.org/10.2307/2399464
Godínez-Alvarez, H., Ríos-Casanova, L., & Peco, B. (2020). Are large
frugivorous birds better seed dispersers than medium- and small-sized
ones? Effect of body mass on seed dispersal effectiveness. Ecology
and Evolution , 10 (12), 6136–6143.
https://doi.org/10.1002/ece3.6285
González-Varo, J. P., Arroyo, J. M., & Jordano, P. (2014). Who
dispersed the seeds? The use of DNA barcoding in frugivory and seed
dispersal studies. Methods in Ecology and Evolution , 5 (8),
806–814. https://doi.org/10.1111/2041-210X.12212
Gopal, A., Mudappa, D., Raman, T. R. S., & Naniwadekar, R. (2020).
Forest cover and fruit crop size differentially influence frugivory of
select rainforest tree species in Western Ghats, India.Biotropica , 52 (5), 871–883.
https://doi.org/10.1111/btp.12810
Guilford, T., Åkesson, S., Gagliardo, A., Holland, R. A., Mouritsen, H.,
Muheim, R., Wiltschko, R., Wiltschko, W., & Bingman, V. P. (2011).
Migratory navigation in birds: New opportunities in an era of
fast-developing tracking technology. Journal of Experimental
Biology , 214 (22), 3705–3712.
https://doi.org/10.1242/jeb.051292
Hallworth, M. T., & Marra, P. P. (2015). Miniaturized GPS tags identify
non-breeding territories of a small breeding migratory songbird.Scientific reports , 5(1), 1-6.
Harestad, A. S., & Bunnel, F. L. (1979). Home Range and Body Weight—A
Reevaluation. Ecology , 60 (2), 389–402.
https://doi.org/10.2307/1937667
Harris, S., Cresswell, W. J., Forde, P. G., Trewhella, W. J., Woollard,
T., & Wray, S. (1990). Home‐range analysis using radio‐tracking data–a
review of problems and techniques particularly as applied to the study
of mammals. Mammal review , 20(2‐3), 97-123.
Hart, E. E., Fennessy, J., Rasmussen, H. B., Butler-Brown, M., Muneza,
A. B., & Ciuti, S. (2020). Precision and performance of an 180g
solar-powered GPS device for tracking medium to large-bodied terrestrial
mammals. Wildlife Biology , 2020 (3), wlb.00669.
https://doi.org/10.2981/wlb.00669
Hartig F (2022). _DHARMa: Residual Diagnostics for Hierarchical
(Multi-Level / Mixed) Regression Models_. R package version 0.4.6,
https://CRAN.R-project.org/package=DHARMa
Heithaus, E. R., & Fleming, T. H. (1978). Foraging Movements of a
Frugivorous Bat, Carollia perspicillata (Phyllostomatidae).Ecological Monographs , 48 (2), 127–143.
https://doi.org/10.2307/2937296
Herrera, J. M., Morales, J. M., & García, D. (2011). Differential
effects of fruit availability and habitat cover for frugivore-mediated
seed dispersal in a heterogeneous landscape. Journal of Ecology ,99 (5), 1100–1107.
https://doi.org/10.1111/j.1365-2745.2011.01861.x
Hirsch, B. T., Kays, R., Pereira, V. E., & Jansen, P. A. (2012).
Directed seed dispersal towards areas with low conspecific tree density
by a scatter-hoarding rodent. Ecology Letters , 15 (12),
1423–1429. https://doi.org/10.1111/ele.12000
Hofman, M. P. G., Hayward, M. W., Heim, M., Marchand, P., Rolandsen, C.
M., Mattisson, J., Urbano, F., Heurich, M., Mysterud, A., Melzheimer,
J., Morellet, N., Voigt, U., Allen, B. L., Gehr, B., Rouco, C., Ullmann,
W., Holand, Ø., Jørgensen, N. H., Steinheim, G., … Balkenhol, N.
(2019). Right on track? Performance of satellite telemetry in
terrestrial wildlife research. PLOS ONE , 14 (5), e0216223.
https://doi.org/10.1371/journal.pone.0216223
Holbrook, K. M., & Smith, T. B. (2000). Seed dispersal and movement
patterns in two species of Ceratogymna hornbills in a West African
tropical lowland forest. Oecologia , 125 (2), 249–257.
https://doi.org/10.1007/s004420000445
Hooper, E. R., & Ashton, M. S. (2020). Fragmentation reduces
community-wide taxonomic and functional diversity of dispersed tree
seeds in the Central Amazon. Ecological Applications ,30 (5), e02093. https://doi.org/10.1002/eap.2093
Howe, H. F., & Smallwood, J. (1982). Ecology of Seed Dispersal.Annual Review of Ecology and Systematics , 13 (1), 201–228.
https://doi.org/10.1146/annurev.es.13.110182.001221
Jansen, P. A., Bongers, F., & Van Der Meer, P. J. (2008). Is farther
seed dispersal better? Spatial patterns of offspring mortality in three
rainforest tree species with different dispersal abilities.Ecography , 31 (1), 43–52.
https://doi.org/10.1111/j.2007.0906-7590.05156.x
Jordano, P., Forget, P.-M., Lambert, J. E., Böhning-Gaese, K., Traveset,
A., & Wright, S. J. (2011). Frugivores and seed dispersal: Mechanisms
and consequences for biodiversity of a key ecological interaction.Biology Letters , 7 (3), 321–323.
https://doi.org/10.1098/rsbl.2010.0986
Kays, R., Jansen, P. A., Knecht, E. M. H., Vohwinkel, R., & Wikelski,
M. (2011). The effect of feeding time on dispersal of Virola seeds by
toucans determined from GPS tracking and accelerometers. Acta
Oecologica , 37 (6), 625–631.
https://doi.org/10.1016/j.actao.2011.06.007
Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial
animal tracking as an eye on life and planet. Science, 348(6240),aaa2478. https://doi.org/10.1126/science.aaa2478
Kitamura, S. (2011). Frugivory and seed dispersal by hornbills
(Bucerotidae) in tropical forests. Acta Oecologica , 37 (6),
531–541. https://doi.org/10.1016/j.actao.2011.01.015
Knörr, U. C., & Gottsberger, G. (2012). Differences in seed rain
composition in small and large fragments in the northeast Brazilian
Atlantic Forest. Plant Biology , 14 (5), 811–819.
https://doi.org/10.1111/j.1438-8677.2011.00558.x
Kress, W. J., García-Robledo, C., Uriarte, M., & Erickson, D. L.
(2015). DNA barcodes for ecology, evolution, and conservation.Trends in Ecology & Evolution , 30 (1), 25–35.
https://doi.org/10.1016/j.tree.2014.10.008
Lehouck, V., Spanhove, T., Colson, L., Adringa-Davis, A., Cordeiro, N.
J., & Lens, L. (2009). Habitat disturbance reduces seed dispersal of a
forest interior tree in a fragmented African cloud forest. Oikos ,118 (7), 1023–1034.
https://doi.org/10.1111/j.1600-0706.2009.17300.x
Lehouck, V., Spanhove, T., Vangestel, C., Cordeiro, N. J., & Lens, L.
(2009). Does landscape structure affect resource tracking by avian
frugivores in a fragmented Afrotropical forest? Ecography ,32 (5), 789–799.
https://doi.org/10.1111/j.1600-0587.2009.05666.x
Lenz, J., Böhning‐Gaese, K., Fiedler, W., & Mueller, T. (2015).
Nomadism and seasonal range expansion in a large frugivorous bird.Ecography , 38(1), 54-62.
Lobova, T. A., Geiselman, C. K., Mori, S. A., & 1941-. (2009).Seed dispersal by bats in the Neotropics . New York Botanical
Garden.
Lourie, E., Schiffner, I., Toledo, S., & Nathan, R. (2021). Memory and
conformity, but not competition, explain spatial partitioning between
two neighboring fruit bat colonies. Frontiers in Ecology and
Evolution , 9(732514), 1-15.
Lundberg, J., & Moberg, F. (2003). Mobile Link Organisms and Ecosystem
Functioning: Implications for Ecosystem Resilience and Management.Ecosystems , 6 (1), 0087–0098.https://doi.org/10.1007/s10021-002-0150-4
MacArthur, R. H., & MacArthur, J. W. (1961). On Bird Species Diversity.Ecology, 42(3), 594–598.
https://doi.org/10.2307/1932254
Mahandran, V., Murugan, C. M., Marimuthu, G., & Nathan, P. T. (2018).
Seed dispersal of a tropical deciduous Mahua tree, Madhuca
latifolia (Sapotaceae) exhibiting bat-fruit syndrome by pteropodid
bats. Global Ecology and Conservation , 14, e00396.
https://doi.org/10.1016/j.gecco.2018.e00396
Mahoney, M. C., Browne, L., Diaz, Z., Olivo, J., Cabrera, J.,
Hazlehurst, J., & Karubian, J. (2018). Fruit Removal By Large Avian
Frugivores Varies In Relation To Habitat Quality In Continuous
Neotropical Rainforest. Ornitología Neotropical , 8.
Martín-Queller, E., Albert, C. H., Dumas, P.-J., & Saatkamp, A. (2017).
Islands, mainland, and terrestrial fragments: How isolation shapes plant
diversity. Ecology and Evolution , 7 (17), 6904–6917.
https://doi.org/10.1002/ece3.3150
Martín-Vélez, V., Montalvo, T., Afán, I., Sánchez-Márquez, A., Aymí, R.,
Figuerola, J., Lovas-Kiss, Á., & Navarro, J. (2022). Gulls living in
cities as overlooked seed dispersers within and outside urban
environments. Science of The Total Environment , 823 ,
153535. https://doi.org/10.1016/j.scitotenv.2022.153535
Matthews, J. K., Ridley, A., Kaplin, B. A., & Grueter, C. C. (2020). A
comparison of fecal sampling and direct feeding observations for
quantifying the diet of a frugivorous primate. Current Zoology ,66 (4), 333–343. https://doi.org/10.1093/cz/zoz058
Medellin, R. A., & Gaona, O. (1999). Seed Dispersal by Bats and Birds
in Forest and Disturbed Habitats of Chiapas, Mexico1. Biotropica ,31 (3), 478–485.
https://doi.org/10.1111/j.1744-7429.1999.tb00390.x
Michelot, T., & Blackwell, P. G. (2019). State-switching
continuous-time correlated random walks. Methods in Ecology and
Evolution , 10 (5), 637–649.
https://doi.org/10.1111/2041-210X.13154
Mitchell, M. G. E., Bennett, E. M., & Gonzalez, A. (2013). Linking
Landscape Connectivity and Ecosystem Service Provision: Current
Knowledge and Research Gaps. Ecosystems, 16(5), 894–908.
https://doi.org/10.1007/s10021-013-9647-2
Monsieurs, E., Kirschbaum, D., Thiery, W., Lipzig, N., Kervyn, M.,
Demoulin, A., Jacobs, L., Kervyn, F., & Dewitte, O. (2017). Constraints
on Landslide-Climate Research Imposed by the Reality of Fieldwork in
Central Africa.
Morales, J. M., García, D., Martínez, D., Rodriguez-Pérez, J., &
Herrera, J. M. (2013). Frugivore Behavioural Details Matter for Seed
Dispersal: A Multi-Species Model for Cantabrian Thrushes and Trees.PLOS ONE , 8 (6), e65216.
https://doi.org/10.1371/journal.pone.0065216
Morales, J. M., & Morán López, T. (2022). Mechanistic models of seed
dispersal by animals. Oikos , 2022 (2).
https://doi.org/10.1111/oik.08328
Morante-Filho, J. C., Arroyo-Rodríguez, V., Pessoa, M. de S., Cazetta,
E., & Faria, D. (2018). Direct and cascading effects of landscape
structure on tropical forest and non-forest frugivorous birds.Ecological Applications , 28 (8), 2024–2032.
https://doi.org/10.1002/eap.1791
Morrison, D. W. (1978a). Foraging Ecology and Energetics of the
Frugivorous Bat Artibeus Jamaicensis. Ecology , 59 (4),
716–723. https://doi.org/10.2307/1938775
Morrison, D. W. (1978b). Influence of Habitat on the Foraging Distances
of the Fruit Bat, Artibeus jamaicensis. Journal of Mammalogy ,59 (3), 622–624. https://doi.org/10.2307/1380242
Mueller, T., Lenz, J., Caprano, T., Fiedler, W., & Böhning-Gaese, K.
(2014). Large frugivorous birds facilitate functional connectivity of
fragmented landscapes. Journal of Applied Ecology , 51 (3),
684–692. https://doi.org/10.1111/1365-2664.12247
Murray, K. G. (2014). Avian Seed Dispersal of Three Neotropical
Gap-Dependent Plants . https://doi.org/10.2307/1942541
Muscarella, R., & Fleming, T. H. (2007). The Role of Frugivorous Bats
in Tropical Forest Succession. Biological Reviews , 82 (4),
573–590. https://doi.org/10.1111/j.1469-185X.2007.00026.x
Naniwadekar, R., Chaplod, S., Datta, A., Rathore, A., & Sridhar, H.
(2019). Large frugivores matter: Insights from network and seed
dispersal effectiveness approaches. Journal of Animal Ecology ,88 (8), 1250–1262. https://doi.org/10.1111/1365-2656.13005
Naniwadekar, R., Rathore, A., Shukla, U., Chaplod, S., & Datta, A.
(2019). How far do Asian forest hornbills disperse seeds? Acta
Oecologica , 101 , 103482.
https://doi.org/10.1016/j.actao.2019.103482
Nascimento, C. E. de S., Silva, C. A. D. da, Leal, I. R., Tavares, W. de
S., Serrão, J. E., Zanuncio, J. C., & Tabarelli, M. (2020). Seed
germination and early seedling survival of the invasive species Prosopis
juliflora (Fabaceae) depend on habitat and seed dispersal mode in the
Caatinga dry forest. PeerJ , 8 , e9607.
https://doi.org/10.7717/peerj.9607
Nathan, R., & Muller-Landau, H. C. (2000). Spatial patterns of seed
dispersal, their determinants and consequences for recruitment.Trends in Ecology & Evolution , 15 (7), 278–285.
https://doi.org/10.1016/S0169-5347(00)01874-7
Nathan, R., Monk, C. T., Arlinghaus, R., Adam, T., Alós, J., Assaf, M.,
Baktoft, H., Beardsworth, C. E., Bertram, M. G., Bijleveld, A. I.,
Brodin, T., Brooks, J. L., Campos-Candela, A., Cooke, S. J., Gjelland,
K. Ø., Gupte, P. R., Harel, R., Hellström, G., Jeltsch, F., …
Jarić, I. (2022). Big-data approaches lead to an increased understanding
of the ecology of animal movement. Science, 375(6582).
https://doi.org/10.1126/science.abg1780
Neuschulz, E. L., Mueller, T., Schleuning, M., & Böhning-Gaese, K.
(2016). Pollination and seed dispersal are the most threatened processes
of plant regeneration. Scientific Reports , 6 (1), Article
1. https://doi.org/10.1038/srep29839
Nield, A. P., Nathan, R., Enright, N. J., Ladd, P. G., & Perry, G. L.
W. (2020). The spatial complexity of seed movement: Animal-generated
seed dispersal patterns in fragmented landscapes revealed by animal
movement models. Journal of Ecology , 108 (2), 687–701.
https://doi.org/10.1111/1365-2745.13287
Nuñez-Iturri, G., & Howe, H. F. (2007). Bushmeat and the Fate of Trees
with Seeds Dispersed by Large Primates in a Lowland Rain Forest in
Western Amazonia. Biotropica , 39 (3), 348–354.
https://doi.org/10.1111/j.1744-7429.2007.00276.x
Olesen JM, & Valido A. (2003) Lizards as pollinators and seed
dispersers: an island phenomenon. Trends in ecology & evolution. Apr
1;18(4):177-81.
O’Mara, M. T., Wikelski, M., & Dechmann, D. K. N. (2014). 50 years of
bat tracking: Device attachment and future directions. Methods in
Ecology and Evolution , 5 (4), 311–319.
https://doi.org/10.1111/2041-210X.12172
Ong, L., McConkey, K. R., & Campos-Arceiz, A. (2022). The ability to
disperse large seeds, rather than body mass alone, defines the
importance of animals in a hyper-diverse seed dispersal network.Journal of Ecology , 110 (2), 313–326.
https://doi.org/10.1111/1365-2745.13809
Paden, L. M., & Andrews, K. M. (2020). Modification and Validation of
Low-Cost Recreational GPS Loggers for Tortoises. Wildlife Society
Bulletin , 44 (4), 773–781. https://doi.org/10.1002/wsb.1126
Peña-Domene, M. de la, Martínez-Garza, C., Palmas-Pérez, S.,
Rivas-Alonso, E., & Howe, H. F. (2014). Roles of Birds and Bats in
Early Tropical-Forest Restoration. PLOS ONE , 9 (8),
e104656. https://doi.org/10.1371/journal.pone.0104656
Pimm, S. L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z.,
Joppa, L., Kays, R., & Loarie, S. (2015). Emerging Technologies to
Conserve Biodiversity. Trends in Ecology & Evolution ,30 (11), 685–696. https://doi.org/10.1016/j.tree.2015.08.008
Plein, M., Längsfeld, L., Neuschulz, E. L., Schultheiß, C., Ingmann, L.,
Töpfer, T., Böhning-Gaese, K., & Schleuning, M. (2013). Constant
properties of plant–frugivore networks despite fluctuations in fruit
and bird communities in space and time. Ecology , 94 (6),
1296–1306. https://doi.org/10.1890/12-1213.1
Ramos, D. L., Pizo, M. A., Ribeiro, M. C., Cruz, R. S., Morales, J. M.,
& Ovaskainen, O. (2020). Forest and connectivity loss drive changes in
movement behavior of bird species. Ecography , 43 (8),
1203–1214. https://doi.org/10.1111/ecog.04888
Regolin, A., Muylaert, R., Crestani, A. C., Dáttilo, W., & Ribeiro, M.
(2020). Seed dispersal by Neotropical bats in human-disturbed
landscapes. Wildlife Research , 48 .
https://doi.org/10.1071/WR19138
Rehm, E., Fricke, E., Bender, J., Savidge, J., & Rogers, H. (2019).
Animal movement drives variation in seed dispersal distance in a
plant–animal network. Proceedings of the Royal Society B:
Biological Sciences , 286 (1894), 20182007.
https://doi.org/10.1098/rspb.2018.2007
Rey, P. J., & Alcántara, J. M. (2014). Effects of habitat alteration on
the effectiveness of plant-avian seed dispersal mutualisms: Consequences
for plant regeneration. Perspectives in Plant Ecology, Evolution
and Systematics , 16 (1), 21–31.
https://doi.org/10.1016/j.ppees.2013.11.001
Reynolds, A. M. (2010). Bridging the gulf between correlated random
walks and Lévy walks: Autocorrelation as a source of Lévy walk movement
patterns. Journal of The Royal Society Interface , 7 (53),
1753–1758. https://doi.org/10.1098/rsif.2010.0292
Ripperger, S. P., Kalko, E. K. V., Rodríguez-Herrera, B., Mayer, F., &
Tschapka, M. (2015). Frugivorous Bats Maintain Functional Habitat
Connectivity in Agricultural Landscapes but Rely Strongly on Natural
Forest Fragments. PLOS ONE , 10 (4), e0120535.
https://doi.org/10.1371/journal.pone.0120535
Rosenthal, M. F., Gertler, M., Hamilton, A. D., Prasad, S., & Andrade,
M. C. B. (2017). Taxonomic bias in animal behaviour publications.Animal Behaviour , 127 , 83–89.
https://doi.org/10.1016/j.anbehav.2017.02.017
Russo, S. E., Portnoy, S., & Augspurger, C. K. (2006). Incorporating
Animal Behavior into Seed Dispersal Models: Implications for Seed
Shadows. Ecology , 87 (12), 3160–3174.
https://doi.org/10.1890/0012-9658(2006)87[3160:IABISD]2.0.CO;2
Rutz, C., Loretto, M. C., Bates, A. E., Davidson, S. C., Duarte, C. M.,
Jetz, W., … & Cagnacci, F. (2020). COVID-19 lockdown allows
researchers to quantify the effects of human activity on wildlife.Nature Ecology & Evolution , 4(9), 1156-1159.
Rutz, C. (2022). Register animal-tracking tags to boost conservation.Nature , 609 (7926), 221–221.
https://doi.org/10.1038/d41586-022-02821-6
Ryan, P. G., Petersen, S. L., Peters, G., & Grémillet, D. (2004). GPS
tracking a marine predator: the effects of precision, resolution and
sampling rate on foraging tracks of African Penguins. Marine
biology, 145(2), 215-223.
Sasal, Y., & Morales, J. M. (2013). Linking frugivore behavior to plant
population dynamics. Oikos , 122 (1), 95–103.
https://doi.org/10.1111/j.1600-0706.2012.20669.x
Schick, R. S., Loarie, S. R., Colchero, F., Best, B. D., Boustany, A.,
Conde, D. A., Halpin, P. N., Joppa, L. N., McClellan, C. M., & Clark,
J. S. (2008). Understanding movement data and movement processes:
Current and emerging directions. Ecology Letters , 11 (12),
1338–1350. https://doi.org/10.1111/j.1461-0248.2008.01249.x
Schleuning, M., Blüthgen, N., Flörchinger, M., Braun, J., Schaefer, H.
M., & Böhning-Gaese, K. (2011). Specialization and interaction strength
in a tropical plant–frugivore network differ among forest strata.Ecology , 92 (1), 26–36. https://doi.org/10.1890/09-1842.1
Silva, R., Afán, I., Gil, J. A., & Bustamante, J. (2017). Seasonal and
circadian biases in bird tracking with solar GPS-tags. PLOS ONE,
12(10), e0185344. https://doi.org/10.1371/journal.pone.0185344
Sekercioglu, C. H. (2006). Increasing awareness of avian ecological
function. Trends in Ecology & Evolution , 21 (8), 464–471.
https://doi.org/10.1016/j.tree.2006.05.007
Sekercioglu, C. H. (2012). Bird functional diversity and ecosystem
services in tropical forests, agroforests and agricultural areas.Journal of Ornithology , 153 (S1), 153–161.
https://doi.org/10.1007/s10336-012-0869-4
Şekercioğlu, Ç. H., Loarie, S. R., Oviedo-Brenes, F., Mendenhall, C. D.,
Daily, G. C., & Ehrlich, P. R. (2015). Tropical countryside riparian
corridors provide critical habitat and connectivity for seed-dispersing
forest birds in a fragmented landscape. Journal of Ornithology ,156 (S1), 343–353.
https://doi.org/10.1007/s10336-015-1299-x
Sequeira, A. M., O’Toole, M., Keates, T. R., McDonnell, L. H., Braun, C.
D., Hoenner, X., … & Weise, M. (2021). A standardisation framework
for bio‐logging data to advance ecological research and conservation.Methods in Ecology and Evolution , 12(6), 996-1007.
Shepard, E., Wilson, R., Quintana, F., Gómez Laich, A., Liebsch, N.,
Albareda, D., Halsey, L., Gleiss, A., Morgan, D., Myers, A., Newman, C.,
& McDonald, D. (2008). Identification of animal movement patterns using
tri-axial accelerometry. Endangered Species Research , 10 ,
47–60. https://doi.org/10.3354/esr00084
Shimada, T., Limpus, C. J., Hamann, M., Bell, I., Esteban, N., Groom,
R., & Hays, G. C. (2020). Fidelity to foraging sites after long
migrations. Journal of Animal Ecology , 89 (4), 1008–1016.
https://doi.org/10.1111/1365-2656.13157
Sorensen, A. E. (1981). Interactions between birds and fruit in a
temperate woodland. Oecologia , 50 (2), 242–249.
https://doi.org/10.1007/BF00348046
Stouffer, P. C. (2020). Birds in fragmented Amazonian rainforest:
Lessons from 40 years at the Biological Dynamics of Forest Fragments
Project. The Condor, 122(3), duaa005.
https://doi.org/10.1093/condor/duaa005
Terborgh, J. (1986). Community aspects of frugivory in tropical forests.
In A. Estrada & T. H. Fleming (Eds.), Frugivores and seed
dispersal (pp. 371–384). Springer Netherlands.
https://doi.org/10.1007/978-94-009-4812-9_32
Terborgh, J., Nuñez-Iturri, G., Pitman, N. C. A., Valverde, F. H. C.,
Alvarez, P., Swamy, V., Pringle, E. G., & Paine, C. E. T. (2008). Tree
Recruitment in an Empty Forest. Ecology , 89 (6),
1757–1768. https://doi.org/10.1890/07-0479.1
Tsunamoto, Y., Naoe, S., Masaki, T., & Isagi, Y. (2020). Different
contributions of birds and mammals to seed dispersal of a fleshy-fruited
tree. Basic and Applied Ecology , 43 , 66–75.
https://doi.org/10.1016/j.baae.2019.07.005
Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van
Moorter, B., Alberts, S. C., … & Mueller, T. (2018). Moving in the
Anthropocene: Global reductions in terrestrial mammalian movements.Science , 359(6374), 466-469.
van Harten, E., Reardon, T., Lumsden, L. F., Meyers, N., Prowse, T. A.
A., Weyland, J., & Lawrence, R. (2019). High detectability with low
impact: Optimizing large PIT tracking systems for cave-dwelling bats.Ecology and Evolution , 9 (19), 10916–10928.
https://doi.org/10.1002/ece3.5482
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J.,
Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B.
M., Levy, M. A., & Watson, J. E. M. (2016). Global terrestrial Human
Footprint maps for 1993 and 2009. Scientific Data , 3 (1),
Article 1. https://doi.org/10.1038/sdata.2016.67
Voigt, C. C., Frick, W. F., Holderied, M. W., Holland, R., Kerth, G.,
Mello, M. A. R., Plowright, R. K., Swartz, S., & Yovel, Y. (2017).
Principles and Patterns of Bat Movements: From Aerodynamics to Ecology.The Quarterly Review of Biology , 92 (3), 267–287.
https://doi.org/10.1086/693847
Weir, J. E. S., & Corlett, R. T. (2007). How far do birds disperse
seeds in the degraded tropical landscape of Hong Kong, China?Landscape Ecology , 22 (1), 131–140.https://doi.org/10.1007/s10980-006-9002-5
Wenny, D., Sekercioglu, C., Whelan, C., & Cordeiro, N. (2012).