References
Abedi-Lartey, M., Dechmann, D. K. N., Wikelski, M., Scharf, A. K., & Fahr, J. (2016). Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Global Ecology and Conservation , 7 , 12–24. https://doi.org/10.1016/j.gecco.2016.03.005
Alexander, G. J., & Maritz, B. (2015). Sampling interval affects the estimation of movement parameters in four species of African snakes.Journal of Zoology , 297(4), 309-318.
Allan, B., Arnould, J., Martin, J., & Ritchie, E. (2013). A cost-effective and informative method of GPS tracking wildlife.Wildlife Research , 40 . https://doi.org/10.1071/WR13069
Altobelli, J. T., Dickinson, K. J. M., Godfrey, S. S., & Bishop, P. J. (2022). Methods in amphibian biotelemetry: Two decades in review.Austral Ecology , 47 (7), 1382–1395. https://doi.org/10.1111/aec.13227
Andrews, R. D., Baird, R. W., Calambokidis, J., Goertz, C. E., Gulland, F. M., Heide-Jorgensen, M. P., … & Zerbini, A. N. (2019). Best practice guidelines for cetacean tagging. J. Cetacean Res. Manage ., 20(1), 27-66.
Aslan, C. E., Zavaleta, E. S., Tershy, B., & Croll, D. (2013). Mutualism Disruption Threatens Global Plant Biodiversity: A Systematic Review. PLOS ONE , 8 (6), e66993. https://doi.org/10.1371/journal.pone.0066993
Baguette, M., & Van Dyck, H. (2007). Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal.Landscape ecology , 22(8), 1117-1129.
Bairlein, F. (2002). How to get fat: Nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften ,89 (1), 1–10. https://doi.org/10.1007/s00114-001-0279-6
Barron, D. G., Brawn, J. D., & Weatherhead, P. J. (2010). Meta-analysis of transmitter effects on avian behaviour and ecology. Methods in Ecology and Evolution , 1 (2), 180–187. https://doi.org/10.1111/j.2041-210X.2010.00013.x
Barros, F. M., Peres, C. A., Pizo, M. A., & Ribeiro, M. C. (2019). Divergent flows of avian-mediated ecosystem services across forest-matrix interfaces in human-modified landscapes. Landscape Ecology , 34 (4), 879–894. https://doi.org/10.1007/s10980-019-00812-z
Bartoń K (2022). _MuMIn: Multi-Model Inference_. R package version 1.47.1,https://CRAN.R-project.org/package=MuMIn
Beckman, N. G., & Muller-Landau, H. C. (2007). Differential Effects of Hunting on Pre-Dispersal Seed Predation and Primary and Secondary Seed Removal of Two Neotropical Tree Species. Biotropica ,39 (3), 328–339. https://doi.org/10.1111/j.1744-7429.2007.00273.x
Beirne, C., Nuñez, C. L., Baldino, M., Kim, S., Knorr, J., Minich, T., Jin, L., Xiao, S., Mbamy, W., Obiang, G. N., Masseloux, J., Nkoghe, T., Ebanega, M. O., Rundel, C., Wright, J. P., & Poulsen, J. R. (2019). Estimation of gut passage time of wild, free roaming forest elephants.Wildlife Biology , 2019 (1), wlb.00543. https://doi.org/10.2981/wlb.00543
Bender, I. M. A., Kissling, W. D., Böhning-Gaese, K., Hensen, I., Kühn, I., Wiegand, T., Dehling, D. M., & Schleuning, M. (2017). Functionally specialised birds respond flexibly to seasonal changes in fruit availability. Journal of Animal Ecology , 86 (4), 800–811. https://doi.org/10.1111/1365-2656.12683
Biro, P. A. (2013). Are most samples of animals systematically biased? Consistent individual trait differences bias samples despite random sampling. Oecologia , 171 (2), 339–345. https://doi.org/10.1007/s00442-012-2426-5
Blake, S., Deem, S. L., Strindberg, S., Maisels, F., Momont, L., Isia, I.-B., Douglas-Hamilton, I., Karesh, W. B., & Kock, M. D. (2008). Roadless Wilderness Area Determines Forest Elephant Movements in the Congo Basin. PLOS ONE , 3 (10), e3546. https://doi.org/10.1371/journal.pone.0003546
Blake, S., Wikelski, M., Cabrera, F., Guezou, A., Silva, M., Sadeghayobi, E., … & Jaramillo, P. (2012). Seed dispersal by Galápagos tortoises. Journal of Biogeography , 39(11), 1961-1972.
Blanco, J., Bellón, B., Fabricius, C., de O. Roque, F., Pays, O., Laurent, F., Fritz, H., & Renaud, P.-C. (2020). Interface processes between protected and unprotected areas: A global review and ways forward. Global Change Biology , 26 (3), 1138–1154. https://doi.org/10.1111/gcb.14865
Bodey, T. W., Cleasby, I. R., Bell, F., Parr, N., Schultz, A., Votier, S. C., & Bearhop, S. (2018). A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods in Ecology and Evolution , 9 (4), 946–955. https://doi.org/10.1111/2041-210X.12934
Bodmer, R., & Ward, D. (2006). Frugivory in large mammalian herbivores . 232–260. https://doi.org/10.1017/CBO9780511617461.010
Borah, B., & Beckman, N. G. (2022). Studying seed dispersal through the lens of movement ecology. Oikos , 2022 (2). https://doi.org/10.1111/oik.08310
Bouten, W., Baaij, E. W., Shamoun-Baranes, J., & Camphuysen, K. C. J. (2013). A flexible GPS tracking system for studying bird behaviour at multiple scales. Journal of Ornithology , 154 (2), 571–580. https://doi.org/10.1007/s10336-012-0908-1
Bridge, E. S., Thorup, K., Bowlin, M. S., Chilson, P. B., Diehl, R. H., Fléron, R. W., Hartl, P., Kays, R., Kelly, J. F., Robinson, W. D., & Wikelski, M. (2011). Technology on the Move: Recent and Forthcoming Innovations for Tracking Migratory Birds. BioScience ,61 (9), 689–698. https://doi.org/10.1525/bio.2011.61.9.7
Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., Lyver, P. O., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I. D., van der Plas, F., & Jactel, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation , 26 (13), 3005–3035. https://doi.org/10.1007/s10531-017-1453-2
Brown, D. D., Kays, R., Wikelski, M., Wilson, R., & Klimley, A. P. (2013). Observing the unwatchable through acceleration logging of animal behavior. Animal Biotelemetry , 1(1), 1-16.
Browne, L., & Karubian, J. (2018). Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Molecular Ecology , 27 (15), 3055–3069. https://doi.org/10.1111/mec.14765
Byers, K. A., Lee, M. J., Donovan, C. M., Patrick, D. M., & Himsworth, C. G. (2017). A novel method for affixing Global Positioning System (GPS) tags to urban Norway rats (Rattus norvegicus): Feasibility, health impacts and potential for tracking movement. Journal of Urban Ecology , 3 (1), jux010. https://doi.org/10.1093/jue/jux010
Camargo, P. H. S. A., Pizo, M. A., Brancalion, P. H. S., & Carlo, T. A. (2020). Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied Ecology , 57 (12), 2329–2339. https://doi.org/10.1111/1365-2664.13697
Campbell, H. A., Urbano, F., Davidson, S., Dettki, H., & Cagnacci, F. (2016). A plea for standards in reporting data collected by animal-borne electronic devices. Animal Biotelemetry , 4(1), 1-4.
Campos-Arceiz, A., Traeholt, C., Jaffar, R., Santamaria, L., & Corlett, R. T. (2012). Asian Tapirs Are No Elephants When It Comes To Seed Dispersal. Biotropica , 44 (2), 220–227. https://doi.org/10.1111/j.1744-7429.2011.00784.x
Carlo, T. A., & Morales, J. M. (2016). Generalist birds promote tropical forest regeneration and increase plant diversity via rare-biased seed dispersal. Ecology , 97 (7), 1819–1831. https://doi.org/10.1890/15-2147.1
Carnicer, J., Jordano, P., & Melián, C. J. (2009). The temporal dynamics of resource use by frugivorous birds: A network approach.Ecology , 90 (7), 1958–1970. https://doi.org/10.1890/07-1939.1
Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. In Second Growth . University of Chicago Press. https://doi.org/10.7208/9780226118109
Cooke, S. J., Lennox, R. J., Brownscombe, J. W., Iverson, S. J., Whoriskey, F. G., Millspaugh, J. J., … & Harcourt, R. (2021). A case for restoring unity between biotelemetry and bio-logging to enhance animal tracking research. Facets , 6(1), 1260-1265.
Côrtes, M. C., & Uriarte, M. (2013). Integrating frugivory and animal movement: A review of the evidence and implications for scaling seed dispersal. Biological Reviews , 88 (2), 255–272. https://doi.org/10.1111/j.1469-185X.2012.00250.x
Davidson, S. C., Bohrer, G., Gurarie, E., LaPoint, S., Mahoney, P. J., Boelman, N. T., … & Hebblewhite, M. (2020). Ecological insights from three decades of animal movement tracking across a changing Arctic.Science , 370(6517), 712-715.
DeCesare, N. J., Squires, J. R., & Kolbe, J. A. (2005). Effect of forest canopy on GPS-based movement data. Wildlife Society Bulletin , 33 (3), 935–941. https://doi.org/10.2193/0091-7648(2005)33[935:EOFCOG]2.0.CO;2
Dent, D. H., & Estrada-Villegas, S. (2021). Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends in Ecology & Evolution , 36 (8), 700–708. https://doi.org/10.1016/j.tree.2021.04.001
Dressler, F., Ripperger, S., Hierold, M., Nowak, T., Eibel, C., Cassens, B., Mayer, F., Meyer-Wegener, K., & Kolpin, A. (2016). From radio telemetry to ultra-low-power sensor networks: Tracking bats in the wild.IEEE Communications Magazine , 54 (1), 129–135. https://doi.org/10.1109/MCOM.2016.7378438
Durães, R., Carrasco, L., Smith, T. B., & Karubian, J. (2013). Effects of forest disturbance and habitat loss on avian communities in a Neotropical biodiversity hotspot. Biological Conservation ,166 , 203–211. https://doi.org/10.1016/j.biocon.2013.07.007
Estrada, A., & Coates-Estrada, R. (2002). Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation , 103 (2), 237–245. https://doi.org/10.1016/S0006-3207(01)00135-5
Falcón, W., Moll, D., & Hansen, D. M. (2020). Frugivory and seed dispersal by chelonians: a review and synthesis. Biological Reviews , 95(1), 142-166.
Fehlmann, G., O’Riain, M. J., Hopkins, P. W., O’Sullivan, J., Holton, M. D., Shepard, E. L. C., & King, A. J. (2017). Identification of behaviours from accelerometer data in a wild social primate.Animal Biotelemetry , 5 (1), 6. https://doi.org/10.1186/s40317-017-0121-3
Fischer, M., Parkins, K., Maizels, K., Sutherland, D. R., Allan, B. M., Coulson, G., & Stefano, J. D. (2018). Biotelemetry marches on: A cost-effective GPS device for monitoring terrestrial wildlife.PLOS ONE , 13 (7), e0199617. https://doi.org/10.1371/journal.pone.0199617
Flack, A., Fiedler, W., Blas, J., Pokrovsky, I., Kaatz, M., Mitropolsky, M., Aghababyan, K., Fakriadis, I., Makrigianni, E., Jerzak, L., Azafzaf, H., Feltrup-Azafzaf, C., Rotics, S., Mokotjomela, T. M., Nathan, R., & Wikelski, M. (2016). Costs of migratory decisions: A comparison across eight white stork populations. Science Advances, 2(1), e1500931.https://doi.org/10.1126/sciadv.1500931
Fleming, T. H., Breitwisch, R., & Whitesides, G. H. (1987). Patterns of Tropical Vertebrate Frugivore Diversity. Annual Review of Ecology and Systematics , 18 (1), 91–109. https://doi.org/10.1146/annurev.es.18.110187.000515
Galetti, M., Guevara, R., Côrtes, M. C., Fadini, R., Von Matter, S., Leite, A. B., Labecca, F., Ribeiro, T., Carvalho, C. S., Collevatti, R. G., Pires, M. M., Guimarães, P. R., Brancalion, P. H., Ribeiro, M. C., & Jordano, P. (2013). Functional Extinction of Birds Drives Rapid Evolutionary Changes in Seed Size. Science , 340 (6136), 1086–1090. https://doi.org/10.1126/science.1233774
Galimberti, A., Spinelli, S., Bruno, A., Mezzasalma, V., de mattia, F., Cortis, P., & Labra, M. (2016). Evaluating the efficacy of restoration plantings through DNA barcoding of frugivorous bird diets.Conservation Biology , 30 . https://doi.org/10.1111/cobi.12687
Galindo-González, J., Guevara, S., & Sosa, V. J. (2000). Bat- and Bird-Generated Seed Rains at Isolated Trees in Pastures in a Tropical Rainforest. Conservation Biology , 14 (6), 1693–1703. https://doi.org/10.1111/j.1523-1739.2000.99072.x
García-Rodríguez, A., Albrecht, J., Farwig, N., Frydryszak, D., Parres, A., Schabo, D. G., & Selva, N. (2022). Functional complementarity of seed dispersal services provided by birds and mammals in an alpine ecosystem. Journal of Ecology , 110 (1), 232–247. https://doi.org/10.1111/1365-2745.13799
Gentry, A. H. (1988). Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients. Annals of the Missouri Botanical Garden , 75 (1), 1–34. https://doi.org/10.2307/2399464
Godínez-Alvarez, H., Ríos-Casanova, L., & Peco, B. (2020). Are large frugivorous birds better seed dispersers than medium- and small-sized ones? Effect of body mass on seed dispersal effectiveness. Ecology and Evolution , 10 (12), 6136–6143. https://doi.org/10.1002/ece3.6285
González-Varo, J. P., Arroyo, J. M., & Jordano, P. (2014). Who dispersed the seeds? The use of DNA barcoding in frugivory and seed dispersal studies. Methods in Ecology and Evolution , 5 (8), 806–814. https://doi.org/10.1111/2041-210X.12212
Gopal, A., Mudappa, D., Raman, T. R. S., & Naniwadekar, R. (2020). Forest cover and fruit crop size differentially influence frugivory of select rainforest tree species in Western Ghats, India.Biotropica , 52 (5), 871–883. https://doi.org/10.1111/btp.12810
Guilford, T., Åkesson, S., Gagliardo, A., Holland, R. A., Mouritsen, H., Muheim, R., Wiltschko, R., Wiltschko, W., & Bingman, V. P. (2011). Migratory navigation in birds: New opportunities in an era of fast-developing tracking technology. Journal of Experimental Biology , 214 (22), 3705–3712. https://doi.org/10.1242/jeb.051292
Hallworth, M. T., & Marra, P. P. (2015). Miniaturized GPS tags identify non-breeding territories of a small breeding migratory songbird.Scientific reports , 5(1), 1-6.
Harestad, A. S., & Bunnel, F. L. (1979). Home Range and Body Weight—A Reevaluation. Ecology , 60 (2), 389–402. https://doi.org/10.2307/1937667
Harris, S., Cresswell, W. J., Forde, P. G., Trewhella, W. J., Woollard, T., & Wray, S. (1990). Home‐range analysis using radio‐tracking data–a review of problems and techniques particularly as applied to the study of mammals. Mammal review , 20(2‐3), 97-123.
Hart, E. E., Fennessy, J., Rasmussen, H. B., Butler-Brown, M., Muneza, A. B., & Ciuti, S. (2020). Precision and performance of an 180g solar-powered GPS device for tracking medium to large-bodied terrestrial mammals. Wildlife Biology , 2020 (3), wlb.00669. https://doi.org/10.2981/wlb.00669
Hartig F (2022). _DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models_. R package version 0.4.6, https://CRAN.R-project.org/package=DHARMa
Heithaus, E. R., & Fleming, T. H. (1978). Foraging Movements of a Frugivorous Bat, Carollia perspicillata (Phyllostomatidae).Ecological Monographs , 48 (2), 127–143. https://doi.org/10.2307/2937296
Herrera, J. M., Morales, J. M., & García, D. (2011). Differential effects of fruit availability and habitat cover for frugivore-mediated seed dispersal in a heterogeneous landscape. Journal of Ecology ,99 (5), 1100–1107. https://doi.org/10.1111/j.1365-2745.2011.01861.x
Hirsch, B. T., Kays, R., Pereira, V. E., & Jansen, P. A. (2012). Directed seed dispersal towards areas with low conspecific tree density by a scatter-hoarding rodent. Ecology Letters , 15 (12), 1423–1429. https://doi.org/10.1111/ele.12000
Hofman, M. P. G., Hayward, M. W., Heim, M., Marchand, P., Rolandsen, C. M., Mattisson, J., Urbano, F., Heurich, M., Mysterud, A., Melzheimer, J., Morellet, N., Voigt, U., Allen, B. L., Gehr, B., Rouco, C., Ullmann, W., Holand, Ø., Jørgensen, N. H., Steinheim, G., … Balkenhol, N. (2019). Right on track? Performance of satellite telemetry in terrestrial wildlife research. PLOS ONE , 14 (5), e0216223. https://doi.org/10.1371/journal.pone.0216223
Holbrook, K. M., & Smith, T. B. (2000). Seed dispersal and movement patterns in two species of Ceratogymna hornbills in a West African tropical lowland forest. Oecologia , 125 (2), 249–257. https://doi.org/10.1007/s004420000445
Hooper, E. R., & Ashton, M. S. (2020). Fragmentation reduces community-wide taxonomic and functional diversity of dispersed tree seeds in the Central Amazon. Ecological Applications ,30 (5), e02093. https://doi.org/10.1002/eap.2093
Howe, H. F., & Smallwood, J. (1982). Ecology of Seed Dispersal.Annual Review of Ecology and Systematics , 13 (1), 201–228. https://doi.org/10.1146/annurev.es.13.110182.001221
Jansen, P. A., Bongers, F., & Van Der Meer, P. J. (2008). Is farther seed dispersal better? Spatial patterns of offspring mortality in three rainforest tree species with different dispersal abilities.Ecography , 31 (1), 43–52. https://doi.org/10.1111/j.2007.0906-7590.05156.x
Jordano, P., Forget, P.-M., Lambert, J. E., Böhning-Gaese, K., Traveset, A., & Wright, S. J. (2011). Frugivores and seed dispersal: Mechanisms and consequences for biodiversity of a key ecological interaction.Biology Letters , 7 (3), 321–323. https://doi.org/10.1098/rsbl.2010.0986
Kays, R., Jansen, P. A., Knecht, E. M. H., Vohwinkel, R., & Wikelski, M. (2011). The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers. Acta Oecologica , 37 (6), 625–631. https://doi.org/10.1016/j.actao.2011.06.007
Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348(6240),aaa2478. https://doi.org/10.1126/science.aaa2478
Kitamura, S. (2011). Frugivory and seed dispersal by hornbills (Bucerotidae) in tropical forests. Acta Oecologica , 37 (6), 531–541. https://doi.org/10.1016/j.actao.2011.01.015
Knörr, U. C., & Gottsberger, G. (2012). Differences in seed rain composition in small and large fragments in the northeast Brazilian Atlantic Forest. Plant Biology , 14 (5), 811–819. https://doi.org/10.1111/j.1438-8677.2011.00558.x
Kress, W. J., García-Robledo, C., Uriarte, M., & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation.Trends in Ecology & Evolution , 30 (1), 25–35. https://doi.org/10.1016/j.tree.2014.10.008
Lehouck, V., Spanhove, T., Colson, L., Adringa-Davis, A., Cordeiro, N. J., & Lens, L. (2009). Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos ,118 (7), 1023–1034. https://doi.org/10.1111/j.1600-0706.2009.17300.x
Lehouck, V., Spanhove, T., Vangestel, C., Cordeiro, N. J., & Lens, L. (2009). Does landscape structure affect resource tracking by avian frugivores in a fragmented Afrotropical forest? Ecography ,32 (5), 789–799. https://doi.org/10.1111/j.1600-0587.2009.05666.x
Lenz, J., Böhning‐Gaese, K., Fiedler, W., & Mueller, T. (2015). Nomadism and seasonal range expansion in a large frugivorous bird.Ecography , 38(1), 54-62.
Lobova, T. A., Geiselman, C. K., Mori, S. A., & 1941-. (2009).Seed dispersal by bats in the Neotropics . New York Botanical Garden.
Lourie, E., Schiffner, I., Toledo, S., & Nathan, R. (2021). Memory and conformity, but not competition, explain spatial partitioning between two neighboring fruit bat colonies. Frontiers in Ecology and Evolution , 9(732514), 1-15.
Lundberg, J., & Moberg, F. (2003). Mobile Link Organisms and Ecosystem Functioning: Implications for Ecosystem Resilience and Management.Ecosystems , 6 (1), 0087–0098.https://doi.org/10.1007/s10021-002-0150-4
MacArthur, R. H., & MacArthur, J. W. (1961). On Bird Species Diversity.Ecology, 42(3), 594–598. https://doi.org/10.2307/1932254
Mahandran, V., Murugan, C. M., Marimuthu, G., & Nathan, P. T. (2018). Seed dispersal of a tropical deciduous Mahua tree, Madhuca latifolia (Sapotaceae) exhibiting bat-fruit syndrome by pteropodid bats. Global Ecology and Conservation , 14, e00396. https://doi.org/10.1016/j.gecco.2018.e00396
Mahoney, M. C., Browne, L., Diaz, Z., Olivo, J., Cabrera, J., Hazlehurst, J., & Karubian, J. (2018). Fruit Removal By Large Avian Frugivores Varies In Relation To Habitat Quality In Continuous Neotropical Rainforest. Ornitología Neotropical , 8.
Martín-Queller, E., Albert, C. H., Dumas, P.-J., & Saatkamp, A. (2017). Islands, mainland, and terrestrial fragments: How isolation shapes plant diversity. Ecology and Evolution , 7 (17), 6904–6917. https://doi.org/10.1002/ece3.3150
Martín-Vélez, V., Montalvo, T., Afán, I., Sánchez-Márquez, A., Aymí, R., Figuerola, J., Lovas-Kiss, Á., & Navarro, J. (2022). Gulls living in cities as overlooked seed dispersers within and outside urban environments. Science of The Total Environment , 823 , 153535. https://doi.org/10.1016/j.scitotenv.2022.153535
Matthews, J. K., Ridley, A., Kaplin, B. A., & Grueter, C. C. (2020). A comparison of fecal sampling and direct feeding observations for quantifying the diet of a frugivorous primate. Current Zoology ,66 (4), 333–343. https://doi.org/10.1093/cz/zoz058
Medellin, R. A., & Gaona, O. (1999). Seed Dispersal by Bats and Birds in Forest and Disturbed Habitats of Chiapas, Mexico1. Biotropica ,31 (3), 478–485. https://doi.org/10.1111/j.1744-7429.1999.tb00390.x
Michelot, T., & Blackwell, P. G. (2019). State-switching continuous-time correlated random walks. Methods in Ecology and Evolution , 10 (5), 637–649. https://doi.org/10.1111/2041-210X.13154
Mitchell, M. G. E., Bennett, E. M., & Gonzalez, A. (2013). Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems, 16(5), 894–908. https://doi.org/10.1007/s10021-013-9647-2
Monsieurs, E., Kirschbaum, D., Thiery, W., Lipzig, N., Kervyn, M., Demoulin, A., Jacobs, L., Kervyn, F., & Dewitte, O. (2017). Constraints on Landslide-Climate Research Imposed by the Reality of Fieldwork in Central Africa.
Morales, J. M., García, D., Martínez, D., Rodriguez-Pérez, J., & Herrera, J. M. (2013). Frugivore Behavioural Details Matter for Seed Dispersal: A Multi-Species Model for Cantabrian Thrushes and Trees.PLOS ONE , 8 (6), e65216. https://doi.org/10.1371/journal.pone.0065216
Morales, J. M., & Morán López, T. (2022). Mechanistic models of seed dispersal by animals. Oikos , 2022 (2). https://doi.org/10.1111/oik.08328
Morante-Filho, J. C., Arroyo-Rodríguez, V., Pessoa, M. de S., Cazetta, E., & Faria, D. (2018). Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds.Ecological Applications , 28 (8), 2024–2032. https://doi.org/10.1002/eap.1791
Morrison, D. W. (1978a). Foraging Ecology and Energetics of the Frugivorous Bat Artibeus Jamaicensis. Ecology , 59 (4), 716–723. https://doi.org/10.2307/1938775
Morrison, D. W. (1978b). Influence of Habitat on the Foraging Distances of the Fruit Bat, Artibeus jamaicensis. Journal of Mammalogy ,59 (3), 622–624. https://doi.org/10.2307/1380242
Mueller, T., Lenz, J., Caprano, T., Fiedler, W., & Böhning-Gaese, K. (2014). Large frugivorous birds facilitate functional connectivity of fragmented landscapes. Journal of Applied Ecology , 51 (3), 684–692. https://doi.org/10.1111/1365-2664.12247
Murray, K. G. (2014). Avian Seed Dispersal of Three Neotropical Gap-Dependent Plants . https://doi.org/10.2307/1942541
Muscarella, R., & Fleming, T. H. (2007). The Role of Frugivorous Bats in Tropical Forest Succession. Biological Reviews , 82 (4), 573–590. https://doi.org/10.1111/j.1469-185X.2007.00026.x
Naniwadekar, R., Chaplod, S., Datta, A., Rathore, A., & Sridhar, H. (2019). Large frugivores matter: Insights from network and seed dispersal effectiveness approaches. Journal of Animal Ecology ,88 (8), 1250–1262. https://doi.org/10.1111/1365-2656.13005
Naniwadekar, R., Rathore, A., Shukla, U., Chaplod, S., & Datta, A. (2019). How far do Asian forest hornbills disperse seeds? Acta Oecologica , 101 , 103482. https://doi.org/10.1016/j.actao.2019.103482
Nascimento, C. E. de S., Silva, C. A. D. da, Leal, I. R., Tavares, W. de S., Serrão, J. E., Zanuncio, J. C., & Tabarelli, M. (2020). Seed germination and early seedling survival of the invasive species Prosopis juliflora (Fabaceae) depend on habitat and seed dispersal mode in the Caatinga dry forest. PeerJ , 8 , e9607. https://doi.org/10.7717/peerj.9607
Nathan, R., & Muller-Landau, H. C. (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment.Trends in Ecology & Evolution , 15 (7), 278–285. https://doi.org/10.1016/S0169-5347(00)01874-7
Nathan, R., Monk, C. T., Arlinghaus, R., Adam, T., Alós, J., Assaf, M., Baktoft, H., Beardsworth, C. E., Bertram, M. G., Bijleveld, A. I., Brodin, T., Brooks, J. L., Campos-Candela, A., Cooke, S. J., Gjelland, K. Ø., Gupte, P. R., Harel, R., Hellström, G., Jeltsch, F., … Jarić, I. (2022). Big-data approaches lead to an increased understanding of the ecology of animal movement. Science, 375(6582). https://doi.org/10.1126/science.abg1780
Neuschulz, E. L., Mueller, T., Schleuning, M., & Böhning-Gaese, K. (2016). Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports , 6 (1), Article 1. https://doi.org/10.1038/srep29839
Nield, A. P., Nathan, R., Enright, N. J., Ladd, P. G., & Perry, G. L. W. (2020). The spatial complexity of seed movement: Animal-generated seed dispersal patterns in fragmented landscapes revealed by animal movement models. Journal of Ecology , 108 (2), 687–701. https://doi.org/10.1111/1365-2745.13287
Nuñez-Iturri, G., & Howe, H. F. (2007). Bushmeat and the Fate of Trees with Seeds Dispersed by Large Primates in a Lowland Rain Forest in Western Amazonia. Biotropica , 39 (3), 348–354. https://doi.org/10.1111/j.1744-7429.2007.00276.x
Olesen JM, & Valido A. (2003) Lizards as pollinators and seed dispersers: an island phenomenon. Trends in ecology & evolution. Apr 1;18(4):177-81.
O’Mara, M. T., Wikelski, M., & Dechmann, D. K. N. (2014). 50 years of bat tracking: Device attachment and future directions. Methods in Ecology and Evolution , 5 (4), 311–319. https://doi.org/10.1111/2041-210X.12172
Ong, L., McConkey, K. R., & Campos-Arceiz, A. (2022). The ability to disperse large seeds, rather than body mass alone, defines the importance of animals in a hyper-diverse seed dispersal network.Journal of Ecology , 110 (2), 313–326. https://doi.org/10.1111/1365-2745.13809
Paden, L. M., & Andrews, K. M. (2020). Modification and Validation of Low-Cost Recreational GPS Loggers for Tortoises. Wildlife Society Bulletin , 44 (4), 773–781. https://doi.org/10.1002/wsb.1126
Peña-Domene, M. de la, Martínez-Garza, C., Palmas-Pérez, S., Rivas-Alonso, E., & Howe, H. F. (2014). Roles of Birds and Bats in Early Tropical-Forest Restoration. PLOS ONE , 9 (8), e104656. https://doi.org/10.1371/journal.pone.0104656
Pimm, S. L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., Joppa, L., Kays, R., & Loarie, S. (2015). Emerging Technologies to Conserve Biodiversity. Trends in Ecology & Evolution ,30 (11), 685–696. https://doi.org/10.1016/j.tree.2015.08.008
Plein, M., Längsfeld, L., Neuschulz, E. L., Schultheiß, C., Ingmann, L., Töpfer, T., Böhning-Gaese, K., & Schleuning, M. (2013). Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology , 94 (6), 1296–1306. https://doi.org/10.1890/12-1213.1
Ramos, D. L., Pizo, M. A., Ribeiro, M. C., Cruz, R. S., Morales, J. M., & Ovaskainen, O. (2020). Forest and connectivity loss drive changes in movement behavior of bird species. Ecography , 43 (8), 1203–1214. https://doi.org/10.1111/ecog.04888
Regolin, A., Muylaert, R., Crestani, A. C., Dáttilo, W., & Ribeiro, M. (2020). Seed dispersal by Neotropical bats in human-disturbed landscapes. Wildlife Research , 48 . https://doi.org/10.1071/WR19138
Rehm, E., Fricke, E., Bender, J., Savidge, J., & Rogers, H. (2019). Animal movement drives variation in seed dispersal distance in a plant–animal network. Proceedings of the Royal Society B: Biological Sciences , 286 (1894), 20182007. https://doi.org/10.1098/rspb.2018.2007
Rey, P. J., & Alcántara, J. M. (2014). Effects of habitat alteration on the effectiveness of plant-avian seed dispersal mutualisms: Consequences for plant regeneration. Perspectives in Plant Ecology, Evolution and Systematics , 16 (1), 21–31. https://doi.org/10.1016/j.ppees.2013.11.001
Reynolds, A. M. (2010). Bridging the gulf between correlated random walks and Lévy walks: Autocorrelation as a source of Lévy walk movement patterns. Journal of The Royal Society Interface , 7 (53), 1753–1758. https://doi.org/10.1098/rsif.2010.0292
Ripperger, S. P., Kalko, E. K. V., Rodríguez-Herrera, B., Mayer, F., & Tschapka, M. (2015). Frugivorous Bats Maintain Functional Habitat Connectivity in Agricultural Landscapes but Rely Strongly on Natural Forest Fragments. PLOS ONE , 10 (4), e0120535. https://doi.org/10.1371/journal.pone.0120535
Rosenthal, M. F., Gertler, M., Hamilton, A. D., Prasad, S., & Andrade, M. C. B. (2017). Taxonomic bias in animal behaviour publications.Animal Behaviour , 127 , 83–89. https://doi.org/10.1016/j.anbehav.2017.02.017
Russo, S. E., Portnoy, S., & Augspurger, C. K. (2006). Incorporating Animal Behavior into Seed Dispersal Models: Implications for Seed Shadows. Ecology , 87 (12), 3160–3174. https://doi.org/10.1890/0012-9658(2006)87[3160:IABISD]2.0.CO;2
Rutz, C., Loretto, M. C., Bates, A. E., Davidson, S. C., Duarte, C. M., Jetz, W., … & Cagnacci, F. (2020). COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife.Nature Ecology & Evolution , 4(9), 1156-1159.
Rutz, C. (2022). Register animal-tracking tags to boost conservation.Nature , 609 (7926), 221–221. https://doi.org/10.1038/d41586-022-02821-6
Ryan, P. G., Petersen, S. L., Peters, G., & Grémillet, D. (2004). GPS tracking a marine predator: the effects of precision, resolution and sampling rate on foraging tracks of African Penguins. Marine biology, 145(2), 215-223.
Sasal, Y., & Morales, J. M. (2013). Linking frugivore behavior to plant population dynamics. Oikos , 122 (1), 95–103. https://doi.org/10.1111/j.1600-0706.2012.20669.x
Schick, R. S., Loarie, S. R., Colchero, F., Best, B. D., Boustany, A., Conde, D. A., Halpin, P. N., Joppa, L. N., McClellan, C. M., & Clark, J. S. (2008). Understanding movement data and movement processes: Current and emerging directions. Ecology Letters , 11 (12), 1338–1350. https://doi.org/10.1111/j.1461-0248.2008.01249.x
Schleuning, M., Blüthgen, N., Flörchinger, M., Braun, J., Schaefer, H. M., & Böhning-Gaese, K. (2011). Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata.Ecology , 92 (1), 26–36. https://doi.org/10.1890/09-1842.1
Silva, R., Afán, I., Gil, J. A., & Bustamante, J. (2017). Seasonal and circadian biases in bird tracking with solar GPS-tags. PLOS ONE, 12(10), e0185344. https://doi.org/10.1371/journal.pone.0185344
Sekercioglu, C. H. (2006). Increasing awareness of avian ecological function. Trends in Ecology & Evolution , 21 (8), 464–471. https://doi.org/10.1016/j.tree.2006.05.007
Sekercioglu, C. H. (2012). Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas.Journal of Ornithology , 153 (S1), 153–161. https://doi.org/10.1007/s10336-012-0869-4
Şekercioğlu, Ç. H., Loarie, S. R., Oviedo-Brenes, F., Mendenhall, C. D., Daily, G. C., & Ehrlich, P. R. (2015). Tropical countryside riparian corridors provide critical habitat and connectivity for seed-dispersing forest birds in a fragmented landscape. Journal of Ornithology ,156 (S1), 343–353. https://doi.org/10.1007/s10336-015-1299-x
Sequeira, A. M., O’Toole, M., Keates, T. R., McDonnell, L. H., Braun, C. D., Hoenner, X., … & Weise, M. (2021). A standardisation framework for bio‐logging data to advance ecological research and conservation.Methods in Ecology and Evolution , 12(6), 996-1007.
Shepard, E., Wilson, R., Quintana, F., Gómez Laich, A., Liebsch, N., Albareda, D., Halsey, L., Gleiss, A., Morgan, D., Myers, A., Newman, C., & McDonald, D. (2008). Identification of animal movement patterns using tri-axial accelerometry. Endangered Species Research , 10 , 47–60. https://doi.org/10.3354/esr00084
Shimada, T., Limpus, C. J., Hamann, M., Bell, I., Esteban, N., Groom, R., & Hays, G. C. (2020). Fidelity to foraging sites after long migrations. Journal of Animal Ecology , 89 (4), 1008–1016. https://doi.org/10.1111/1365-2656.13157
Sorensen, A. E. (1981). Interactions between birds and fruit in a temperate woodland. Oecologia , 50 (2), 242–249. https://doi.org/10.1007/BF00348046
Stouffer, P. C. (2020). Birds in fragmented Amazonian rainforest: Lessons from 40 years at the Biological Dynamics of Forest Fragments Project. The Condor, 122(3), duaa005. https://doi.org/10.1093/condor/duaa005
Terborgh, J. (1986). Community aspects of frugivory in tropical forests. In A. Estrada & T. H. Fleming (Eds.), Frugivores and seed dispersal (pp. 371–384). Springer Netherlands. https://doi.org/10.1007/978-94-009-4812-9_32
Terborgh, J., Nuñez-Iturri, G., Pitman, N. C. A., Valverde, F. H. C., Alvarez, P., Swamy, V., Pringle, E. G., & Paine, C. E. T. (2008). Tree Recruitment in an Empty Forest. Ecology , 89 (6), 1757–1768. https://doi.org/10.1890/07-0479.1
Tsunamoto, Y., Naoe, S., Masaki, T., & Isagi, Y. (2020). Different contributions of birds and mammals to seed dispersal of a fleshy-fruited tree. Basic and Applied Ecology , 43 , 66–75. https://doi.org/10.1016/j.baae.2019.07.005
Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., … & Mueller, T. (2018). Moving in the Anthropocene: Global reductions in terrestrial mammalian movements.Science , 359(6374), 466-469.
van Harten, E., Reardon, T., Lumsden, L. F., Meyers, N., Prowse, T. A. A., Weyland, J., & Lawrence, R. (2019). High detectability with low impact: Optimizing large PIT tracking systems for cave-dwelling bats.Ecology and Evolution , 9 (19), 10916–10928. https://doi.org/10.1002/ece3.5482
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. M. (2016). Global terrestrial Human Footprint maps for 1993 and 2009. Scientific Data , 3 (1), Article 1. https://doi.org/10.1038/sdata.2016.67
Voigt, C. C., Frick, W. F., Holderied, M. W., Holland, R., Kerth, G., Mello, M. A. R., Plowright, R. K., Swartz, S., & Yovel, Y. (2017). Principles and Patterns of Bat Movements: From Aerodynamics to Ecology.The Quarterly Review of Biology , 92 (3), 267–287. https://doi.org/10.1086/693847
Weir, J. E. S., & Corlett, R. T. (2007). How far do birds disperse seeds in the degraded tropical landscape of Hong Kong, China?Landscape Ecology , 22 (1), 131–140.https://doi.org/10.1007/s10980-006-9002-5
Wenny, D., Sekercioglu, C., Whelan, C., & Cordeiro, N. (2012).