REFERENCES
[1] O. Stein, D. Granot, An overview of sucrose synthases in plants.Front. Plant Sci. 2019 , 10 , 95.
http://doi.org/10.3389/fpls.2019.00095.
[2] L. Bungaruang, A. Gutmann, B. Nidetzky, Leloir
glycosyltransferases and natural product glycosylation: Biocatalytic
synthesis of the C-glucoside nothofagin, a major antioxidant of
redbush herbal Tea. Adv. Synth. Catal. 2013 , 355 ,
2757. http://doi.org/10.1002/adsc.201300251.
[3] A. Gutmann, B. Nidetzky, Unlocking the potential of Leloir
glycosyltransferases for applied biocatalysis: Efficient synthesis of
uridine 5′-diphosphate-glucose by sucrose synthase. Adv.
Synth. Catal. 2016 , 358 , 3600.
http://doi.org/10.1002/adsc.201600754.
[4] K. Schmölzer, A. Gutmann, M. Diricks, T. Desmet, B. Nidetzky,
Sucrose synthase: Aunique glycosyltransferase for biocatalytic
glycosylation process development. Biotechnol. Adv.2016 , 34 , 88.
http://doi.org/10.1016/j.biotechadv.2015.11.003.
[5] A. Gutmann, A. Lepak, M. Diricks, T. Desmet, B. Nidetzky,
Glycosyltransferase cascades for natural product glycosylation: Use of
plant instead of bacterial sucrose synthases improves the UDP-glucose
recycling from sucrose and UDP. Biotechnol. J. 2017 ,12 . http://doi.org/10.1002/biot.201600557.
[6] B. Nidetzky, A. Gutmann, C. Zhong, Leloir glycosyltransferases
as biocatalysts for chemical production. Acs Catal.2018 , 8 , 6283. http://doi.org/10.1021/acscatal.8b00710.
[7] F. De Bruyn, J. Maertens, J. Beauprez, W. Soetaert, M. De Mey,
Biotechnological advances in UDP-sugar based glycosylation of small
molecules. Biotechnol. Adv. 2015 , 33 , 288.
http://doi.org/10.1016/j.biotechadv.2015.02.005.
[8] S. T. Kulmer, A. Gutmann, M. Lemmerer, B. Nidetzky, Biocatalytic
cascade of polyphosphate kinase and sucrose synthase for synthesis of
nucleotide-activated derivatives of glucose. Adv. Synth. Catal.2017 , 359 , 292. http://doi.org/10.1002/adsc.201601078.
[9] L. Zhang, Y. Gao, X. Liu, F. Guo, C. Ma, J. Liang, X. Feng, C.
Li, Mining of sucrose synthases from Glycyrrhiza uralensis and
their application in the construction of an efficient UDP-recycling
system. J. Agric. Food Chem. 2019 , 67 , 11694.
http://doi.org/10.1021/acs.jafc.9b05178.
[10] C. M. Figueroa, M. D. Asencion Diez, M. L. Kuhn, S. McEwen, G.
L. Salerno, A. A. Iglesias, M. A. Ballicora, The unique nucleotide
specificity of the sucrose synthase from Thermosynechococcus
elongatus . FEBS Lett. 2012 , 587 , 165.
http://doi.org/10.1016/j.febslet.2012.11.011.
[11] M. Diricks, F. De Bruyn, P. Van Daele, M. Walmagh, T. Desmet,
Identification of sucrose synthase in nonphotosynthetic bacteria and
characterization of the recombinant enzymes. Appl. Microbiol.
Biotechnol. 2015 , 99 , 8465.
http://doi.org/10.1007/s00253-015-6548-7.
[12] T. Desmet, W. Soetaert, P. Bojarová, V. Křen, L. Dijkhuizen, V.
Eastwick-Field, A. Schiller, Enzymatic glycosylation of small molecules:
Challenging substrates require tailored catalysts. Chem. –
Eur. J. 2012 , 18 , 10786.
http://doi.org/10.1002/chem.201103069.
[13] M. Diricks, A. Gutmann, S. Debacker, G. Dewitte, B. Nidetzky,
T. Desmet, Sequence determinants of nucleotide binding in Sucrose
Synthase: improving the affinity of a bacterial Sucrose Synthase for
UDP by introducing plant residues. Protein Eng. Des. Sel.2016 , 30 , 143. http://doi.org/ 10.1093/protein/gzw048.
[14] K. L. Klotz, F. L. Finger, W. L. Shelver, Characterization of
two sucrose synthase isoforms in sugarbeet root. Plant Physiol.
Biochem. 2003 , 41 , 107.
http://doi.org/10.1016/s0981-9428(02)00024-4.
[15] U. Römer, H. Schrader, N. Günther, N. Nettelstroth, W. B.
Frommer, L. Elling, Expression, purification and characterization of
recombinant sucrose synthase 1 from Solanum tuberosum L. for
carbohydrate engineering. J. Biotechnol. 2004 ,107 , 135. http://doi.org/10.1016/j.jbiotec.2003.10.017.
[16] K. Schmolzer, M. Lemmerer, A. Gutmann, B. Nidetzky, Integrated
process design for biocatalytic synthesis by a Leloir
Glycosyltransferase: UDP-glucose production with sucrose synthase.Biotechnol. Bioeng. 2017 , 114 , 924.
http://doi.org/10.1002/bit.26204.
[17] K. Terasaka, Y. Mizutani, A. Nagatsu, H. Mizukami, In situ
UDP-glucose regeneration unravels diverse functions of plant
secondary product glycosyltransferases. FEBS Lett.2012 , 586 , 4344.
http://doi.org/10.1016/j.febslet.2012.10.045.
[18] S. M. Srinivasan, S. Vural, B. R. King, C. Guda, Mining for
class-specific motifs in protein sequence classification. BMC
Bioinf. 2013 , 14 , 96.
http://doi.org/10.1186/1471-2105-14-96.
[19] Q. Wang, D. N. Davis, J. Ren, Mining frequent biological
sequences based on bitmap without candidate sequence generation.Comput. Biol. Med. 2016 , 69 , 152.
http://doi.org/10.1016/j.compbiomed.2015.12.016.
[20] W. Li, J. Ren, MpBsmi: A new algorithm for the recognition of
continuous biological sequence pattern based on index structure.PLoS One 2018 , 13 . e0195601.
http://doi.org/10.1371/journal.pone.0195601.
[21] Y. Zhuang, G. Y. Yang, X. Chen, Q. Liu, X. Zhang, Z. Deng, Y.
Feng, Biosynthesis of plant-derived ginsenoside Rh2 in yeast via
repurposing a key promiscuous microbial enzyme. Metab. Eng.2017 , 42 , 25.
http://doi.org/10.1016/j.ymben.2017.04.009.
[22] Y. Zheng, S. Anderson, Y. Zhang, R. M. Garavito, The structure
of sucrose synthase-1 from Arabidopsis thaliana and its
functional implications. J. Biol. Chem. 2011 ,286 , 36108. http://doi.org/10.1074/jbc.M111.275974.
[23] K. Katoh, K. Misawa, K. Kuma, T. Miyata, MAFFT: a novel method
for rapid multiple sequence alignment based on fast fourier
transform. Nucleic Acids Res. 2002 , 30 , 3059.
http://doi.org/10.1093/nar/gkf436.
[24] R. Wu, M. D. Asencion Diez, C. M. Figueroa, M. Machtey, A. A.
Iglesias, M. A. Ballicora, D. Liu, The crystal structure ofNitrosomonas europaea sucrose synthase reveals critical
conformational changes and insights into the sucrose metabolism in
prokaryotes. J. Bacteriol. 2015 , 197 , 2734.
http://doi.org/10.1128/JB.00110-15.
[25] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary
genetics analysis version 7.0 for bigger datasets. Mol. Biol.
Evol. 2016 , 33 , 1870.
http://doi.org/10.1093/molbev/msw054.
[26] N. Saitou, M. Nei, The neighbor-joining method - a new method
for reconstructing phylogenetic trees. Mol. Biol. Evol.1987 , 4 , 406.
http://doi.org/10.1093/oxfordjournals.molbev.a040454.
[27] T. L. Bailey, C. Elkan, Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. Proc. Int. Conf.
Intell. Syst. Mol. Biol. 1994 , 2 , 28.
[28] G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, WebLogo:
A sequence logo generator. Genome Res. 2004 ,14 , 1188. http://doi.org/10.1101/gr.849004.
[29] N. Blom, S. Gammeltoft, S. Brunak, Sequence and structure-based
prediction of eukaryotic protein phosphorylation sites. J. Mol.
Biol. 1999 , 294 , 1351.
http://doi.org/10.1006/jmbi.1999.3310.
[30] E. Krieger, G. Koraimann, G. Vriend, Increasing the precision
of comparative models with YASARA NOVA–a self-parameterizing force
field. Proteins 2002 , 47 , 393.
http://doi.org/10.1002/prot.10104.
[31] H. Zhao, A. Caflisch, Discovery of ZAP70 inhibitors by
high-throughput docking into a conformation of its kinase domain
generated by molecular dynamics. Bioorg. Med.
Chem. Lett. 2013 , 23 , 5721.
http://doi.org/10.1016/j.bmcl.2013.08.009.
[32] O. Trott, A. J. Olson, AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem.2010 , 31 , 455. http://doi.org/10.1002/jcc.21334.
[33] H. Takeda, M. Niikura, A. Narumi, H. Aoki, T. Sasaki, H.
Shimada, Phosphorylation of rice sucrose synthase isoforms promotes the
activity of sucrose degradation. Plant Biotechnol (Tokyo)2017 , 34 , 107.
http://doi.org/10.5511/plantbiotechnology.17.0326a.
[34] B. Li, J. Zhao, C. Wang, J. Searle, T. He, C. Yuan, W. Du,
Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in
colorectal cancer cells through activation of p53. Cancer Lett.2011 , 301 , 185.
http://doi.org/10.1016/j.canlet.2010.11.015.
[35] Y. Wang, Y. Lin, H. Li, Y. Li, Z. Song, Y. Jin, The
identification of molecular target of (20S) ginsenoside Rh2 for its
anti-cancer activity. Sci. Rep. 2017 , 7 , 12408.
http://doi.org/10.1038/s41598-017-12572-4.
[36] O. Komina, Y. Zhou, G. Sarath, R. Chollet, In vivo and in vitro
phosphorylation of membrane and soluble forms of soybean nodule sucrose
synthase. Plant Physiol. 2002 , 129 , 1664.
http://doi.org/10.1104/pp.002360.
[37] S. C. Hardin, H. Winter, S. C. Huber, Phosphorylation of the
amino terminus of maize sucrose synthase in relation
to membrane association and enzyme activity. Plant Physiol.2004 , 134 , 1427. http://doi.org/10.1104/pp.103.036780.
[38] B. Sauerzapfe, L. Engels, L. Elling, Broadening the
biocatalytic properties of recombinant sucrose synthase 1 from potato
(Solanum tuberosum L. ) by expression in Escherichia coliand Saccharomyces cerevisiae . Enzyme Microb. Technol.2008 , 43 , 289.
http://doi.org/10.1016/j.enzmictec.2008.04.001.
[39] S. Shibata, Chemistry and cancer preventing activities of
ginseng saponins and some related triterpenoid compounds. J.
Korean Med. Sci. 2001 , 16 , 28.
http://doi.org/10.3346/jkms.2001.16.S.S28.
[40] S. Park, C. Na, S. Yoo, S. Seo, H. Son, Biotransformation of
major ginsenosides in ginsenoside model culture by lactic acid
bacteria. J Ginseng Res. 2017 , 41 , 36.
http://doi.org/10.1016/j.jgr.2015.12.008.
[41] P. Wang, W. Wei, W. Ye, X. Li, W. Zhao, C. Yang, C. Li, X. Yan,
Z. Zhou, Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell
factory at high-efficiency. Cell Discov. 2019 , 5 ,
5. http://doi.org/10.1038/s41421-018-0075-5.
[42] Y. Hu, J. Xue, J. Min, L. Qin, J. Zhang, L. Dai, Biocatalytic
synthesis of ginsenoside Rh2 using Arabidopsis thaliana
glucosyltransferase-catalyzed coupled reactions. J. Biotechnol.2020 , 309 , 107.
http://doi.org/10.1016/j.jbiotec.2020.01.003.
[43] P. Wang, Y. Wei, Y. Fan, Q. Liu, W. Wei, C. Yang, L. Zhang, G.
Zhao, J. Yue, X. Yan, Z. Zhou, Production of bioactive ginsenosides Rh2
and Rg3 by metabolically engineered yeasts. Metab. Eng.2015 , 29 , 97.
http://doi.org/10.1016/j.ymben.2015.03.003.
[44] J. Chu, J. Yue, S. Qin, Y. Li, B. Wu, B. He, Biocatalysis for
rare ginsenoside Rh2 production in high level with co-immobilized
UDP-Glycosyltransferase Bs-YjiC mutant and sucrose synthase AtSuSy.Catalysts 2021 , 11 .
http://doi.org/10.3390/catal11010132.