4. Experimental Section
Materials: The pristine self-supported LiHg film was obtained by coating method in an argon-filled glovebox with <0.1 ppm O2 and H2O. The preparation of LiHg film was as follows: (1) mercury droplet was spread onto the pure lithium metal to spontaneously form LiHg film by a brush; (2) this film was peeled off the pure lithium metal, the thickness of the film is about 7 μm in thickness; (3) the obtained thin film was cut into squares of 1*1 cm2 by a scissor as electrode. After weighing of this self-supported film, the surface load of LiHg film is 7 mg cm-2, and the surface load of Hg was 6.8 mg cm-2 (5 μL liquid phase Hg was coated on 10 cm-2 Li foil), thus the surface load of Li was 0.2 mg cm-2. The commercial Ag, Au and Zn foils have the same 1*1 cm2 squares by a scissor with LiHg film, whose possess thickness of 10, 2 and 10 μm, respectively. LiFePO4 (LFP) cathode material was provided by Lishen company with mass loading of 12 mg cm-2.
Physical Characterization: Scanning Electron Microscope (SEM) studies were carried out on Environment Scanning Electron Microscope with a field emission gun (Quanta FEG 250). X-ray diffraction (XRD) patterns were collected on a Rigaku Miniflex 600 desktop at 40 kV and 20 mA (Cu Kαradiation). Transmission Electron Microscope (TEM) analysis was used on a High-Resolution Transmission Electron Microscope with FEG (Talos F200 X) at 200 kV (HR-TEM) and Transmission Electron Microscope with A Probe Corrector (Titan Themis Cubed G2 60-300) (Cs-TEM). Focused Ion Beam (FIB) sample was synthesized on FIB-SEM system (Helios Nanolab 460HP) at 5 kV and 30 kV (Ga ion beam etching). X-Ray Photoelectron Spectroscopy (XPS) characterization were measured with an X-Ray Photoelectron Spectroscopy (Escalab 250Xi) spectrometer. Optical images were conducted with a Keyence VHX-950F microscope and cell phone.
Electrochemical Evaluation: Coin half cells and full cells were assembled in an Ar-filled glove box (O2 and H2O level below 0.1 ppm). In half cells, Ag, Au, Zn foils and LiHg film were acted as working electrodes and pure lithium metal (thickness of 600 μm) as counter electrode. In full cells, LFP electrode worked as cathode (12 mg cm-2 of mass load), the LiHg film and Zn foil anodes were pre-deposited Li capacity of 4 mAh cm-2. The electrolyte was 1.0 M lithium bis-(trifluoromethane-sulphonyl)imide (LiTFSI) in 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) (1:1 vol/vol) without any additives. About 100 μL of electrolyte was used in each coin cell to standardize the experiment. The three piece of separators with Al2O3 coating layer (Celgard 2400) was placed in the middle of two electrodes to protect from short-circuit in the cells. All electrochemical tests were carried out on LAND-CT 2001A multichannel battery tester (Wuhan, China) at room temperature. Electrochemical impedance spectroscopy (EIS) measurements were conducted on a Princeton PARSTAT 2273. The frequency was ranged from 1 MHz to 0.01 mHz with an alternating voltage signal amplitude of 5 mV.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by the National Key Research and Development Program of China (2019YFA0205700).
Received: (will be filled in by the editorial staff) Revised: (will be filled in by the editorial staff) Published online: (will be filled in by the editorial staff)
References
[1] H. Lee, H.-S. Lim, X. Ren, L. Yu, M. H. Engelhard, K. S. Han, J. Lee, H.-T. Kim, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, ACS Energy Lett. 2018 , 3 , 2921.
[2] H. Ye, Z.-J. Zheng, H.-R. Yao, S.-C. Liu, T.-T. Zuo, X.-W. Wu, Y.-X. Yin, N.-W. Li, J.-J. Gu, F.-F. Cao, Y.-G. Guo, Angew. Chem. Int. Ed. 2019 , 131 , 1106.
[3] K. Nam, J. Baek, S. Seo, K. Kwak, J. Cha, Appl. Surf. Sci. 2022 , 600 , 154077.
[4] J. Zhang, H. Zhang, R. Li, L. Lv, D. Lu, S. Zhang, X. Xiao, S. Geng, F. Wang, T. Deng, L. Chen, X. Fan, J. Energy Chem.2023 , 78 , 71.
[5] K. R. Adair, M. N. Banis, Y. Zhao, T. Bond, R. Li, X. Sun,Adv. Mater. 2020 , 32 , 2002550.
[6] M. Agostini, M. Sadd, S. Xiong, C. Cavallo, J. Heo, J. H. Ahn, A. Matic, ChemSusChem 2019 , 12 , 4176.
[7] H. Irfan, A. M. Shanmugharaj, Appl. Surf. Sci.2022 , 586 , 152806.
[8] K. Dong, Y. Xu, J. Tan, M. Osenberg, F. Sun, Z. Kochovski, D. T. Pham, S. Mei, A. Hilger, E. Ryan, Y. Lu, J. Banhart, I. Manke, ACS Energy Lett. 2021 , 6 , 1719.
[9] S. Park, H.-J. Jin, Y. S. Yun, Adv. Mater. 2020 ,32 , 2002193.
[10] P. Shi, X.-B. Cheng, T. Li, R. Zhang, H. Liu, C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, Adv. Mater. 2019 ,31 , 1902785.
[11] S. Liu, Y. Ma, Z. Zhou, S. Lou, H. Huo, P. Zuo, J. Wang, C. Du, G. Yin, Y. Gao, Energy Storage Mater. 2020 , 33 , 423.
[12] P. Bärmann, M. Mohrhardt, J. E. Frerichs, M. Helling, A. Kolesnikov, S. Klabunde, S. Nowak, M. R. Hansen, M. Winter, T. Placke,Adv. Energy Mater. 2021 , 11 , 2100925.
[13] M. Wan, S. Kang, L. Wang, H.-W. Lee, G. W. Zheng, Y. Cui, Y. Sun, Nat. Commun. 2020 , 11 , 1.
[14] Z. Tu, S. Choudhury, M. J. Zachman, S. Wei, K. Zhang, L. F. Kourkoutis, L. A. Archer, Nat. Energy 2018 , 3 , 310.
[15] Y. Ding, X. Guo, Y. Qian, L. Xue, A. Dolocan, G. Yu, Adv. Mater. 2020 , 32 , 2002577.
[16] H. Zhao, Y. Wei, C. Wang, R. Qiao, W. Yang, P. B. Messersmith, G. Liu, ACS Appl. Mater. Interfaces 2018 , 10 , 5440.
[17] Y. Liu, T. Chen, J. Xue, Z. Wang, J. Xing, A. Zhou, J. Li,Electrochim. Acta 2022 , 405 , 139787.
[18] S. Chen, X. Yang, J. Zhang, J. Ma, Y. Meng, K. Tao, F. Li, J. Geng, Electrochim. Acta 2021 , 368 , 137626.
[19] X. Wu, W. Zhang, N. Wu, S.-S Pang, Y. Ding, G. He, Adv.Energy Mater. 2021 , 11 , 2003082.
[20] S. Jin, Y. Ye, Y. Niu, Y. Xu, H. Jin, J. Wang, Z. Sun, A. Cao, X. Wu, Y. Luo, H. Ji, L.-J. Wan, J. Am. Chem. Soc. 2020 ,142 , 8818.
[21] Y. Wang, Y. Guo, J. Zhong, M. Wang, L. Wang, S. Li, S. Chen, H. Deng, Y. Liu, Y. Wu, J. Zhu, B. Lu, J. Energy Chem.2022 , 73 , 339.
[22] Y.-K. Liao, Z. Tong, C.-C Fang, S.-C. Liao, J.-M. Chen, R.-S. Liu, S.-F. Hu, ACS Appl. Mater. Interfaces 2021 ,13 , 56181.
[23] K.-Y. Cho, S.-H. Hong, J. Kwon, H. Song, S. Kim, S. Jo, K. Eom,Appl. Surf. Sci. 2021 , 554 , 149578.
[24] F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J.-G. Zhang, J. Am. Chem. Soc. 2013 , 135 , 4450.
[25] K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun, Y. Cui, G. Wang,Angew. Chem. Int. Ed. 2019 , 131 , 11486.
[26] X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng, Q. Zhang,Angew. Chem. Int. Ed. 2020 , 59 , 7743.
[27] C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Adv. Mater. 2017 , 29 , 1702714.
[28] E. Lee, K. A. Persson, Nano Lett. 2012 ,12 , 4624.
[29] H. Liu, X.-B. Cheng, J.-Q. Huang, S. Kaskel, S. Chou, H. S. Park, Q. Zhang, ACS Mater. Lett. 2019 , 1 , 217.
[30] K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016 , 1 , 1.
[31] S. H. Choi, S. J. Lee, D.-J. Yoo, J. H. Park, J.-H. Park, Y. N. Ko, J. Park, Y.-E. Sung, S.-Y. Chung, H. Kim, J. W. Choi, Adv. Energy Mater. 2019 , 9 , 1902278.
[32] P. Gao, H. Wu, X. Zhang, H. Jia, J.-M. Kim, M. H. Engelhard, C. Niu, Z. Xu, J.-G. Zhang, W. Xu, Angew. Chem. Int. Ed.2021 , 60 , 16506.
[33] H. A. Acciari, A. C. Guastaldi, C. M. A. Brett,Electrochim. Acta 2001 , 46 , 3887.
[34] Y. Fan, T. Tao, Y. Gao, C. Deng, B. Yu, Y.-L. Chen, S. Lu, S. Huang, Adv. Mater. 2020 , 32 , 2004798.
[35] Q. Li, G. He, Y. Ding, Chem. Eur. J. 2021 ,27 , 6407.
[36] G. He, Q. Li, Y. Shen, Y. Ding, Angew. Chem. Int. Ed.2019 , 131 , 18637.
[37] B. Predel, H. Landolt,in Phase equilibria, crystallographic and thermodynamic data of binary alloys , Springer, Landolt, 1993 , pp. 119.
[38] S. Yuan, J. L. Bao, C. Li, Y. Xia, D. G. Truhlar, Y. Wang,Appl. Mater. Interfaces 2019 , 11 , 10616.
[39] M. Huang, Z. Yao, Q. Yang, C. Li, Angew. Chem. Int. Ed.2021 , 133 , 14159.
[40] S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang, J. Wang, C. Wang, Y. Yu, Y. Deng, Nano Lett. 2020 , 20 , 2724.
[41] Z. Li, X. Huang, L. Kong, N. Qin, Z. Wang, L. Yin, Y. Li, Q. Gan, K. Liao, S. Gu, T. Zhang, H. Huang, L. Wang, G. Luo, X. Cheng, Z. Lu, Energy Storage Mater. 2022 , 45 , 40.
[42] A. Hightower, C. C. Ahn, B. Fultz, Appl. Phys. Lett.2000 , 77 , 238.
[43] G. Sokolowski, W. Pilz, U. Weser, FEBS Lett.1974 , 48 , 222.
[44] K. N. Wood, G. Teeter, ACS Appl. Energy Mater.2018 , 1 , 4493.
[45] D. A. Porter, K. E. Easterling,Phase transformations in metals and alloys , second ed., Springer, Van Nostrand Reinhold, 1992 .
[46] I. V. Belova, Z.-K. Liu, G. E. Murch, Philos. Mag. Lett.2021 , 101 , 123.
[47] X. Liu, T. J. H. Vlugt, A. Bardow, Ind. Eng. Chem. Res.2011 , 50 , 10350.
[48] C. M. Eastman, Q. Zhang, J.-C. Zhao, J. Phase Equilib. Diff. 2020 , 41 , 642.
[49] R. Guo, J. Wu, Y. Ren, Eng. Comput. 2021 ,38 , 2003.
[50] S. Chen, L. Wang, R. Shao, J. Zou, R. Cai, J. Lin, C. Zhu, J. Zhang, F. Xu, J. Cao, J. Feng, J. Qi, P. Gao, Nano Energy2018 , 48 , 560.
Table 1. The frequency factor (D0 ) and diffusion activation energy (Qsd ) of Ag, Au, Zn and Hg atom.