Author Contributions
Conceptualization, T.M., A.L.G., C.L., E.L. and R.J.; methodology, T.M., A.L.G., F.S., and R.J.; validation, A.L.G., F.S., C.L., E.L. and R.J.; formal analysis, T.M.; investigation, T.M.; resources, Z.S., F.M. and N.M.; data curation, A.L.G., F.S., E.L. and R.J.; writing original draft preparation, T.M.; writing review and editing, T.M., A.L.G., F.S., E.L., and R.J.; visualization, T.M.; supervision, A.L.G., E.L. and R.J.; project administration, C.L.; funding acquisition, C.L. All authors have read and agreed to the published version of the manuscript.
Acknowledgements
This work and T. Messelmani PhD were funded by the ANR (Agence Nationale de la Recherche, France) through the MIMLIVEROnChip project, grant number ANR-19-CE19-0020-01, and by a grant from the Contrat de Plan Etat-Région (CPER) Cancer 2015–2020. The authors would like to thank the JSPS Core-to-Core Program (JPJSCCA20190006), the Research Department at the Université de Technologie de Compiègne (Research Training Innovation Chair, DOT project - Disruptive Organoids Technologies) and CNRS (CNRS international research team, TEAMS project – Therapeutics and Engineering Against Metabolic Syndrome, between CNRS/UTC BMBI and CNRS/IIS LIMMS) for their support.
 
Conflict of Interest
HCS pharma is the BIOMIMESYS® Liver owner and is a partner of the ANR MimLiverOnChip (ANR-19-CE19-0020-01). Co-authors Z. Souguir and N. Maubon are employees of HCS Pharma.
T. Messelmani, A. Le Goff, F. Soncin, F. Merlier, C. Legallais, E. Leclerc and R. Jellali declare no conflict of interest.
 
Data Availability Statement
All data generated or analysed during this study are included in this published article and its additional files.
 
References
Akbari, E., Spychalski, G. B., Rangharajan, K. K., Prakash, S., & Song, J. W. (2018). Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model. Lab on a Chip, 18(7), 1084–1093. https://doi.org/10.1039/c8lc00130h.
Badmann, A., Langsch, S., Keogh, A., Brunner, T., Kaufmann, T., & Corazza, N. (2012). TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner. Cell Death & Disease, 3(12), e447. https://doi.org/10.1038/cddis.2012.185.
Bale, S. S., & Borenstein, J. T. (2018). Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions. Drug Metabolism and Disposition, 46(11), 1638–1646. https://doi.org/10.1124/dmd.118.083055.
Bale, S. S., Geerts, S., Jindal, R., & Yarmush, M. L. (2016). Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Scientific Reports, 6, 25329. https://doi.org/10.1038/srep25329.
Bale, S. S., Golberg, I., Jindal, R., McCarty, W. J., Luitje, M., Hegde, M., Bhushan, A., Usta, O. B., & Yarmush, M. L. (2015). Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue engineering. Part C, Methods, 21(4), 413–422. https://doi.org/10.1089/ten.TEC.2014.0152.
Beckwitt, C. H., Clark, A. M., Wheeler, S., Taylor, D. L., Stolz, D. B., Griffith, L., & Wells, A. (2018). Liver 'organ on a chip'. Experimental Cell Research, 363(1), 15–25. https://doi.org/10.1016/j.yexcr.2017.12.023.
Bhatia, S. N., Balis, U. J., Yarmush, M. L., & Toner, M. (1999). Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB journal, 13(14), 1883–1900. https://doi.org/10.1096/fasebj.13.14.1883.
Bhatia, S. N., Yarmush, M. L., & Toner, M. (1997). Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. Journal of Biomedical Materials Research, 34(2), 189–199. https://doi.org/10.1002/(sici)1097-4636(199702)34:2<189::aid-jbm8>3.0.co;2-m.
Bricks, T., Hamon, J., Fleury, M. J., Jellali, R., Merlier, F., Herpe, Y. E., Seyer, A., Regimbeau, J. M., Bois, F., & Leclerc, E. (2015). Investigation of omeprazole and phenacetin first-pass metabolism in humans using a microscale bioreactor and pharmacokinetic models. Biopharmaceutics & drug disposition, 36(5), 275–293. https://doi.org/10.1002/bdd.1940.
Bricks, T., Paullier, P., Legendre, A., Fleury, M. J., Zeller, P., Merlier, F., Anton, P. M., & Leclerc, E. (2014). Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicology in vitro, 28(5), 885–895. https://doi.org/10.1016/j.tiv.2014.02.005.
DeLeve L. D. (2015). Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology, 61(5), 1740–1746. https://doi.org/10.1002/hep.27376.
Donato, M. T., Tolosa, L., & Gómez-Lechón, M. J. (2015). Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods in Molecular Biology, 1250, 77–93. https://doi.org/10.1007/978-1-4939-2074-7_5.
Du, Y., Li, N., Yang, H., Luo, C., Gong, Y., Tong, C., Gao, Y., Lü, S., & Long, M. (2017). Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab on a Chip, 17(5), 782–794. https://doi.org/10.1039/c6lc01374k.
Elvevold, K., Smedsrød, B., & Martinez, I. (2008). The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. American Journal of Physiology. Gastrointestinal and Liver Physiology, 294(2), G391–G400. https://doi.org/10.1152/ajpgi.00167.2007.
Fang, Y., & Eglen, R. M. (2017). Three-dimensional cell cultures in drug discovery and development. SLAS discovery, 22(5), 456–472. https://doi.org/10.1177/1087057117696795.
Guguen-Guillouzo, C., & Guillouzo, A. (2010). General review on in vitro hepatocyte models and their applications. Methods in Molecular Biology, 640, 1–40. https://doi.org/10.1007/978-1-60761-688-7_1
González, L. T., Minsky, N. W., Espinosa, L. E., Aranda, R. S., Meseguer, J. P., & Pérez, P. C. (2017). In vitro assessment of hepatoprotective agents against damage induced by acetaminophen and CCl4. BMC Complementary and Alternative Medicine, 17(1), 39. https://doi.org/10.1186/s12906-016-1506-1.
Holt, M. P., Yin, H., & Ju, C. (2010). Exacerbation of acetaminophen-induced disturbances of liver sinusoidal endothelial cells in the absence of Kupffer cells in mice. Toxicology letters, 194(1-2), 34–41. https://doi.org/10.1016/j.toxlet.2010.01.020.
Jellali, R., Bricks, T., Jacques, S., Fleury, M. J., Paullier, P., Merlier, F., & Leclerc, E. (2016). Long-term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures. Biopharmaceutics & Drug Disposition, 37(5), 264–275. https://doi.org/10.1002/bdd.2010.
Jellali, R., Paullier, P, Fleury, M. J., & Leclerc, E., (2016) Liver and kidney cells cultures in a new perfluoropolyether biochip. Sensors and Actuators B: Chemical, 229, 396-407. https://doi.org/10.1016/j.snb.2016.01.141
Kang, Y. B., Sodunke, T. R., Lamontagne, J., Cirillo, J., Rajiv, C., Bouchard, M. J., & Noh, M. (2015). Liver sinusoid on a chip: Long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnology and Bioengineering, 112(12), 2571–2582. https://doi.org/10.1002/bit.25659.
Khetani, S. R., Berger, D. R., Ballinger, K. R., Davidson, M. D., Lin, C., & Ware, B. R. (2015). Microengineered liver tissues for drug testing. Journal of Laboratory Automation, 20(3), 216–250. https://doi.org/10.1177/2211068214566939.
Lauschke, V. M., Shafagh, R. Z., Hendriks, D. F. G., & Ingelman-Sundberg, M. (2019). 3D primary hepatocyte culture systems for analyses of liver diseases, drug metabolism, and toxicity: emerging culture paradigms and applications. Biotechnology Journal, 14(7), e1800347. https://doi.org/10.1002/biot.201800347.
LeCluyse, E. L., Witek, R. P., Andersen, M. E., & Powers, M. J. (2012). Organotypic liver culture models: meeting current challenges in toxicity testing. Critical Reviews in Toxicology, 42(6), 501–548. https://doi.org/10.3109/10408444.2012.682115.
Lee, J. H., Ho, K. L., & Fan, S. K. (2019). Liver microsystems in vitro for drug response. Journal of Biomedical Science, 26(1), 88. https://doi.org/10.1186/s12929-019-0575-0.
Lee, S. Y., Kim, D., Lee, S. H., & Sung, J. H. (2021). Microtechnology-based in vitro models: Mimicking liver function and pathophysiology. APL Bioengineering, 5(4), 041505. https://doi.org/10.1063/5.0061896.
Lee, D., Park, J. S., Kim, D., & Hong, H. S. (2022). Substance P hinders bile acid-induced hepatocellular injury by modulating oxidative stress and inflammation. Antioxidants, 11(5), 920. https://doi.org/10.3390/antiox11050920
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262.
Ma, L. D., Wang, Y. T., Wang, J. R., Wu, J. L., Meng, X. S., Hu, P., Mu, X., Liang, Q. L., & Luo, G. A. (2018). Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab on a Chip, 18(17), 2547–2562. https://doi.org/10.1039/c8lc00333e
Merlier, F., Jellali, R., & Leclerc, E. (2017). Online monitoring of hepatic rat metabolism by coupling a liver biochip and a mass spectrometer. The Analyst, 142(19), 3747–3757. https://doi.org/10.1039/c7an00973a.
Messelmani, T., Le Goff, A., Souguir, Z., Maes, V., Roudaut, M., Vandenhaute, E., Maubon, N., Legallais, C., Leclerc, E., & Jellali, R. (2022). Development of liver-on-chip integrating a hydroscaffold mimicking the liver's extracellular matrix. Bioengineering, 9(9), 443. https://doi.org/10.3390/bioengineering9090443.
Messelmani, T., Morisseau, L., Sakai, Y., Legallais, C., Le Goff, A., Leclerc, E., & Jellali, R. (2022). Liver organ-on-chip models for toxicity studies and risk assessment. Lab on a Chip, 22(13), 2423–2450. https://doi.org/10.1039/d2lc00307d.
Milner, E., Ainsworth, M., McDonough, M., Stevens, B., Buehrer, J., Delzell, R., Wilson, C., & Barnhill, J. (2020) Emerging three-dimensional hepatic models in relation to traditional two-dimensional in vitro assays for evaluating drug metabolism and hepatoxicity. Medicine in Drug Discovery, 8, 100060. https://doi.org/10.1016/j.medidd.2020.100060.
Moradi, E., Jalili-Firoozinezhad, S., & Solati-Hashjin, M. (2020). Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomaterialia, 116, 67–83. https://doi.org/10.1016/j.actbio.2020.08.041.
Odeyemi, S., & Dewar, J. (2019). Repression of acetaminophen-induced hepatotoxicity in HepG2 cells by polyphenolic compounds from Lauridia tetragona (L.f.) R.H. Archer. Molecules, 24(11), 2118. https://doi.org/10.3390/molecules24112118.
Ortega-Ribera, M., Fernández-Iglesias, A., Illa, X., Moya, A., Molina, V., Maeso-Díaz, R., Fondevila, C., Peralta, C., Bosch, J., Villa, R., & Gracia-Sancho, J. (2018). Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnology and bioengineering, 115(10), 2585–2594. https://doi.org/10.1002/bit.26776.
Panwar, A., Das, P., & Tan, L. P. (2021). 3D hepatic organoid-based advancements in liver tissue engineering. Bioengineering, 8(11), 185. https://doi.org/10.3390/bioengineering8110185.  
Polidoro, M. A., Ferrari, E., Marzorati, S., Lleo, A., & Rasponi, M. (2021). Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver International, 41(8), 1744–1761. https://doi.org/10.1111/liv.14942.
Prodanov, L., Jindal, R., Bale, S. S., Hegde, M., McCarty, W. J., Golberg, I., Bhushan, A., Yarmush, M. L., & Usta, O. B. (2016). Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnology and Bioengineering, 113(1), 241–246. https://doi.org/10.1002/bit.25700.
Prot, J. M., Bunescu, A., Elena-Herrmann, B., Aninat, C., Snouber, L. C., Griscom, L., Razan, F., Bois, F. Y., Legallais, C., Brochot, C., Corlu, A., Dumas, M. E., & Leclerc, E. (2012). Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicology and applied pharmacology, 259(3), 270–280. https://doi.org/10.1016/j.taap.2011.12.017
Ruoß, M., Vosough, M., Königsrainer, A., Nadalin, S., Wagner, S., Sajadian, S., Huber, D., Heydari, Z., Ehnert, S., Hengstler, J. G., & Nussler, A. K. (2020). Towards improved hepatocyte cultures: Progress and limitations. Food and Chemical Toxicology, 138, 111188. https://doi.org/10.1016/j.fct.2020.111188.
Schepers, A., Li, C., Chhabra, A., Seney, B. T., & Bhatia, S. (2016). Engineering a perfusable 3D human liver platform from iPS cells. Lab on a Chip, 16(14), 2644–2653. https://doi.org/10.1039/c6lc00598e.
Soldatow, V. Y., Lecluyse, E. L., Griffith, L. G., & Rusyn, I. (2013). In vitro models for liver toxicity testing. Toxicology Research, 2(1), 23–39. https://doi.org/10.1039/C2TX20051A.
Son, Y. W., Choi, H. N., Che, J. H., Kang, B. C., & Yun, J. W. (2020). Advances in selecting appropriate non-rodent species for regulatory toxicology research: Policy, ethical, and experimental considerations. Regulatory Toxicology and Pharmacology, 116, 104757. https://doi.org/10.1016/j.yrtph.2020.104757.
Souguir, Z., Vidal, G., Demange, E., & Louis, F., (2016) WO Pat., 2016166479A1.
Thomann, S., Weiler, S. M. E., Marquard, S., Rose, F., Ball, C. R., Tóth, M., Wei, T., Sticht, C., Fritzsche, S., Roessler, S., De La Torre, C., Ryschich, E., Ermakova, O., Mogler, C., Kazdal, D., Gretz, N., Glimm, H., Rempel, E., Schirmacher, P., & Breuhahn, K. (2020). YAP orchestrates heterotypic endothelial cell communication via HGF/c-MET signaling in liver tumorigenesis. Cancer Research, 80(24), 5502–5514. https://doi.org/10.1158/0008-5472.CAN-20-0242.
van Duinen, V., van den Heuvel, A., Trietsch, S. J., Lanz, H. L., van Gils, J. M., van Zonneveld, A. J., Vulto, P., & Hankemeier, T. (2017). 96 perfusable blood vessels to study vascular permeability in vitro. Scientific Reports, 7(1), 18071. https://doi.org/10.1038/s41598-017-14716-y.
van Grunsven L. A. (2017). 3D in vitro models of liver fibrosis. Advanced Drug Delivery Reviews, 121, 133–146. https://doi.org/10.1016/j.addr.2017.07.004.
Vis, M. A. M., Ito, K., & Hofmann, S. (2020). Impact of Culture Medium on Cellular Interactions in in vitro Co-culture Systems. Frontiers in Bioengineering and Biotechnology, 8, 911. https://doi.org/10.3389/fbioe.2020.00911.
Xiao, W., Perry, G., Komori, K., & Sakai, Y. (2015). New physiologically-relevant liver tissue model based on hierarchically cocultured primary rat hepatocytes with liver endothelial cells. Integrative Biology, 7(11), 1412–1422. https://doi.org/10.1039/c5ib00170f.
Yu, F., Deng, R., Hao Tong, W., Huan, L., Chan Way, N., IslamBadhan, A., Iliescu, C., & Yu, H. (2017). A perfusion incubator liver chip for 3D cell culture with application on chronic hepatotoxicity testing. Scientific Reports, 7(1), 14528. https://doi.org/10.1038/s41598-017-13848-5.
Yun, C., Kim, S. H., & Jung, Y. S. (2022). Current research trends in the application of in vitro three-dimensional models of liver cells. Pharmaceutics, 15(1), 54. https://doi.org/10.3390/pharmaceutics15010054.
Zeller, P., Legendre, A., Jacques, S., Fleury, M. J., Gilard, F., Tcherkez, G., & Leclerc, E. (2017). Hepatocytes cocultured with Sertoli cells in bioreactor favors Sertoli barrier tightness in rat. Journal of Applied Toxicology, 37(3), 287–295. https://doi.org/10.1002/jat.3360.