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Abstract  56 

Approximatively 25 chemical elements are essential for the maintenance, growth and 57 

reproduction of all living organisms. Hence, the movement, distribution, and relative proportions 58 

of those elements on the landscape should influence the structure and functioning of biological 59 

communities. Yet our basic understanding for the spatial distribution of elements across 60 

landscapes is limited. Here, we propose to apply tools from community and landscape ecology to 61 

study spatial patterns in elements. We illustrate this framework using tree leaves elemental 62 

composition and demonstrate how spatial grain and spatial dissimilarity of elements interact 63 

leading to predictable patterns in elemental distributions at various spatial scales. Meanwhile, 64 

further analysis revealed that potassium and calcium are the most important elemental 65 

contributors to spatial dissimilarity in leaf elements, raising new questions about their role in, or 66 

response to, distributions of biodiversity and ecosystem functions. Our framework provides a 67 

way to integrate abiotic and biotic processes, demonstrating how we can use community metrics 68 

to investigate variability of individual elements across landscapes. We conclude by 69 

hypothesizing that changes in the evenness or beta-diversity of elements should reflect the 70 

structure of biotic communities, providing a long-sought mechanistic link between community 71 

and ecosystem processes that can be measured directly in the field.  72 

  73 
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Introduction 74 

Approximatively 25 chemical elements are essential for the maintenance, growth and 75 

reproduction of all living organisms (Elser et al. 1996; Kaspari & Powers 2016). The field of 76 

ecological stoichiometry has made great progress in understanding how some elements (mainly 77 

C, N and P) influence biotic community structure and stability through resource competition and 78 

stoichiometric imbalance (Leroux & Schmitz 2015; Sterner & Elser 2017; Sentis et al. 2022).  79 

Most of this research, however, has been conducted at small spatial extents (e.g., lab, mesocosm, 80 

field sites; (Leroux et al. 2017). Consequently, our basic expectations for the spatial distribution 81 

of elements and the drivers of those patterns at larger extents are limited to abiotic components 82 

(e.g. bedrock; Kaspari & Powers 2016). To address this gap, researchers in marine (e.g., 83 

Galbraith & Martiny 2015), freshwater (e.g., Collins et al. 2017), and terrestrial (e.g., Leroux et 84 

al. 2017) ecosystems are developing spatially explicit tools and methods for predicting spatial 85 

patterns in elements at landscape/seascape extents. 86 

 87 

Patterns of elemental abundance in geographic space are the result of the combined feedbacks of 88 

passive abiotic flows and biotic ecosystem components (e.g., animal transport and deposition of 89 

materials). Biotic influences on a landscape are expected to generate a patchy elemental 90 

distribution characterized by areas with elemental hotspots and coldspots (Bernhardt et al. 2017; 91 

McInturf et al. 2019). For example, McIntyre et al. (2008) demonstrated that the spatial 92 

distribution and nutrient excretion of a diverse neotropical fish community can influence the 93 

elemental distribution of N and P availability in streams and that these neotropical fish 94 

communities can influence the distributions of N and P very differently. To scale up the study of 95 

elemental distribution to regional extents, Leroux et al. (2017) proposed stoichiometric 96 
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distribution models (StDMs) – statistical models akin to species distribution models that make 97 

spatially explicit predictions of elemental patterns. Stoichiometric distribution models generate 98 

spatial maps of elements based on the measured relationship between elements and 99 

environmental parameters (e.g., elevation, land cover), thus filling an important gap in measuring 100 

elements across a whole landscape. Such elemental maps can then be used readily to study 101 

spatial patterns of specific elements (e.g., percent C or N) or their ratios and can be linked to 102 

patterns of resource quality (e.g., Heckford et al. 2022).  103 

 104 

Building expectations on what spatial patterns in elements should look like, how they relate to 105 

landscape features, and how they relate to the other biotic components of ecosystems is not 106 

trivial. There is considerable variation in how different plant and animal species respond to and 107 

consequently affect their environment – the scale of these effects is species-specific (see review 108 

in Doherty & Driscoll 2018) and demonstrate hierarchical patterns within a species (e.g. Mayor 109 

et al. 2009). For example, small mammals, such as snowshoe hares or meadow voles have a 110 

relatively small home range and short daily movements (e.g., Rizzuto et al. 2021). Thus, these 111 

smaller mammals interact with their environment at smaller scales than larger mammals (e.g., 112 

Leroux et al. 2017). The consequences of this smaller environmental footprint mean they may 113 

contribute to more localized hotspots of nutrients. Larger mammals, such as moose, use an 114 

environment several orders of magnitude larger than hares or voles in boreal forests (e.g., 115 

Balluffi‐Fry et al. 2020). Through a larger home range and longer daily movements, these larger 116 

animals can potentially create larger hotspots of nutrients or more dispersed nutrient hotspots 117 

than animals with small home-ranges (e.g., around den sites; Gharajehdaghipour et al. 2016). 118 

Movement is just one example of how a biotic component of an ecosystem may impact 119 
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elemental distributions across spatial scales, another example is demographic processes such as 120 

the aggregation or over-dispersion of individuals. A tree (e.g., balsam fir) seedling may extract 121 

water and limiting nutrients from a small area of soil surrounding its shallow roots whereas an 122 

adult tree will extract these resources and affect a much larger area (Olesinski et al. 2011). 123 

Alternatively, these plants and animals could be homogenizing resource distributions across their 124 

home ranges by depleting hotspots that arise from abiotic influences.  125 

 126 

The effects of these biotic ecosystem components on elemental distribution can have a temporal 127 

component as well – foraging for resources whether by the root systems of plants or daily 128 

movements of animals, are on a shorter temporal scale then dispersal and migration (e.g., Massol 129 

et al. 2017). In this way a feedback develops both temporally and spatially, further complicating 130 

spatial elemental patterns. For example, Pacific salmon spawning creates a pulse of nutrients 131 

every fall (hotspot), which is subsequently used by plants and gradually depleted (cold spot) until 132 

the next nutrient pulse (Helfield & Naiman 2001). Meanwhile, abiotic features of ecosystems can 133 

also lead to patterns that depend on scale. At a broad spatial and temporal extent, weathering of 134 

bedrock contributes to the elemental pool, which then get distributed via abiotic and biotic 135 

mechanisms. For example, local hotspots of inorganic nitrogen in soils may develop beside 136 

streams and rivers where ground and surface water mix, converging chemically distinct flow 137 

paths (Edwards 1998). Human activities are significantly modifying both biotic (Díaz et al. 138 

2019) and abiotic (Pörtner et al. 2022) components of ecosystems with potential knock-on 139 

effects on the distribution and flux of elements (see Tucker et al. (2018) for examples of how 140 

human activities have modified the movement of biotic ecosystem components). Consequently, 141 

developing tools or methods to measure and quantify how spatial patterns in elements vary 142 
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across spatial grains is critical to diagnose how ecosystems are being shaped by the current era of 143 

rapid change. 144 

 145 

Here, we apply tools from community and landscape ecology to study spatial patterns in 146 

elements (Fig. 1). We aim to explore how spatial grain and spatial dissimilarity of elements 147 

interact, leading to predictable patterns in elemental distributions at various spatial scales. In 148 

particular, because the distribution of elements across the landscape are the result of combined 149 

element-specific feedbacks of passive abiotic flows and biotic ecosystem components, we 150 

demonstrate how dissimilarity metrics offer a unique way to synthesize how multiple elements 151 

vary independently across spatial gradients. We illustrate this framework with an empirical proof 152 

of concept in the boreal forest. This proof of concept integrates models of the distribution of 153 

elements in birch foliage across two landscapes (Leroux et al. 2017) with macro-ecological 154 

smoothing techniques (Patrick & Yuan 2019) and dissimilarity analyses to investigate the 155 

elemental diversity and variation across spatial grains. We first a) generate stoichiometric 156 

distribution predictions for N, P, Ca, K, and Mg in birch foliage for our two landscapes. We then 157 

b) use community ecology approaches to explore elemental dissimilarity in elemental content 158 

across spatial scales, and c) identify potential elemental hotspots/coldspots including d) the 159 

critical elements contributing to landscape uniqueness, i.e., hotspots or coldspots.  Specifically, 160 

we would expect dissimilarity to increase and asymptote at a landscape level dissimilarity value 161 

as it is broadly driven by geological processes. We would expect hotspots/coldspots to become 162 

more homogeneous across the landscape as spatial grain increases and geological processes 163 

dominate biotic processes paralleled with a decrease in amount of core area for critical elements 164 

contributing to landscape uniqueness.  165 
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 166 

Using community and landscape ecology to study spatial patterns in elements: conceptual 167 

underpinning   168 

We outline our empirical framework and proof of concept in three steps. We begin with a brief 169 

description of our study system and stoichiometric distribution models (sensu Leroux et al. 2017) 170 

as applied to this system. Next, we outline our application of tools from community ecology to 171 

quantify different components of beta diversity applied to our proof of concept (Anderson et al. 172 

2011; Legendre & De Cáceres 2013). Finally, we borrow metrics from landscape ecology (e.g., 173 

Wang et al. 2014) to measure how dissimilarity of elements varies across spatial grains in our 174 

proof of concept. 175 

 176 

Proof of concept and stoichiometric distribution models 177 

For our proof of concept, we focused on two boreal forest landscapes (i.e., study areas), hereafter 178 

called Plum Point and Old Man!s Pond, on the island of Newfoundland, Canada (see 179 

Supplementary Information 1, Fig A1 for map of study area locations). We clipped foliage 180 

samples from the browse height available to boreal forest herbivores (i.e., leaves and small stems 181 

from between 0.3 and 2 m) of 1 to 6 small trees (i.e., < 3 m)  within 10 m radius plots across 106 182 

plots at Plum Point between June 30 and July 7, 2015  (see Leroux et al. 2017; Balluffi‐Fry et al. 183 

2020 for more details on field sampling). We used birch trees (Betula papyrifera)  < 3 m as part 184 

of these data were originally designed to ask questions about moose foraging and moose only 185 

forage on trees < 3 m. We expect these foliage samples to be indicative of bioavailable elements 186 

for herbivores. In particular, white birch is the primary summer forage for moose and snowshoe 187 

hares (Dodds 1960),  some of the major herbivores in this system, and thus white birch foliage 188 
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serves as a proxy for bioavailable elements on the landscape. Focusing on this tree size, also 189 

allows us to control for the possibility that trees of different sizes may differ in their elemental 190 

composition. Foliage samples were pooled at the plot level and analysed for N, P, Ca, K, Mg (see 191 

Leroux et al. 2017 for further details on sampling design and Supplementary Information 1 for 192 

details on chemical analysis). We focused on these five elements because they are part of the 193 

twenty-five elements essential for life and are among the most studied elements in ecological 194 

stoichiometry (Jeyasingh et al. 2014), are critical for metabolic activity (Kaspari & Powers 195 

2016), and frequently reported in studies of the ionome (or the mineral nutrient and trace element 196 

composition of organisms; Parent et al. 2013). We omit carbon in our analyses because the 197 

stoichiometric distribution models for Carbon had a poor fit (see Fig A2 and Table A1(a) for 198 

model fit details). We focus only on N, P, Ca, K, and Mg, however, the approach presented here 199 

could be applied to a broader suite of elements. Further, while we demonstrate the utility of this 200 

approach in a focused proof of concept on the bioavailable elements in foliage samples, a similar 201 

approach to the one presented here could be applied to elements in the soil, other important 202 

forage, and other animals and would improve insights into the generality of the patterns observed 203 

here. The emergence of synthetic databases of the elemental composition of soils and diverse 204 

organisms (e.g., https://stoichproject.wordpress.com/stoich/the-stoich-project/about-the-205 

database/)) may facilitate applications of our approach to different case studies.  206 

 207 

Using this white birch foliage chemical composition and methods described in Leroux et al. 208 

(2017), we fit StDMs to each element from the Plum Point study area. These StDMs are 209 

statistical models that describe foliar elemental composition using environmental and biotic 210 

covariates aimed at predicting correlations in organismal stoichiometry. We then extrapolate 211 
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elemental composition across Plum Point and Old Man!s Pond landscapes from the correlations 212 

in sampled sites of elemental composition with environmental covariates (Leroux et al. 2017). 213 

Composition of white birch foliar proportions of mass of N, P, K, Ca, and Mg (i.e., elemental 214 

composition; %) were the response variables. Predictor variables included three continuous 215 

landscape covariates (i.e., normalized aspect or orientation of slope, slope and elevation), and 216 

three categorical landscape covariates (i.e., landcover [coniferous, deciduous or mixedwood], 217 

stand (canopy) height, and dominant tree species). For more details on StDM model fits, sample 218 

design, and chemical analysis see Supplementary Information 1. We retained the full model for 219 

each stoichiometric response to predict white birch across the landscape (R2 for full models were 220 

0.31, 0.42, 0.39, 0.13, and 0.27 for N, P, K, Mg, and Ca, respectively; see Table A1 and Fig. A3 221 

– A7 in Supplementary Information 1 for specific details on StDM model fits). Using a raster for 222 

each discrete covariate, we then developed stoichiometric composition predictions for foliage in 223 

each cell. We then transformed the elemental compositions using a chord transformation 224 

(Legendre & Gallagher 2001) based on the guidelines by Legendre & De Cáceres (2013) for 225 

community composition data, of which our elemental composition data is akin (see Fig. A10 for 226 

scaled elemental composition in the two study areas).  In particular, this means that we can 227 

calculate elemental dissimilarity using the techniques described in Legendre & De Cáceres 228 

(2013) without violating any assumption of these approaches. 229 

Elemental dissimilarity across the landscape 230 

An important concept in community ecology is how species diversity is organized across space – 231 

a concept for which many metrics have been developed including alpha and beta diversity. By 232 

applying species diversity concepts to elemental composition across space, we can determine if 233 

elemental composition varies across space in a predictable fashion. Despite many alpha-diversity 234 
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metrics incorporating both species richness and evenness, the constraints on both elemental 235 

diversity and evenness mean that alpha-diversity is too coarse a metric to describe elemental 236 

distributions appropriately across the landscape. As an explicit metric of variation, however, 237 

Bray-Curtis dissimilarity (or variation in elemental composition between cells across the 238 

landscape) is sensitive to deviations in evenness. Therefore, we applied dissimilarity metrics to 239 

the transformed StDMs to examine stoichiometric variability across landscapes.  240 

 241 

Before computing dissimilarities, we applied a macroecological spatial smoothing approach 242 

(MESS), described in Patrick & Yuan (2019). This approach consists of applying a sliding 243 

window across a landscape wherein each spatial window resampling and summarizing of local 244 

observations occurs. To apply the MESS approach, a spatial grain (s) for the sampling regions is 245 

selected, the number of random subsamples (n) of a given sample size (ss) of local cells within 246 

that sampling region is specified, along with the minimum number (mn) of local cells in a given 247 

sampling region (see Fig. 1). Using the inset in Fig. 1 as an example we would sample 6 248 

subsamples (ss) of each window of size s and do this 3 times (n). By resampling the sub-samples 249 

in this way we remove the impact of outliers (see Patrick & Yuan 2019). Similar to Patrick & 250 

Yuan (2019), we employed a series of analyses to optimize the sample size (ss) and number of 251 

random sub-samples (n) required to ensure sufficient sampling is done to determine the value of 252 

the dissimilarity metric with appropriate accuracy (essentially where the changepoint in variation 253 

around the Bray-Curtis dissimilarity metric occurred was deemed sufficient sampling; see Fig. 254 

A8 and A9 in Supplementary Information 2 for results). Our optimal sample size was 11 (mn = 255 

1.5×ss as per Patrick & Yuan 2019), a n of 7, and a spatial grain increasing sequentially from a 256 

grain size of 500 m to 5000 m in intervals of 200 m. 257 
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Dissimilarity metrics are then computed for each random subsample of the region, typically 258 

averaged within each region. We calculated total community composition variance as proposed 259 

by Legendre & De Cáceres (2013) as our dissimilarity metric which returns values between 0 260 

(completely similar cells) and 1 (very dissimilar cells). In this way, we would expect Bray-Curtis 261 

dissimilarity to be unaffected by grain size if there is no underlying pattern in elemental 262 

distributions, increasing if there is an underlying gradient in elemental distributions, and 263 

increasing much more rapidly if elements are aggregated in large patches (see Fig. 2a). Finally, 264 

we compared the empirical patterns qualitatively to a null model by randomly shuffling 265 

longitude and latitude couplets across elemental percentages and then re-running all analyses on 266 

the random data set (100 iterations). 267 

 268 

Identifying hotspots and coldspots of elemental dissimilarity across the landscape 269 

We can extend our proof of concept to characterize cell uniqueness per study area in terms of 270 

elemental contributions by applying the approach presented by Legendre & De Cáceres (2013) 271 

and extended by Laliberté et al. (2020) (termed local contributions to beta diversity; LCBD). 272 

This approach uses sum of squared deviations to characterize individual cells’"contributions to 273 

elemental beta diversity: 274 

𝐿𝐶𝐵𝐷 =
∑ "!"
#
"$%

##&'()*
   (1) 275 

where 276 

𝑠$% = '𝑦$% − 𝑦%
¯
*
'
       (2) 277 

and 278 

𝑆𝑆()*+, = ∑ ∑ 𝑠$%
-
%./

0
$./            (3) 279 
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Where i is cell and j is element, and y is elemental percentage. As such, this metric identifies the 280 

cells that contribute more or less than the mean to beta diversity, acting as a comparative 281 

indicator of cell uniqueness with larger LCBD values indicating cells that are more different in 282 

terms of elemental composition. Importantly, this metric has been used to identify hotspots, or 283 

cells which have unusually rich species compositions, and coldspots, or cells which are species 284 

poor, but does not distinguish between the two (Legendre & De Cáceres 2013; Poisot et al. 2017; 285 

Laliberté et al. 2020). We apply this approach to elements to identify unique cells on the 286 

landscape – or cells that have unusually high elemental evenness and cells which have unusually 287 

low elemental evenness.  288 

 289 

Identifying critical elements contributing to landscape uniqueness 290 

By applying the framework presented in Legendre & De Cáceres (2013) we can tease out site 291 

uniqueness across the landscape, and can determine the individual contributions of each element 292 

to each site across the landscape. In particular, we can identify patches where a specific element 293 

is the most important contributor to elemental diversity (i.e., elemental contributions to beta 294 

diversity; ECBD), and explore how the size of these patches change with grain size. For 295 

example, if small foraging movements dominate the transport of elements around the landscape 296 

at small grain sizes, we may expect a random configuration of very small patches for each 297 

element, while if geochemical processes dominate the distribution of elements at larger grain 298 

sizes then we may expect much larger patches for each element. 299 

 300 

Similar to LCBD, our novel application we term, ECBD, uses a sum of squared deviations 301 

approach: 302 
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𝐸𝐶𝐵𝐷 =
∑ "!"
+
!$%

##&'()*
          (4) 303 

Where sij and SStotal are defined as above. To determine patchiness of elemental contributions, we 304 

then applied landscape pattern metrics to determine how patches of elemental contributions vary 305 

with grain size, and compared these values to the null model randomizations generated earlier in 306 

the analysis.  307 

 308 

We applied three spatial pattern metrics – mean core area, perimeter area fractal dimension, and 309 

normalized landscape shape index – at the landscape level (see Fig. 2b for examples). These 310 

metrics were identified by Wang et al. (2014) as suitable metrics to differentiate spatial 311 

aggregations of landscapes.   312 

 313 

Mean core area index is defined as the mean of the core areas of all patches belonging to each 314 

landscape class (i.e. N, P, K, Ca, and Mg) where core area is defined as all cells that have no 315 

neighbours (queen’s case) with a landscape class different from their own. If geochemical 316 

processes dominated the distribution patterns of elements at larger spatial grains, we would 317 

expect the mean core area to increase with spatial grain whereas if mean core decreases with 318 

spatial grain biotic ecosystem components (e.g., foraging) may be the drivers.  319 

 320 

The perimeter area fractal dimension is a shape metric describing patch complexity, but is scale 321 

independent, and has values between 1 and 2, with values closer to 1 denoting simple shapes and 322 

values closer to 2 denoting irregular shapes. If biotic drivers (e.g., foraging movements) were 323 

dominating the distribution pattern of elements at finer spatial grains, we may expect shapes with 324 
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higher overall irregularity (i.e., values closer to 2). However, abiotic drivers such as mixing of 325 

surface and groundwater beside streams could also create higher overall irregularity.  326 

 327 

The normalized landscape shape index is also an aggregation metric and describes the ratio of 328 

the actual edge length of a landscape class to the hypothetical range of possible edge lengths for 329 

this landscape class, although note that this landscape index was one of the metrics shown by 330 

Frazier (2022) to be sensitive to variation in scope. This metric ranges from 0 if only one square 331 

patch is present to 1 for a maximally disaggregated (i.e., checkerboard) landscape. If 332 

geochemical processes were the only processes driving elemental distributions and they only 333 

operated at larger spatial grains, then we would expect the normalized landscape shape index to 334 

decrease from a value close to one to a value close to zero as spatial grain increases (Fig. 2b). 335 

Meanwhile, if biotic ecosystem components such as demographic processes (e.g., aggregation 336 

and over-dispersion) were the only processes driving elemental distributions we may expect the 337 

normalized landscape shape index to increase from a value close to zero (clumping of species at 338 

small grain sizes) to a value close to one at large grain sizes. 339 

 340 

Finally, for these analyses, the pixel size is 6207.943 m2 and the ratio of extent to grain (i.e., 341 

scope sensu Frazier 2022) is 187,154 and 205,842 for Plum Point and Old Man’s Pond 342 

respectively. 343 

 344 

 345 

A Community Ecology of Elements in Practice: Proof of concept results and discussion 346 

Proof of concept and stoichiometric distribution models 347 
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The white birch foliage StDMs explained between 13 and 42% of variation in the elemental 348 

responses for N, P, K, Mg, and Ca (see Table A1 and Fig. A2 – A6 in Supplementary 349 

Information 1 for specific details on StDM model fits). The estimated percent nitrogen ranged 350 

from 1.90 to 3.67%, the percent phosphorus ranged from 0.16 to 0.42%, the percent potassium 351 

ranged from 0.24 to 1.61%, the percent calcium ranged from 0 to 0.62%, and the percent 352 

magnesium ranged from 0.03 to 0.24% for Plum Point. At Old Man!s Pond the estimated 353 

percentages were a little bit higher for all elements except phosphorous. Nitrogen ranged from 354 

1.78 to 3.72%, the percent phosphorus ranged from 0.13 to 0.43%, the percent potassium ranged 355 

from 0.33 to 1.70%, the percent calcium ranged from 0.10 to 0.70%, and the percent magnesium 356 

ranged from 0.11 to 0.24% (see Supplementary Information 3 Fig. A9 for scaled elemental 357 

abundances in both study areas). These values are similar to patterns reported for other study 358 

areas on the island of Newfoundland (Heckford et al. 2022).  359 

 360 

Elemental dissimilarity indices across the landscape 361 

In our proof of concept, we found that elemental dissimilarity increased with grain size, 362 

eventually reaching an asymptotic #landscape level dissimilarity” when the grain size kept 363 

increasing. The asymptote is the mean of the null model for our two study areas (Fig. 3). The 364 

observed increase in dissimilarity with spatial grain mimics relationships already observed for 365 

other components of biodiversity estimates. For example, species richness typically increases 366 

rapidly at local scales due to a) stochastic variation in species occupancy patterns among cells 367 

with more distant patches expected to demonstrate more differences in species composition (e.g. 368 

gradient landscape of Fig. 2a); or b) increasing likelihood of sampling novel habitats as spatial 369 

grain increases (e.g., Whittaker 1972; Harrison et al. 1992; Koleff & Gaston 2002). A variety of 370 
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different environmental and organismal factors are hypothesized to drive species dissimilarity at 371 

various spatial scales ranging from habitat composition and structure at local scales to topology 372 

and dispersal limitation at regional scales (see Table 1 in Barton et al. 2013 for more details). 373 

Due to the way we carried out our analysis, it is unlikely that we are increasing the likelihood of 374 

sampling novel elements as spatial grain increases since all elements were found at every site. 375 

Rather, one explanation for what we are observing is a predictable gradient of variation in 376 

elemental composition with more distant patches being more dissimilar: as the spatial grain of 377 

the analysis increases, we observe an increase in dissimilarity as more dissimilar patches are 378 

sampled (e.g., gradient in Fig. 2a vs. large checkerboard). 379 

 380 

The trend we observe here between elemental dissimilarity and grain size suggests a similar 381 

change in environmental and organismal drivers with scale. For example, organism movement 382 

capacity affects species dissimilarity with species moving to track environmental gradients at 383 

fine spatial scales (Kaspari et al. 2010). Thus, the rapid increase in elemental dissimilarity with 384 

grain size could be related to consumer species distribution and activity including demographic 385 

effects, abundance, and consumer movements as they distribute elements across the landscape. 386 

Thus, the plateau at the asymptotic #landscape level dissimilarity” (Fig. 3) could be related to 387 

differences between large patches driven by landscape features such as aquatic-terrestrial 388 

boundaries, i.e., forest patch along the narrow lake on the southwest side of Old Man!s Pond (e.g. 389 

McClain et al. 2003). Our example is only one testable hypothesis. Alternate hypotheses could 390 

include variation in light availability, moisture, and plant competitors all of which could alter 391 

local elemental composition potentially causing a similar increase in dissimilarity at finer grain 392 

sizes.  393 
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 394 

Importantly, the dissimilarity in elements across the landscape can be a cause or a consequence 395 

of biodiversity, but in either case, theory on nutrient co-limitations and stoichiometry would 396 

suggest that greater elemental spatial turnover is indicative of greater biodiversity (Elser et al. 397 

1996; Chase & Leibold 2009; Harpole et al. 2011). For example, if elemental dissimilarity is 398 

very low with all elements equally abundant across the landscape, this should lead to biotic 399 

homogenization and the dominance by a few species (ones with lower R*, or equilibrium 400 

resource level, for the specific homogenous condition). While our study presents some first steps 401 

in tackling this question, further studies with species diversity data are needed to tease out these 402 

directional relationships. However, recent work suggests that high imbalance in stoichiometric 403 

ratios among connected patches (thus higher spatial turnover in elements) can lead to higher 404 

productivity at the meta-ecosystem scale because of spatial complementarity in limiting nutrients 405 

(Pichon et al. 2023). 406 

 407 

Identifying hotspots and coldspots of elemental dissimilarity across the landscape 408 

In our proof of concept, we demonstrate that at finer grains, the cells with higher local 409 

contributions to landscape dissimilarity (i.e., those that more unique than the average site) cluster 410 

together at both Plum Point and Old Man!s Pond as evidenced by the yellow patches present at 411 

grain size 500 m (Fig.  4). A grain size of 500 m corresponds to the scales at which organisms 412 

feeding on birch leaves are most active in their foraging – for example snowshoe hares have a 413 

home range of 0.027 - 0.042 km2 (Rizzuto et al. 2021) while moose have been shown to have 414 

daily movements between 0.5 km and 1.1 km depending on the season (Hundertmark 1998). 415 

Whether these patches of high contributions of dissimilarity are a consequence of biotic 416 
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processes (e.g., foraging movements) or a cause of these biotic processes is unclear, and likely 417 

are the result of a complex feedback between abiotic and biotic processes. Large-bodied 418 

organisms can move an impressive amount of nutrients within and across ecosystems (Schmitz et 419 

al. 2018), which can lead to the expected succession of hotspots and coldspots in the landscape 420 

through source-sink dynamics (sensu Loreau et al. 2013 for the extension of the source-sink 421 

concept to abiotic fluxes; McIntyre et al. 2008; McInturf et al. 2019). The clustering of cells with 422 

high local contributions to landscape dissimilarity at finer grain sizes could be indicative of these 423 

source-sink dynamics. Thus, the chain of cause and consequence generating the observed spatial 424 

variation in resource elements is being reconsidered in an exciting junction between 425 

biogeochemistry, ecosystem and community ecology.  426 

 427 

As the grain size increases, however, the landscape becomes more homogenous with a greater 428 

number of cells exhibiting an intermediate level of uniqueness, and those cells that are most 429 

different are more diffuse across the landscape (Fig. 4). Only two larger patches of more unique 430 

cells are observed at a grain size of 5000 m for Plum Point. Meanwhile the more unique cells in 431 

both Plum Point and Old Man!s Pond seem to be concentrated around bodies of water at a grain 432 

size of 5000 m. One possible explanation for this is a shift in the driver of these 433 

hotpots/coldspots from biotic to abiotic drivers, such as landscape features, for example aquatic-434 

terrestrial boundaries. Likely, it represents a complex feedback between abiotic drivers, such as 435 

the mixing of surface and ground waters at the aquatic-terrestrial boundary converging 436 

chemically distinct flow paths  (Edwards 1998), and biotic drivers, such as terrestrial ungulates 437 

foraging on aquatic plants (e.g. moose-aquatic plants relationship; Bump et al. 2017). Future 438 

work can apply our method to more completely account for the stocks and flows of elements 439 
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across scales including measuring the elemental footprints (or combination of nutrient stocks and 440 

effects of organisms on stocks) of soils, plants and small and large herbivores. 441 

 442 

Identifying critical elements contributing to landscape uniqueness 443 

In our proof of concept, we observed that in both Plum Point and Old Man!s Pond, potassium (K) 444 

and calcium (Ca) are the most important contributors to dissimilarity. This is intriguing as many 445 

studies to date have been focused on the contributions of the three more abundant elements – 446 

Carbon, Nitrogen, and Phosphorus to biotic community structure and stability (e.g., Leroux & 447 

Schmitz 2015; Sterner & Elser 2017; Sentis et al. 2022). Rather what this result suggests is that 448 

the distribution of these less abundant, but essential, elements may be just as important for 449 

community structure.  Specifically, in both study areas K is more often the most important 450 

contributor (see Supplementary Information 3 Fig. A11; Fig. 5). In Plum Point, however, Ca 451 

becomes increasingly important as grain size increases, while K becomes less important. The 452 

converse occurs in Old Man!s Pond where K becomes increasingly more important, but appears 453 

to level off at 4000 m. Interestingly, Ca and K are inherently connected in plant nutrition 454 

whereby as Ca concentrations decrease, K concentrations increases due to luxury consumption of 455 

K and K antagonism whereby K occupies the majority of exchangeable ionic sites (Wilkinson et 456 

al. 2000). Moreover, it has been shown that Ca is generally taken up in amounts corresponding 457 

to availability rather than plant requirements (Knecht & Göransson 2004), perhaps explaining the 458 

different patterns in the two study areas. Our results highlight the importance of rarely measured 459 

elements such as K and Ca for structuring spatial dissimilarity in elements across spatial grains, a 460 

result that underscores the difficulties in multi-dimensional ratios given the controversy in ratio 461 

approaches for more elements than just N, P, and C (Parent et al. 2013). 462 
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 463 

There is a decline in mean core area with grain size for both elements in both study areas. The 464 

decline is especially pronounced for K in Plum Point (Fig. 5). The decline demonstrates that the 465 

landscape gets more homogeneous as grain size increases and occurs most precipitously for Ca 466 

in both Plum Point and Old Man!s Pond and then levels out at a grain size of 1500 m for both 467 

study areas. These declining trends are reflected in the normalized shape index plots where both 468 

elements become less aggregated as grain size increases. However, in the Plum Point study area 469 

there is a peak for both K and Ca at a grain size of 2000 m, after which the normalized landscape 470 

shape index declines. Elements at Plum Point are therefore least aggregated at grain size of 2000 471 

m, and the landscape becomes more like a single square patch as grain size increases. At Old 472 

Man’s Pond the normalized shape index reaches an asymptote for both K and Ca at a grain size 473 

of ~3000 m. Examining the perimeter area fractal dimension illustrates that, the shapes of 474 

elemental patches across the study area become more irregular as grain size increases, contrary 475 

to our earlier speculations. One explanation for this could be the increasing importance of abiotic 476 

drivers such as confluence of ground and surface waters at aquatic boundaries at larger grain 477 

sizes. Grain size contributes to increasing perimeter area fractal dimension irregularity in both 478 

study areas, but does appear to asymptote at a grain size of approximately 2000 m for Ca in both 479 

study areas. However, it should be noted that the two study areas have a different scope (ratio of 480 

range to extent) and Frazier (2022) showed that some metrics, including the landscape shape 481 

index, which we used here, is highly sensitive to variation in scope. Thus, comparisons between 482 

the two study areas may be artifacts of differences in scope. 483 

 484 



 

22 

Much research has determined that elements cluster in two distinct groups based on the 485 

competing needs to grow and maintain existing structure (Ågren & Weih 2012; Zhang et al. 486 

2012). The first reflects plant growth rate and correlates with nitrogen and phosphorus 487 

concentrations – elements critical for the metabolism of nucleic acids and proteins (Ågren & 488 

Weih 2012). The second reflects maintaining plant structural components requires K, Ca, and 489 

Mg, that are critical for cell walls and might be more important for long-lived slow-growing 490 

plants (Nakajima et al. 1981; Maathuis 2009). The structural elements appeared to be the most 491 

important drivers of elemental dissimilarity in white birch tissue across the landscape in our 492 

proof of concept. The ECBD metric does not tell us whether elemental importance is caused by 493 

low amounts or high amounts of these structural elements, however evidence suggests that K is 494 

rarely limiting and excess K availability can contribute to higher growth rates in plants (Maathuis 495 

2009). Similarly, Ca is usually abundant in the lithosphere, however, Ca concentrations in plants 496 

can fall below a critical threshold in fast-growing tissues which can lead to diseases such as 497 

blossom end rot in tomatoes (Maathuis 2009).   498 

 499 

Notwithstanding current challenges in identifying the processes behind elemental importance, 500 

the fact remains that we can observe patterns in elemental importance. In meadow systems, 501 

studies have shown that in the absence of grazing by sheep, plants become more nutritious with 502 

greater concentrations of micronutrients such as Ca (Marrs et al. 2020). In the boreal forest, 503 

moose are selective herbivores and could be selectively removing nutritious plants that relatively 504 

high in N and P in a similar fashion creating elemental coldspots (Pastor et al. 1998). Indeed, the 505 

observed patterns in elemental importance should have a predictive influence over biodiversity 506 

simply because these patterns control the amount of co-limiting nutrients and their spatial 507 
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turnover (Marleau et al. 2015). More specifically, the spatial heterogeneity in resource elements 508 

should relate to coexistence dynamics and community structure directly influencing the number 509 

of available niches. For example, studies have shown a correlation between plots containing tree 510 

species with calcium-rich detritus and a greater diversity and biomass of earthworms (Reich et 511 

al. 2005).  512 

 513 

Perspectives 514 

Our understanding of how and why chemical elemental concentrations change in space or across 515 

scales is currently very poor (Kaspari & Powers 2016), contributing to poor integration of 516 

empirical and theoretical metaecosystem research. The spatial distribution of resource elements, 517 

however, reflects element-specific feedbacks of passive abiotic and biotic processes, thus 518 

dissimilarity in resource elements may contain  much of the information necessary to infer key 519 

characteristics of biotic communities, and the expected relationship between those characteristics 520 

and ecosystem function (Wu et al. 2015). Therefore, identifying spatial patterns in resource 521 

elements in the landscape may allow regional scale prediction of community structure, 522 

biodiversity, and ecosystem function. Moreover, the analysis of spatial patterns in the 523 

fundamental building blocks of all life – elements – can pave the way for greater integration of 524 

empirical and theoretical metaecosystem research. Such an integration would open significant 525 

new opportunities to finally develop a unified field of spatial ecology, from community to 526 

ecosystem and landscape level processes. Disentangling the drivers of these patterns is 527 

challenging, especially as the direction of causality is not always intuitive and often involves 528 

feedbacks between abiotic and biotic ecosystem components (see Ellis‐Soto et al. 2021 for a 529 

guide to measuring the biotic component of spatial ecosystem subsidies). Here, we have 530 
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presented a framework to explore spatial patterns in elemental distributions from foliage 531 

samples; however, the approach we present is timely as it corresponds with a time of recent 532 

growth in data on elemental composition of soil and diverse organisms across many different 533 

biomes. In this way, we provide ecologists with an additional and critical tool for describing 534 

ecosystems (see Table 1 for explicit predictions). 535 

 536 

Dissimilarity of resource elements may be the result of or may affect food web structure. For 537 

instance, we know that elemental hotspots tend to appear at locations in the landscape rich in 538 

energy and material exchange (e.g., deep-sea hydrothermal vents), or where different chemical 539 

reactants are expected to meet (e.g., ecotone between terrestrial and aquatic ecosystems - 540 

McClain et al. 2003; Bernhardt et al. 2017). Different lines of evidence also suggest that 541 

organism movement can track those hotspots in the landscape (McNaughton et al. 1988; 542 

Leimgruber et al. 2001; Leroux et al. 2017; Balluffi‐Fry et al. 2020; Kaspari 2020). Recent 543 

conceptual and theoretical developments related to metaecosystem theory now challenge our 544 

current understanding by suggesting that organisms themselves, through their movement in the 545 

landscape and feeding interactions, could generate the emergence of those observed elemental 546 

hotspots in the landscape (i.e., zoogeochemistry; Leroux et al. 2017; Gounand et al. 2018; 547 

Schmitz et al. 2018; McInturf et al. 2019) and potentially diffuse the elemental hotspots 548 

generated by abiotic processes. The elemental dissimilarity approach presented here provides a 549 

way of measuring some of these elemental patterns across the landscape with the ECBD metric 550 

being particularly useful in teasing out the scale at which each element is most important for 551 

dissimilarity (see Table 1 for testable hypotheses).  552 

 553 



 

25 

More than that however, previous research has demonstrated how energy and nutrients in food 554 

webs generally come from different trophic pathways that vary in their resource quality and the 555 

speed at which energy and materials flow (Rooney et al. 2006). Traditionally, stoichiometric 556 

analyses focus on ratios, which have proven useful to understand trophic interactions (e.g., Hall 557 

2009; Leroux & Schmitz 2015) and co-limitation in competitive communities (e.g., Harpole et 558 

al. 2011; Marleau et al. 2015). In particular, these stoichiometric analyses that have focused on 559 

the C:N and C:P ratios of resources are a useful way to characterize these different trophic 560 

pathways as ecosystems with resources with high (low) C:N ratios tend to be less (more) 561 

palatable for herbivores and this decreases (increases) the rate of materials flowing in this 562 

pathway (Hall et al. 2004; Shurin et al. 2006). Our work, however, has demonstrated the role 563 

that some of the other less abundant essential elements (e.g. K and Ca) play in landscape 564 

elemental dissimilarity – potentially offering additional currencies to tease out some of these 565 

relationships. For example, whereas some top consumers focus on one energetic or material 566 

pathway, many consumers couple multiple pathways (Rooney et al. 2008; Ward et al. 2015). 567 

Indeed, this coupling of different energetic pathways is an important contributor to ecosystem 568 

stability (McCann et al. 1998; Rooney et al. 2006). We hypothesize that, irrespective of the 569 

direction of causality, changes in the evenness or dissimilarity of element ratios should be 570 

reflected directly into the structure of biotic communities, providing a long-sought mechanistic 571 

link between community and ecosystem processes that can be measured directly in the field. 572 

Thus, a community perspective on elemental resources holds promise to synthetize our 573 

understanding of biodiversity and ecosystem function across level of organization.  574 

 575 
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From an applied perspective, the majority of conservation planning focuses on the protection and 576 

restoration of species, populations or communities, despite a call towards #ecosystem-based 577 

management” in terrestrial, freshwater, and marine realms. We surmise that, in some cases, 578 

elemental hotspots may be important features to protect or restore. For example, natural sodium 579 

licks are critical sources of this limiting nutrient for many large ungulate communities in 580 

temperate and boreal forest ecosystems (Kaspari 2020). In many ways, a pivot towards 581 

considering elemental hotspots for conservation is akin to calls for considering species 582 

interactions (Tylianakis et al. 2010; Harvey et al. 2017) – i.e., levels of biodiversity beyond the 583 

species that may be critical to maintain ecosystem functioning. We provide an analytical pipeline 584 

to begin identifying elemental hotspots across landscapes. Equally, however, we provide an 585 

analytical pipeline with the potential to identify areas to protect. For example, our analyses 586 

suggest several areas that stand out as hot/coldspots of elemental dissimilarity (e.g., the yellow 587 

patches present at grain size 500 m in Fig. 4). If future research demonstrates that these patterns 588 

in elemental dissimilarity are reflected in species diversity as we have hypothesized, then our 589 

analytical approach provides a tool to identify the specific areas (including area boundaries) to 590 

protect. 591 

 592 

Geological processes and abiotic factors have historically been the point of focus for predicting 593 

elemental concentrations at local study sites, but recent works have shed light on the significance 594 

of biotic ecosystem components on elemental distribution (Gounand et al. 2018; Schmitz et al. 595 

2018; McInturf et al. 2019; Schmitz & Leroux 2020; Malhi et al. 2022). Biotic and abiotic 596 

processes affecting the distribution of elements are often interdependent. By integrating both 597 

perspectives, meta-ecosystem theory illustrates the intimate feedback between the biotic and 598 
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abiotic components of ecosystems, and how patch-specific biotic (e.g., organismal dispersal) and 599 

abiotic (e.g., inorganic nutrient runoff) processes can lead to the emergence of regional scale 600 

phenomena (Loreau et al. 2003; Massol et al. 2011, 2017). However, beyond theoretical and 601 

conceptual advancements, we are still missing a coherent empirical framework to i) study and 602 

analyse empirical patterns of elemental distribution in space and across spatial grains, and ii) to 603 

link those abiotic observations (including information on longer timescale abiotic drivers such as 604 

weathering of parent geological material) to the biotic component of ecosystems. We are 605 

optimistic that our community perspective on elemental resources helps develop an empirical 606 

framework initially to enhance our descriptions of ecosystems and understanding of how 607 

elemental distributions scale with spatial gradients across different ecosystem types (see Table 608 

1). We feel that our work provides the foundation upon which future work can attempt to address 609 

(ii) - linking the abiotic observations to the biotic components, thus truly bridging these distinct 610 

ecosystem compartments. 611 
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Tables 807 

Table 1. Testable hypotheses generated from our proof of concept. 808 
Metric Hypothesis Example of data  

Elemental 

Dissimilarity 

Spatial grain at which the change in 

elemental dissimilarity is the greatest is 

also the grain size at which organisms are 

most active in their foraging 

Elemental data of forage 

species  

 

Telemetry data for 

consumer species 

 Dissimilarity in resource elements follow 

general patterns with spatial scale 

Elemental data of soil  

 

Elemental data of 

individual forage species 

 Changes in dissimilarity of elements with 

spatial scale should be reflected in the 

structure of biotic communities. 

Specifically: 

1. Low spatial turnover in resource 

elements should lead to the 

assembly of functionally more 

similar species, a lower alpha-

diversity, and a generally lower 

functioning level (i.e. saturation is 

Elemental data of soil  

 

Species diversity data 
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reached faster because of functional 

redundancy amongst species). 

2. High spatial turnover in elements, 

on the other hand, should lead to 

more functional complementarity 

and generally higher functioning 

level. In particular, lower local 

evenness of elements should lead to 

dominance by a few species that 

are able to maximize their use of 

most elements being at very low 

level (R*). 

Local 

contribution to 

elemental 

dissimilarity 

Localized hot and cold spots of elemental 

dissimilarity should reflect localized hot 

and cold spots of species diversity at finer 

grain sizes and hot and cold spots of 

landscape diversity (i.e. aquatic-terrestrial 

boundaries) at large grain sizes 

Diversity surveys 

 

Satellite imagery 

 Alternatively, local hot and cold spots of 

elemental dissimilarity could emerge 

through the movement of organisms across 

the landscape 

Telemetry 

 

Theoretical models 
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Elemental 

contribution to 

dissimilarity 

Elements may differentially indicate areas 

of high biodiversity - for example tree 

species with calcium-rich detritus support 

greater diversity and biomass of 

earthworms (Reich et al. 2005). 

Biodiversity surveys in 

areas where calcium is the 

most important element 

contributing to elemental 

diversity 

 Alternatively, selective herbivory for 

limiting nutrients could lead to elemental 

cold spots 

Herbivory surveys in areas 

where calcium is depleted 
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(b) 826 

 827 

Figure Captions 828 

Figure 1. The empirical framework can be outlined in three steps. First, we build a 829 

stoichiometric distribution model (sensu Leroux et al. 2017) for each of our five key elements 830 

from white birch foliage using three landscape covariates (normalized aspect, slope, and 831 

elevation) and three categorical landscape covariates (landcover, stand height, and dominant tree 832 

species) to predict stoichiometric composition for foliage in each cell. Then, we apply the macro-833 

ecological spatial smoothing approach proposed by Patrick and Yuan (2019) to resample and 834 

summarize local observations at increasingly large grain sizes to determine how community 835 

metrics (dissimilarity, local contribution to dissimilarity, and elemental contribution to 836 

dissimilarity) applied to elemental composition varied with spatial scale. We apply this approach 837 

to both the landscapes and a randomization, null model, of each landscape. Finally, we report 838 

how our three community metrics - dissimilarity in elemental composition, local contribution to 839 

dissimilarity, and elemental contribution to dissimilarity – vary with spatial scale. 840 

Figure 2. Demonstration of how (a) dissimilarity changes with grain sizes for different 841 

hypothetical landscapes – one in which elemental composition exists in a predictable gradient, 842 



 

46 

another randomized landscape, and a third where elemental composition is a checkerboard of 843 

high composition and low composition. Demonstration of how (b) patch metrics change with 844 

different hypothetical patch configurations – one where patches are organized rectilinearly on the 845 

landscape, one where patches and randomly scattered across the landscape, and a third where the 846 

patches are an even checkerboard. Recall patch class is based on which of the five elements has 847 

been ranked most important contributor to pixel dissimilarity. In both (a) and (b) the numbers on 848 

the x- and y- axes are in UTM coordinates. 849 

Figure 3. Relationship between elemental dissimilarity indices and grain size for Plum Point and 850 

Old Man’s Pond. Here, the observed data is presented in blue with the mean value in dark blue 851 

and the light blue indicating the standard deviation, while the black line indicates the mean value 852 

of null model simulations (where the location of each site is randomly moved in the landscape) 853 

with the light grey indicating the standard deviation. 854 

Figure 4. LCBD across the two landscapes (Plum Point top, Old Man’s Pond bottom) at three 855 

different grain sizes where the x- and y-axes are in UTM coordinates. Here, blue indicate sites 856 

that contribute more than average to beta-diversity, while red indicates sites that contribute less 857 

than average to beta-diversity. Note that a site can contribute more than average to beta-diversity 858 

by being either more nutrient-rich or nutrient-poor than the average site. See Fig. A1 in 859 

Supplementary Information 1 for map of study area locations. 860 

Figure 5. Landscape plotted by which element contributes the most to its beta diversity for three 861 

representative grain sizes (500, 2500, and 5000 m) for (a) Plum Point and (b) Old Man’s Pond 862 

where red is K and blue is Ca and white cells are areas without forests (e.g., lakes, rivers, roads). 863 

Bottom row in both a) and b) illustrates of how landscape metrics measuring how patches with 864 

the same top elemental driver of beta diversity (ECBD) change with grain size for each element. 865 
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Here the lines indicate the observed data while the points are the results from the null model. See 866 

Fig. A1 in Supplementary Information 1 for map of study area locations.  867 
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