General Procedure for the Synthesis of 3
A pressure tube was charged with1 (0.4 mmol) and 2 (0.6 mmol), [Cp*RhCl2]2 (20 mg, 8 mol%), AgBF4 (116 mg, 0.6 mmol) and PivOH (81.7 mg, 0.8 mmol) in acetone (3 mL) under Ar. The reaction mixture was stirred at 90oC for 12 h. After the reaction was completed, the reaction mixture was cooled to room temperature and filtered over celite. The solvent was then removed under vacuum and the residue was purified by silica gel chromatography with PE/EA=5:1-2:1 to afford the corresponding 3 .
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2021xxxxx.
Acknowledgement
We are grateful to the National Natural Science Foundation of China (Nos. 82130105, 82103969 and 82273766), SA-SIBS Scholarship Program, the Youth Innovation Promotion Association CAS (2020282), and grant from Lingang Laboratory (LG202103-02-06).
References
  1. Kawasaki, T.; Higuchi, K. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep.2005, 22, 761-793.
  2. (a) Walstab, J.; Rappold, G.; Niesler, B. 5-HT3 receptors: Role in disease and target of drugs. Pharmacol. Ther. 2010,128, 146-169. (b) Di Fabio, R.; Giovannini, R.; Bertani, B. Synthesis and SAR of substituted tetrahydrocarbazole derivatives as new NPY-1 antagonists. Bioorg. Med. Chem. Lett. 2006,16, 1749-1752. (c) Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S. CH5424802, a Selective ALK Inhibitor Capable of Blocking the Resistant Gatekeeper Mutant. Cancer Cell. 2011, 19, 679-690. (d) Tsukamoto, S.; Kato, H.; Samizo, M. Notoamides F−K, Prenylated Indole Alkaloids Isolated from a Marine-Derived Aspergillus sp. J. Nat. Prod. 2008, 71, 2064-2067.
  3. Iida, H., Yuasa, Y, and Kibayashi, C. Intramolecular Cyclization of Enaminones Involving Arylpalladium Complexes. Synthesis of Carbazoles.J. Org. Chem. 1980, 45, 2938-2942.
  4. Willis, M. C.; Brace, G. N.; Holmes, I. P. Palladium-Catalyzed Tandem Alkenyl and Aryl C-N Bond Formation: A Cascade N-Annulation Route to 1-Functionalized Indoles. Angew. Chem. Int. Ed. 2005,44, 403-406.
  5. Wurtz, S.; Rakshit, S.; Neumann, J. J. Palladium-catalyzed oxidative cyclization of N-aryl enamines: from anilines to indoles. Angew. Chem. Int. Ed. 2008, 47, 7230-7233.
  6. Bunce, R. A.; Nammalwar, B. 1,2,3,9-Tetrahydro-4H-carbazol-4-one and 8,9-dihydropyrido-[1,2-a]indol-6(7H)-one from 1H-indole-2-butanoic acid. J. Heterocycl. Chem. 2009,46, 172-177.
  7. (a) Liu, B.; Song, C.; Sun, C. Rhodium(III)-catalyzed indole synthesis using N-N bond as an internal oxidant. J. Am. Chem. Soc.2013, 135, 16625-16631. (b) Wang, C. M.; Huang, Y. Traceless Directing Strategy: Efficient Synthesis of N‑Alkyl Indoles via Redox-Neutral C-H Activation. Org. Lett. 2013,15, 5294-5297. (c) Liang, Y.; Jiao, N. Cationic Cobalt(III) Catalyzed Indole Synthesis: The Regioselective Intermolecular Cyclization of N-Nitrosoanilines and Alkynes. Angew. Chem. Int. Ed. 2016, 55, 4035-4039.
  8. Song, X.; Gao, C.; Li, B. Regioselective Synthesis of 2-Alkenylindoles and 2-Alkenylindole-3-carboxylates through the Cascade Reactions of N-Nitrosoanilines with Propargyl Alcohols. J. Org. Chem.2018, 83, 8509-8521.
  9. (a) Wang, J.; Wang, M.; Chen, K. C-H Activation-Based Traceless Synthesis via Electrophilic Removal of a Directing Group. Rhodium(III)-Catalyzed Entry into Indoles from N-Nitroso and alpha-Diazo-beta-keto Compounds. Org. Lett. 2016,18, 1178-1181. (b) Hu, X.; Chen, X.; Shao, Y. Co(III)-Catalyzed Coupling-Cyclization of Aryl C–H Bonds with α-Diazoketones Involving Wolff Rearrangement. ACS Catalysis. 2018, 8, 1308-1312. (c) Peng, R. j.; Chen, L.; Zhang, X. j. Rh(III)‐Catalyzed C−H Functionalization of N‐Nitrosoanilines with α‐Sulfonylcarbenes.Adv. Synth. Catal. 2022, 364, 3567-3572.
  10. Wu, Y.; Pi, C.; Cui, X. Rh(III)-Catalyzed Tandem Acylmethylation/Nitroso Migration/Cyclization of N-Nitrosoanilines with Sulfoxonium Ylides in One Pot: Approach to 3-Nitrosoindoles.Org. Lett. 2020, 22, 361-364.
  11. Shi, Y.; Xing, H.; Huang, T. Divergent C-H activation synthesis of chalcones, quinolones and indoles. Chem. Commun. 2020,56, 1585-1588.
  12. Moriarty, R. M. Organohypervalent Iodine:  Development, Applications, and Future Directions. J. Org. Chem. 2005, 70, 2893-2903.
  13. Mayakrishnan, S.; Tamizmani, M.; Maheswari, N. U. Harnessing hypervalent iodonium ylides as carbene precursors: C-H activation of N-methoxybenzamides with a Rh(iii)-catalyst. Chem. Commun.2020, 56, 15462-15465.
  14. Nunewar, S.; Kumar, S.; Pandhare, H. Rh(III)-Catalyzed Chemodivergent Annulations between Indoles and Iodonium Carbenes: A Rapid Access to Tricyclic and Tetracyclic N-Heterocylces. Org. Lett.2021, 23, 4233-4238.
  15. Lee, T. A., Park, S. S, Lee, D. B. Process for preparing 1,2,3,9-terthydro-9-methyl-3-[(2-methyl-1H-imidazole-1-yl)methyl]-4H-carbazol-4-one or its salt. WO2005/037822. 2005.