REFERENCES

1. Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands.Chemical Reviews. 2019;119(4):2681-2751.
2. Formenti D, Ferretti F, Scharnagl FK, Beller M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chemical Reviews.2019;119(4):2611-2680.
3. Meemken F, Baiker A. Recent Progress in Heterogeneous Asymmetric Hydrogenation of C═O and C═C Bonds on Supported Noble Metal Catalysts.Chemical Reviews. 2017;117(17):11522-11569.
4. Kang P, Zhang S, Meyer TJ, Brookhart M. Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes.Angewandte Chemie International Edition. 2014;53(33):8709-8713.
5. Zhang J, Rao C, Peng H, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite. Chem. Eng. J. 2018;334:10-18.
6. Li W-L, Gao X-Y, Ouyang Y, et al. CFD Analysis of Gas Flow Characteristics and Residence Time Distribution in a Rotating Spherical Packing Bed. Ind. Eng. Chem. Res. 2019;58(47):21717-21729.
7. Yu Y, Fu L, Zhang F, Zhou T, Yang H. Pickering-Emulsion Inversion Strategy for Separating and Recycling Nanoparticle Catalysts.ChemPhysChem. 2014;15(5):841-848.
8. Günther A, Khan SA, Thalmann M, Trachsel F, Jensen KF. Transport and reaction in microscale segmented gas–liquid flow. Lab on a Chip.2004;4(4):278-286.
9. Zheng X-H, Chu G-W, Kong D-J, et al. Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing.Chemical Engineering Journal. 2016;285:236-242.
10. Chen Q-Y, Chu G-W, Luo Y, et al. Polytetrafluoroethylene Wire Mesh Packing in a Rotating Packed Bed: Mass-Transfer Studies.Industrial & Engineering Chemistry Research.2016;55(44):11606-11613.
11. Machado IV, dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrasonics Sonochemistry.2021;78:105704.
12. Goyal H, Chen T-Y, Chen W, Vlachos DG. A review of microwave-assisted process intensified multiphase reactors.Chemical Engineering Journal. 2022;430:133183.
13. Kobayashi J, Mori Y, Okamoto K, et al. A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions. Science.2004;304(5675):1305-1308.
14. Ansari M, Bokhari HH, Turney DE. Energy efficiency and performance of bubble generating systems. Chemical Engineering and Processing - Process Intensification. 2018;125:44-55.
15. Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF. Overcoming the Challenges of Solid Bridging and Constriction during Pd-Catalyzed C−N Bond Formation in Microreactors. Organic Process Research & Development. 2010;14(6):1347-1357.
16. Khirani S, Kunwapanitchakul P, Augier F, Guigui C, Guiraud P, Hébrard G. Microbubble Generation through Porous Membrane under Aqueous or Organic Liquid Shear Flow. Industrial & Engineering Chemistry Research. 2012;51(4):1997-2009.
17. Zhao Y, Yao C, Chen G, Yuan Q. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor.Green Chemistry. 2013;15(2):446-452.
18. Chen Y, Zhao Y, Han M, Ye C, Dang M, Chen G. Safe, efficient and selective synthesis of dinitro herbicides via a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent. Green Chem. 2013;15(1):91-94.
19. Li X, Liu Y, Jiang H, Chen R. Computational Fluid Dynamics Simulation of a Novel Membrane Distributor of Bubble Columns for Generating Microbubbles. Industrial & Engineering Chemistry Research. 2019;58(2):1087-1094.
20. Liu Y, Han Y, Li X, Jiang H, Chen R. Controlling microbubbles in alcohol solutions by using a multi-channel ceramic membrane distributor.Journal of Chemical Technology & Biotechnology.2018;93(8):2456-2463.
21. Liu Y, Han Y, Li X, Jiang H, Chen R. Efficient Control of Microbubble Properties by Alcohol Shear Flows in Ceramic Membrane Channels. Chemical Engineering & Technology. 2018;41(1):168-174.
22. Han Y, Liu Y, Jiang H, Xing W, Chen R. Large scale preparation of microbubbles by multi-channel ceramic membranes: Hydrodynamics and mass transfer characteristics. The Canadian Journal of Chemical Engineering. 2017;95(11):2176-2185.
23. Hou M, Jiang H, Liu Y, Chen C, Xing W, Chen R. Membrane Based Gas–Liquid Dispersion Integrated in Fixed-Bed Reactor: A Highly Efficient Technology for Heterogeneous Catalysis. Industrial & Engineering Chemistry Research. 2018;57(1):158-168.
24. Xie B, Zhou C, Chen J, Huang X, Zhang J. Preparation of microbubbles with the generation of Dean vortices in a porous membrane.Chemical Engineering Science. 2022;247:117105.
25. Xie BQ, Zhou CJ, Sang L, Ma XD, Zhang JS. Preparation and characterization of microbubbles with a porous ceramic membrane.Chemical Engineering and Processing - Process Intensification.2021;159:108213.
26. Xie B, Zhou C, Huang X, Chen J, Ma X, Zhang J. Microbubble Generation in Organic Solvents by Porous Membranes with Different Membrane Wettabilities. Industrial & Engineering Chemistry Research. 2021;60(23):8579-8587.
27. Shuai Y, Guo X, Wang H, et al. Characterization of the bubble swarm trajectory in a jet bubbling reactor. AIChE Journal.2019;65(5):e16565.
28. Zeng W, Jia C, Luo H, Yang G, Yang G, Zhang Z. Microbubble-Dominated Mass Transfer Intensification in the Process of Ammonia-Based Flue Gas Desulfurization. Industrial & Engineering Chemistry Research.2020;59(44):19781-19792.
29. Browne C, Tabor RF, Chan DYC, Dagastine RR, Ashokkumar M, Grieser F. Bubble Coalescence during Acoustic Cavitation in Aqueous Electrolyte Solutions. Langmuir. 2011;27(19):12025-12032.
30. Wang H, Zhang Z-y, Yang Y-m, Zhang H-s. Surface Tension Effects on the Behavior of Two Rising Bubbles. Journal of Hydrodynamics.2011;23(2):135-144.
31. Li W, Jiao S, Tang K, Yang Y, Qu W, Chai X. Experimental Investigation on Characteristic of Single Bubble Motion in Stagnant Water. Atom. Energy Sci. Technol. 2020;54(09):1652-1659.
32. Yang B, Jafarian M, Freidoonimehr N, Arjomandi M. Trajectory of a spherical bubble rising in a fully developed laminar flow.International Journal of Multiphase Flow. 2022;157:104250.