Authors contribution
J.A.S.B., J.H.F.C., T.A-W., and W.L.A. designed the research; J.A.S.B. performed most of the research with the support of J.H.F.C, S.M, D.B.M, and K.G.P; T.A-W. and W.L.A. supervised the project; K.G.P contributed with mutants obtention and confirmation, T.A-W and S.M and Y.S performed metabolite profiling; A.N-N. and A.R.F. contributed with new reagents/analytic tools; J.H.F.C, D.B.M., A.N-N, and A.R.F. discussed the results and complemented the writing. J.A.S.B., T.A-W., and W.L.A. analyzed the data and wrote the article, which was later approved by all the others.
REFERENCES
Ahouvi Y, Haber Z, Zach YY, Rosental L, Toubiana D, Sharma D, Alseekh S, Tajima H, Fernie AR, Brotman Y, Blumwald E, Sade N (2022).The Alteration of Tomato Chloroplast Vesiculation Positively Affects Whole-Plant Source–Sink Relations and Fruit Metabolism under Stress Conditions. Plant and Cell Physiology, https://doi.org/10.1093/pcp/pcac133
Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR(2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell22: 1549-1563.
Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR (2011) Protein degradation - an alternative respiratory substrate for stressed plants. Trends in Plant Science 16: 489–498.
Armbruster U, Labs M, Pribil M, Viola S, Xu W, Scharfenberg M, Hertle AP, Rojahn U, Jensen PE, Rappaport F, et al (2013) Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25 : 2661–2678
Arruda P, Barreto P (2020) Lysine catabolism through the saccharopine pathway: enzymes and intermediates involved in plant responses to abiotic and biotic stress. Front. Plant Sci. 11:587
Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B(2008) QuantPrime: flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9 : 465
Avin-Wittenberg T, Bajdzienko K, Wittenberg G, Alseekh S, Tohge T, Bock R, Giavalisco P, Fernie AR (2015) Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation. Plant Cell 27 : 306–322
Barros JAS, Cavalcanti JHF, Medeiros DB, Nunes-Nesi A, Avin-Wittenberg T, Fernie AR, Araújo WL(2017) Autophagy deficiency compromises alternative pathway of respiration following energy deprivation. Plant Physiol 175 : 62–76
Barros JAS, Siqueira JAB, Cavalcanti JHF, Araújo WL, Avin-Wittenberg T (2020) Multifaceted Roles of Plant Autophagy in Lipid and Energy Metabolism. Trends Plant Sci.25 (11): 1141-1153
Barros JAS, Magen S, Lapidot-Cohen T, Rosental L, Brotman Y, Araújo WL, Avin-Wittenberg T(2021) Autophagy is required for lipid homeostasis during dark-induced senescence. Plant Physiol 185 : 1542–1558
Barros JAS, Cavalcanti JHF, Pimentel KG, Medeiros DB, Silva JCF. Condori-Apfata JA, Lapidot-Cohen T, Brotman Y, Nunes-Nesi A, Fernie AR, Avin-Wittenberg T, Araújo WL (2022) The significance of WRKY45 transcription factor in metabolic adjustments during dark-induced leaf senescence. Plant, Cell & Environment 45 : 2682– 2695.https://doi.org/10.1111/pce.14393
Buet A; Costa ML; Martínez DE; Guiamet JJ (2019) Chloroplast protein degradation in senescing leaves: Proteases and lytic compartments. Front. Plant Sci. 10 : 747
Cavalcanti JHF, Quinhones CGS, Schertl P, Brito DS, Eubel H, Hildebrandt T, Nunes‐Nesi A, Braun H-P, Araújo WL (2017) Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions. Physiol Plant 161 : 451
Chrobok D, Law SR, Brouwer B, Lindén P, Ziolkowska A, Liebsch D, Narsai R, Szal B, Moritz T, Rouhier N, Whelan J, Gardeström P, Keech O(2016) Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiol 172 : 2132–2153
Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142: 1574–1588
Dhatt BK, Abshire N, Paul P, Hasanthika K, Sandhu J, Zhang Q, Obata T, Walia H (2019) Metabolic Dynamics of Developing Rice Seeds Under High Night-Time Temperature Stress. Front Plant Sci. 10:1443
Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212 : 250-63
Gaufichon L, Reisdorf-Cren M, Rothstein SJ, Chardon F, SuzukiA (2010) Biological functions of asparagine synthetase in plants . Plant Sci. 179 : 141 – 153
Gaufichon L, Rothstein SJ, Suzuki A (2016) Asparagine metabolic pathways in Arabidopsis. Plant Cell Physiol. 57: 675–689.
Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JH, Palacios N, Cross J, Selbig J, Stitt MA (2006). Robot-based platform to measure multiple enzyme activities in arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16: 3304-3325
Gomez FM, Carrion CA, Costa ML, Desel C, Kieselbach T, Funk C, Krupinska K, Guiamet J (2019) Extra‐plastidial degradation of chlorophyll and photosystem I in tobacco leaves involving ‘senescence‐associated vacuoles’. The Plant Journal 99 : 465–477
Havé M, Luo J, Tellier F, Balliau T, Cueff G, Chardon F, Zivy M, Rajjou L, Cacas JL, Masclaux-Daubresse C (2019) Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. New Phytologist 223 : 1461–1477.
Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8 : 1563–1579
Hirota T, Izumi M, Wada S, Makino A, Ishida H (2018) Vacuolar protein degradation via autophagy provides substrates to amino acid catabolic pathways as an adaptive response to sugar starvation in Arabidopsis thaliana. Plant & Cell Physiology 59 : 1363–1376
Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta. 1807 : 977-988
Ishida H, Yoshimoto K, Izumi M, Reisen D, Yan Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155
Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ (2005) The critical role of Arabidopsis electron-transfer flavoprotein: Ubiquinone oxido reductase during dark-induced starvation. The Plant Cell 17: 2587-2600
Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. The Plant Journal 47: 751-760
Izumi M, Hidema J, Makino A, Ishida H (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiology 161 : 1682–1693.
Izumi M, Ishida H, Nakamura S, Hidema J (2017) Entire photodamaged chloroplasts are transported to the central vacuole by Autophagy. Plant Cell 29 : 377–394
Izumi M, Nakamura S (2018) Chloroplast protein turnover: the influence of extraplastidic processes, including autophagy. Int. J. Mol. Sci . 19 : 828
Izumi M, Nakamura S, Li N (2019) Autophagic turnover of chloroplasts: its roles and regulatory mechanisms in response to sugar starvation. Frontiers in Plant Science 10 : 280.
Johnson MP, Wientjes E (2019) The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim Biophys Acta. 1861: 14803 doi: 10.1016/j.bbabio.2019.06.011
Kacprzak SM & van Aken O (2022) Carbon starvation, senescence and specific mitochondrial stresses, but not nitrogen starvation and general stresses, are major triggers for mitophagy in Arabidopsis. Autophagy 18 : 2894–2912
Kamranfar I, Xue GP, Tohge T, Sedaghatmehr M, Fernie AR, Balazadeh S, Mueller‐Roeber, B (2018). Transcription factor RD 26 is a key regulator of metabolic reprogramming during dark‐induced senescence. New Phytologist 218 :1543-1557
Kato Y, Sakamoto W (2009) Protein quality control in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. Journal of Biochemistry 146 : 463–469.
Lee TA, Vande-Wetering SW, Brusslan JA (2013) Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence. BMC Research Notes 6 : 17–17
Li F, Chung T, Vierstra RD (2014) AUTOPHAGY-RELATED11 plays a critical role in general autophagy and senescence-induced mitophagy in Arabidopsis. Plant Cell 26 : 788–807.
Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1 : 387–396
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods 25 : 402–408.
Ma J, Liang Z, Zhao J, Wang P, Ma W, Mai KK, Fernandez Andrade JA, Zeng Y, Grujic N, Jiang L, Dagdas Y, Kang BH (2021) Friendly mediates membrane depolarization-induced mitophagy in Arabidopsis. Current Biology 31 (9): 1931-1944.e4.
Magen S, Seybold H, Laloum D, Avin-Wittenberg T (2022) Metabolism and autophagy in plants—a perfect match. FEBS Lett596 : 2133-2151
Martínez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ (2008) ‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. The Plant Journal 56:196–206.
Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A(2006) Glutamine synthetase–glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink–source nitrogen cycle in tobacco. Plant Physiology 140 : 444–456.
Mazur R, Mostowska A, Szach J, Gieczewska K, Wójtowicz J, Bednarska K ., et al. (2019). Galactolipid deficiency disturbs spatial arrangement of the thylakoid network in Arabidopsis thaliana plants. J. Exp. Bot. 70 : 4689–4704.
McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, Li F, Otegui MS, Vierstra RD (2020) Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism During Fixed-carbon Starvation in Maize. Plant Cell. 32 : 2699–2724
Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T(2016) Autophagy in plants: what’s new on the menu? Trends Plant Sci21 : 134–144
Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G(2014) Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell 26 : 4084–4101
Minina EA, Moschou PN, Vetukuri RR, Sanchez-Vera V, Cardoso C, Liu Q, Elander PH, Dalman K, Beganovic M, Yilmaz JL, Marmon S, Shabala L, Suarez MF, Ljung K, Novák O, Shabala S, Stymne S, Hofius D, Bozhkov PV (2018) Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J Exp Bot 69 : 1415–1432.
Nunes-Nesi A, Carrari F, Gibon Y, Sulpice R, Lytovchenko A, Fisahn J, Graham J, Ratcliffe RG, Sweetlove LJ, Fernie AR (2007) Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J 50 : 1093–1106.
Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996) A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30 : 739–754
Otegui MS, Noh YS, Martı´nez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41 : 831–844
Otegui MS (2017) Vacuolar degradation of chloroplast components: autophagy and beyond. J. Exp. Bot. 69 : 741–750
Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal 9 : 747–758.
Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975 : 384–394
Sade N, Umnajkitikorn K, Rubio Wilhelmi M, Wright M, Wang S, Blumwald E (2018) Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice. J. Exp. Bot. 69: 867–878
Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M (2013) Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25 : 4967–4983.
Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138 : 2097–2110
Umnajkitikorn K, Sade N, Wilhelmi MDMR, Gilbert ME, Blumwald E(2020) Silencing of OsCV (chloroplast vesiculation) maintained photorespiration and N assimilation in rice plants grown under elevated CO2. Plant Cell Environ. 43: 920–933
Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiology49 : 885–893
Wang S, Blumwald E (2014) Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles. Plant Cell 26:4875–488
Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013) Comprehensive dissection of spatio-temporal metabolic shifts in primary, secondary and lipid metabolism during developmental senescence in Arabidopsis thaliana. Plant physiology 162: 1290-1310
Woodson JD (2022) Control of chloroplast degradation and cell death in response to stress. Trends Biochem Sci.47 (10):851-864. doi: 10.1016/j.tibs.2022.03.010.
Xie Q, Michaeli S, Peled-Zehavi H, Galili G (2015) Chloroplast degradation: One organelle, multiple degradation pathways. Trends in Plant Science 20 : 264–265
Yu JC, Lu JZ, Cui XY, Guo L, Wang ZJ, Liu YD, Li TL (2022)Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants. J. Pineal Res. 73. 10.1111/jpi.12810.
Yoshimoto K, Shibata M, Kondo M, Oikawa K, Sato M, Toyooka K, Shirasu K, Nishimura M, Ohsumi Y ( 2014) Organ-specific quality control of plant peroxisomes is mediated by autophagy. J Cell Sci 127 : 1161–1168