3. Conclusions and Perspectives
In summary, a variety of successful examples have been presented in the
development of nickel-catalyzed glycosylation, providing versatile
approaches for the construction of C-glycosides. Although significant
progress has been achieved, several challenges remain to be solved in
the future, as follows:
- Most of the reported methods of aryl C-glycoside preparation exhibit
modest diastereoselectivity and require fully or partially protected
glycosyl donors and sensitive reagents. Thus, methods that feature
wide scopes, high diastereoselectivities, and mild conditions from
stable starting are still desirable.
- In contrast to the rapid development of aryl C-glycosides, methods
accessing vinyl/alkyl/acyl C-glycosides lagged severely behind,
although a few elegant works have been reported.
- In most reported methods, the glycosyl radical precursors are confined
to unstable glycosyl halides. Although several novel glycosyl donors
have successfully participated in synthesizing C-glycosides, such as
glycosyl esters, [15, 28, 34] and allyl glycosyl
sulfones. [20] Further efforts are still needed
to exploit their potential in glycosylation.
Acknowledgement
We are grateful to the National Natural Science Foundation of China
(21907071, 21922106 and T2221004) and Fok Ying Tung Education Foundation
for financial support.
References
- (a) Varki, A. Biological roles of
glycans. Glycobiology 2017 , 27 , 3-49;
(b) Rudd, P. M.; Elliott, T.;
Cresswell, P.; Wilson, I. A.; Dwek, R. A. Glycosylation and the immune
system. Science 2001 , 291 , 2370-2376;
(c) Helenius, A.; Aebi, M.
Intracellular functions of N-linked glycans. Science2001 , 291 , 2364-2369;
(d) Molinari, M. N-glycan structure
dictates extension of protein folding or onset of disposal. Nat.
Chem. Biol. 2007 , 3 , 313-320;
(e) Schneider, M.; Al-Shareffi, E.;
Haltiwanger, R. S. Biological functions of fucose in mammals.Glycobiology 2017 , 27 ,
601-618.
- (a) Shivatare, S. S.; Shivatare, V. S.; Wong, C. H. Glycoconjugates:
Synthesis, Functional Studies, and Therapeutic Developments.Chem. Rev. 2022 , 122 , 15603-15671;
(b) Martin, H.; Lazaro, L. R.;
Gunnlaugsson, T.; Scanlan, E. M. Glycosidase activated prodrugs for
targeted cancer therapy. Chem. Soc. Rev. 2022 ,51 , 9694-9716; (c) Dwek, R.
A. Glycobiology: Toward Understanding the Function of Sugars.Chem. Rev. 1996 , 96 , 683-720;
(d) Costa, A. F.; Campos, D.; Reis,
C. A.; Gomes, C. Targeting Glycosylation: A New Road for Cancer Drug
Discovery. Trends Cancer 2020 , 6 , 757-766;
(e) Mereiter, S.; Balmana, M.;
Campos, D.; Gomes, J.; Reis, C. A. Glycosylation in the Era of
Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell2019 , 36 , 6-16.
- (a) Grogan, M. J.; Pratt, M. R.; Marcaurelle, L. A.; Bertozzi, C. R.
Homogeneous glycopeptides and glycoproteins for biological
investigation. Annu. Rev. Biochem. 2002 , 71 ,
593-634; (b) Pratt, M. R.;
Bertozzi, C. R. Synthetic glycopeptides and glycoproteins as tools for
biology. Chem. Soc. Rev. 2005 , 34 , 58-68;
(c) Davis, B. G. Synthesis of
glycoproteins. Chem. Rev. 2002 , 102 , 579-602;
(d) van Kasteren, S. I.; Kramer, H.
B.; Gamblin, D. P.; Davis, B. G. Site-selective glycosylation of
proteins: creating synthetic glycoproteins. Nat. Protoc.2007 , 2 , 3185-3194.
- (a) Li, Y.; Yang, Y.; Yu, B. An efficient glycosylation protocol with
glycosyl ortho-alkynylbenzoates as donors under the catalysis of
Ph3PAuOTf. Tetrahedron Lett. 2008 , 49 ,
3604-3608; (b) Yang, Y.; Li, Y.;
Yu, B. Total synthesis and structural revision of TMG-chitotriomycin,
a specific inhibitor of insect and fungal
beta-N-acetylglucosaminidases. J. Am. Chem. Soc. 2009 ,131 , 12076-12077; (c) Li,
Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B. Gold(I)-catalyzed
glycosylation with glycosyl ortho-alkynylbenzoates as donors: general
scope and application in the synthesis of a cyclic triterpene saponin.Chemistry 2010 , 16 , 1871-1882;
(d) Zhang, Q.; Sun, J.; Zhu, Y.;
Zhang, F.; Yu, B. An efficient approach to the synthesis of
nucleosides: gold(I)-catalyzed N-glycosylation of pyrimidines and
purines with glycosyl ortho-alkynyl benzoates. Angew. Chem.,
Int. Ed. 2011 , 50 , 4933-4936;
(e) Yang, F.; Wang, Q.; Yu, B.
ortho-Alkynylphenyl thioglycosides as a new type of glycosylation
donors under the catalysis of Au(I) complexes. Tetrahedron
Lett. 2012 , 53 , 5231-5234;
(f) Zhang, X.; Zhou, Y.; Zuo, J.;
Yu, B. Total synthesis of periploside A, a unique pregnane
hexasaccharide with potent immunosuppressive effects. Nat.
Commun. 2015 , 6 , 5879;
(g) Chen, X.; Wang, Q.; Yu, B.
Gold(i)-catalyzed C-glycosylation of glycosyl ortho-alkynylbenzoates:
the role of the moisture sequestered by molecular sieves. Chem.
Commun. 2016 , 52 , 12183-12186;
(h) Zheng, Z.; Zhang, L.
Gold-catalyzed synthesis of alpha-D-glucosides using an
o-ethynylphenyl beta-D-1-thioglucoside donor. Carbohydr. Res.2019 , 471 , 56-63;
(i) Nicolaou, K. C.; Chen, Q.; Li,
R.; Anami, Y.; Tsuchikama, K. Total Synthesis of the Monomeric Unit of
Lomaiviticin A. J. Am. Chem. Soc. 2020 , 142 ,
20201-20207; (j) Ma, X.; Zheng, Z.;
Fu, Y.; Zhu, X.; Liu, P.; Zhang, L. A ”Traceless” Directing Group
Enables Catalytic S(N)2 Glycosylation toward 1,2-cis-Glycopyranosides.J. Am. Chem. Soc. 2021 , 143 , 11908-11913;
(k) Xu, Z.; DiBello, M.; Wang, Z.;
Rose, J. A.; Chen, L.; Li, X.; Herzon, S. B. Stereocontrolled
Synthesis of the Fully Glycosylated Monomeric Unit of Lomaiviticin A.J. Am. Chem. Soc. 2022 , 144 , 16199-16205;
(l) Zhang, X.; Yang, Y.; Ding, J.;
Zhao, Y.; Zhang, H.; Zhu, Y. Stereoselective gold(I)-catalyzed
approach to the synthesis of complex alpha-glycosyl
phosphosaccharides. Nat. Commun. 2022 , 13 , 421;
(m) Zhu, D.; Geng, M.; Yu, B. Total
Synthesis of Starfish Cyclic Steroid Glycosides. Angew. Chem.,
Int. Ed. 2022 , 61 , e202203239;
(n) Chakraborty, S.; Mishra, B.;
Kumar Das, P.; Pasari, S.; Hotha, S. Synthesis of N-Glycosides by
Silver-Assisted Gold Catalysis. Angew. Chem., Int. Ed.2023 , 62 ,
e202214167.
- (a) Romano, N.; Hein, N. M.; Basemann, K.; Seo, Y.; Gagné, M. R.
Uniquely Enabling Mechanism for Bis-oxazoline Copper(II)-Catalyzed
Azidation of Pyranosides and Furanosides. ACS Catal.2022 , 12 , 12500-12510;
(b) Qi, R.; Wang, C.; Ma, Z.; Wang,
H.; Chen, Q.; Liu, L.; Pan, D.; Ren, X.; Wang, R.; Xu, Z.
Visible-Light-Promoted Stereoselective C(sp(3) )-H Glycosylation for
the Synthesis of C-Glycoamino Acids and C-Glycopeptides. Angew.
Chem., Int. Ed. 2022 , 61 , e202200822;
(c) Zhu, M.; Messaoudi, S.
Diastereoselective Decarboxylative Alkynylation of Anomeric Carboxylic
Acids Using Cu/Photoredox Dual Catalysis. ACS Catal.2021 , 11 , 6334-6342;
(d) Zhu, F.; Zhang, S. Q.; Chen,
Z.; Rui, J.; Hong, X.; Walczak, M. A. Catalytic and Photochemical
Strategies to Stabilized Radicals Based on Anomeric Nucleophiles.J. Am. Chem. Soc. 2020 , 142 , 11102-11113;
(e) Yu, F.; Dickson, J. L.; Loka,
R. S.; Xu, H.; Schaugaard, R. N.; Schlegel, H. B.; Luo, L.; Nguyen, H.
M. Diastereoselective sp(3) C-O Bond Formation via Visible
Light-Induced, Copper-Catalyzed Cross-Couplings of Glycosyl Bromides
with Aliphatic Alcohols. ACS Catal. 2020 , 10 ,
5990-6001; (f) Zhu, F.; Miller, E.;
Zhang, S. Q.; Yi, D.; O’Neill, S.; Hong, X.; Walczak, M. A.
Stereoretentive C( sp(3))-S Cross-Coupling. J. Am. Chem. Soc.2018 , 140 ,
18140-18150.
- (a) Wang, Q.; Sun, Q.; Jiang, Y.; Zhang, H.; Yu, L.; Tian, C.; Chen,
G.; Koh, M. J. Iron-catalysed reductive cross-coupling of glycosyl
radicals for the stereoselective synthesis of C-glycosides.Nature Synthesis 2022 , 1 , 235-244;
(b) Tardieu, D.; Desnoyers, M.;
Laye, C.; Hazelard, D.; Kern, N.; Compain, P. Stereoselective
Synthesis of C,C-Glycosides from exo-Glycals Enabled by Iron-Mediated
Hydrogen Atom Transfer. Org. Lett. 2019 , 21 ,
7262-7267; (c) Adak, L.; Kawamura,
S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H.
C.; Shing, T. K. M.; Nakamura, M. Synthesis of Aryl C-Glycosides via
Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric
Arylation of Glycosyl Radicals. J. Am. Chem. Soc.2017 , 139 , 10693-10701;
(d) Lo, J. C.; Gui, J.; Yabe, Y.;
Pan, C. M.; Baran, P. S. Functionalized olefin cross-coupling to
construct carbon-carbon bonds. Nature 2014 ,516 , 343-348.
- (a) Xiao, K.; Hu, Y.; Wan, Y.; Li, X.; Nie, Q.; Yan, H.; Wang, L.;
Liao, J.; Liu, D.; Tu, Y.; Sun, J.; Codee, J. D. C.; Zhang, Q.
Hydrogen bond activated glycosylation under mild conditions.Chem. Sci. 2022 , 13 , 1600-1607;
(b) Wu, J.; Kopp, A.; Ackermann, L.
Synthesis of C-Oligosaccharides through Versatile C(sp(3) )-H
Glycosylation of Glycosides. Angew. Chem., Int. Ed.2022 , 61 , e202114993;
(c) Sun, Q.; Zhang, H.; Wang, Q.;
Qiao, T.; He, G.; Chen, G. Stereoselective Synthesis of C-Vinyl
Glycosides via Palladium-Catalyzed C-H Glycosylation of Alkenes.Angew. Chem., Int. Ed. 2021 , 60 , 19620-19625;
(d) Lv, W.; Chen, Y.; Wen, S.; Ba,
D.; Cheng, G. Modular and Stereoselective Synthesis of C-Aryl
Glycosides via Catellani Reaction. J. Am. Chem. Soc.2020 , 142 , 14864-14870;
(e) Liu, Y.; Wang, Y.; Dai, W.;
Huang, W.; Li, Y.; Liu, H. Palladium-Catalysed C(sp(3) )-H
Glycosylation for the Synthesis of C-Alkyl Glycoamino Acids.Angew. Chem., Int. Ed. 2020 , 59 , 3491-3494;
(f) Zhu, F.; Rodriguez, J.;
O’Neill, S.; Walczak, M. A. Acyl Glycosides through Stereospecific
Glycosyl Cross-Coupling: Rapid Access to C(sp(3))-Linked
Glycomimetics. ACS Cent. Sci. 2018 , 4 ,
1652-1662; (g) Zhu, F.; Rodriguez,
J.; Yang, T.; Kevlishvili, I.; Miller, E.; Yi, D.; O’Neill, S.;
Rourke, M. J.; Liu, P.; Walczak, M. A. Glycosyl Cross-Coupling of
Anomeric Nucleophiles: Scope, Mechanism, and Applications in the
Synthesis of Aryl C-Glycosides. J. Am. Chem. Soc.2017 , 139 , 17908-17922;
(h) Zhu, F.; Rourke, M. J.; Yang,
T.; Rodriguez, J.; Walczak, M. A. Highly Stereospecific Cross-Coupling
Reactions of Anomeric Stannanes for the Synthesis of C-Aryl
Glycosides. J. Am. Chem. Soc. 2016 , 138 ,
12049-12052; (i) Mercer, G. J.;
Yang, J.; McKay, M. J.; Nguyen, H. M. Palladium(II)-catalyzed
rearrangement of glycal trichloroacetimidates: application to the
stereoselective synthesis of glycosyl ureas. J. Am. Chem. Soc.2008 , 130 , 11210-11218;
(j) Denmark, S. E.; Regens, C. S.;
Kobayashi, T. Total synthesis of papulacandin D. J. Am. Chem.
Soc. 2007 , 129 , 2774-2776;
(k) Potuzak, J. S.; Tan, D. S.
Synthesis of C1-alkyl- and acylglycals from glycals using a B-alkyl
Suzuki–Miyaura cross coupling approach. Tetrahedron Lett.2004 , 45 , 1797-1801;
(l) Jeanneret, V.; Meerpoel, L.;
Vogel, P. C-Glycosides and C-disaccharide precursors through
carbonylative Stille coupling reactions. Tetrahedron Lett.1997 , 38 , 543-546;
(m) Belosludtsev, Y. C-Glycosides:
Pd/Cu Co-Catalyzed Thiocarboxylation of Stannyl Glucopyranosides.Tetrahedron Lett. 1995 , 36 , 5881-5882;
(n) Brakta, M.; Lhoste, P.; Sinou,
D. Palladium(0)-based approach to functionalized C-glycopyranosides.J. Org. Chem. 2002 , 54 , 1890-1896;
(o) Yi, D.; Zhu, F.; Walczak, M. A.
Stereoretentive Intramolecular Glycosyl Cross-Coupling: Development,
Scope, and Kinetic Isotope Effect Study. Org. Lett.2018 , 20 ,
4627-4631.
- Gong, H.; Gagne, M. R. Diastereoselective Ni-catalyzed Negishi
cross-coupling approach to saturated, fully oxygenated C-alkyl and
C-aryl glycosides. J. Am. Chem. Soc. 2008 , 130 ,
12177-12183.
- (a) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R.
E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.;
Pulay, P.; Vicic, D. A. Ligand Redox Effects in the Synthesis,
Electronic Structure, and Reactivity of an Alkyl‚àíAlkyl
Cross-Coupling Catalyst. J. Am. Chem. Soc. 2006 ,128 , 13175-13183; (b)
Phapale, V. B.; Bunuel, E.; Garcia-Iglesias, M.; Cardenas, D. J.
Ni-catalyzed cascade formation of C(sp3)–C(sp3) bonds by
cyclization and cross-coupling reactions of iodoalkanes with alkyl
zinc halides. Angew. Chem., Int. Ed. 2007 , 46 ,
8790-8795.
- Liu, J.; Gong, H. Stereoselective Preparation of alpha- C-Vinyl/Aryl
Glycosides via Nickel-Catalyzed Reductive Coupling of Glycosyl Halides
with Vinyl and Aryl Halides. Org. Lett. 2018 ,20 , 7991-7995.
- Biswas, S.; Weix, D. J. Mechanism
and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of
Aryl Halides with Alkyl Halides. J. Am. Chem. Soc.2013 , 135 , 16192-16197.
- Liu, J.; Lei, C.; Gong, H.
Nickel-catalyzed reductive coupling of glucosyl halides with
aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl
glucosides. Science China Chemistry 2019 , 62 ,
1492-1496.
- Dumoulin, A.; Matsui, J. K.;
Gutierrez-Bonet, A.; Molander, G. A. Synthesis of Non-Classical
Arylated C-Saccharides through Nickel/Photoredox Dual Catalysis.Angew. Chem., Int. Ed. 2018 , 57 , 6614-6618.
- Gutierrez, O.; Tellis, J. C.;
Primer, D. N.; Molander, G. A.; Kozlowski, M. C. Nickel-Catalyzed
Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General
Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings.J. Am. Chem. Soc. 2015 , 137 , 4896-4899.
- Wei, Y.; Ben-Zvi, B.; Diao, T.
Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters
via C-O Bond Homolysis. Angew. Chem., Int. Ed. 2021 ,60 , 9433-9438.
- Gong, L.; Sun, H. B.; Deng, L. F.;
Zhang, X.; Liu, J.; Yang, S.; Niu, D. Ni-Catalyzed Suzuki-Miyaura
Cross-Coupling of alpha-Oxo-vinylsulfones To Prepare C-Aryl Glycals
and Acyclic Vinyl Ethers. J. Am. Chem. Soc. 2019 ,141 , 7680-7686.
- (a) Wang, J.-R.; Manabe, K. High
Ortho Preference in Ni-Catalyzed Cross-Coupling of Halophenols with
Alkyl Grignard Reagents. Org. Lett. 2009 , 11 ,
741-744; (b) Hooper, J. F.; Young,
R. D.; Pernik, I.; Weller, A. S.; Willis, M. C. Carbon–carbon bond
construction using boronic acids and aryl methyl sulfides: orthogonal
reactivity in Suzuki-type couplings. Chem. Sci. 2013 ,4 , 1568-1572.
- Mou, Z. D.; Wang, J. X.; Zhang, X.;
Niu, D. Stereoselective Preparation of C‐Aryl Glycosides via
Visible‐Light‐Induced Nickel-Catalyzed Reductive Cross‐Coupling of
Glycosyl Chlorides and Aryl Bromides. Adv. Synth. Catal.2021 , 363 , 3025-3029.
- (a) Mohadjer Beromi, M.; Brudvig,
G. W.; Hazari, N.; Lant, H. M. C.; Mercado, B. Q. Synthesis and
Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to
C(sp2)–C(sp3)Coupling Reactions. Angew. Chem., Int. Ed.2019 , 58 , 6094-6098;
(b) Liu, J.; Ye, Y.; Sessler, J.
L.; Gong, H. Cross-Electrophile Couplings of Activated and Sterically
Hindered Halides and Alcohol Derivatives. Acc. Chem. Res.2020 , 53 , 1833-1845.
- Zhang, C.; Xu, S.-Y.; Zuo, H.;
Zhang, X.; Dang, Q.-D.; Niu, D. Direct synthesis of unprotected aryl
C-glycosides by photoredox Ni-catalysed cross-coupling. Nature
Synthesis 2023 , 1-10.
- Ma, Y.; Liu, S.; Xi, Y.; Li, H.;
Yang, K.; Cheng, Z.; Wang, W.; Zhang, Y. Highly stereoselective
synthesis of aryl/heteroaryl-C-nucleosides via the merger of
photoredox and nickel catalysis. Chem. Commun. 2019 ,55 , 14657-14660.
- Takeda, D.; Yoritate, M.; Yasutomi,
H.; Chiba, S.; Moriyama, T.; Yokoo, A.; Usui, K.; Hirai, G.
beta-Glycosyl Trifluoroborates as Precursors for Direct
alpha-C-Glycosylation: Synthesis of 2-Deoxy-alpha-C-glycosides.Org. Lett. 2021 , 23 , 1940-1944.
- Miller, E. M.; Walczak, M. A.
Light-Mediated Cross-Coupling of Anomeric Trifluoroborates. Org.
Lett. 2021 , 23 , 4289-4293.
- Liu, Y. H.; Xia, Y. N.; Gulzar, T.;
Wei, B.; Li, H.; Zhu, D.; Hu, Z.; Xu, P.; Yu, B. Facile access to
C-glycosyl amino acids and peptides via Ni-catalyzed reductive
hydroglycosylation of alkynes. Nat. Commun. 2021 ,12 , 4924.
- (a) Giese, B. The Stereoselectivity
of Intermolecular Free Radical Reactions. Angew. Chem., Int.
Ed. 1989 , 28 , 969-980;
(b) Abe, H.; Shuto, S.; Matsuda, A.
Highly alpha- and beta-selective radical C-glycosylation reactions
using a controlling anomeric effect based on the conformational
restriction strategy. A study on the conformation-anomeric
effect-stereoselectivity relationship in anomeric radical reactions.J. Am. Chem. Soc. 2001 , 123 , 11870-11882.
- Mao, R.; Xi, S.; Shah, S.; Roy, M.
J.; John, A.; Lingford, J. P.; Gade, G.; Scott, N. E.; Goddard-Borger,
E. D. Synthesis of C-Mannosylated Glycopeptides Enabled by
Ni-Catalyzed Photoreductive Cross-Coupling Reactions. J. Am.
Chem. Soc. 2021 , 143 , 12699-12707.
- Shi, W. Y.; Ding, Y. N.; Zheng, N.;
Gou, X. Y.; Zhang, Z.; Chen, X.; Luan, Y. Y.; Niu, Z. J.; Liang, Y. M.
Highly regioselective and stereoselective synthesis of C-Aryl
glycosides via nickel-catalyzed ortho-C-H glycosylation of
8-aminoquinoline benzamides. Chem. Commun. 2021 ,57 , 8945-8948.
- Li, Y.; Wang, Z.; Li, L.; Tian, X.;
Shao, F.; Li, C. Chemoselective and Diastereoselective Synthesis of
C-Aryl Nucleoside Analogues by Nickel-Catalyzed Cross-Coupling of
Furanosyl Acetates with Aryl Iodides. Angew. Chem., Int. Ed.2022 , 61 , e202110391.
- Arendt, K. M.; Doyle, A. G. Dialkyl
Ether Formation by Nickel‚ÄêCatalyzed Cross‚ÄêCoupling of Acetals and
Aryl Iodides. Angew. Chem., Int. Ed. 2015 , 54 ,
9876-9880.
- Zhao, C.; Jia, X.; Wang, X.; Gong,
H. Ni-catalyzed reductive coupling of alkyl acids with unactivated
tertiary alkyl and glycosyl halides. J. Am. Chem. Soc.2014 , 136 , 17645-17651.
- Jia, X.; Zhang, X.; Qian, Q.; Gong,
H. Alkyl-aryl ketone synthesis via nickel-catalyzed reductive coupling
of alkyl halides with aryl acids and anhydrides. Chem. Commun.2015 , 51 , 10302-10305.
- Badir, S. O.; Dumoulin, A.; Matsui,
J. K.; Molander, G. A. Synthesis of Reversed C-Acyl Glycosides through
Ni/Photoredox Dual Catalysis. Angew. Chem., Int. Ed.2018 , 57 , 6610-6613.
- Escolano, M.; Cabrera-Afonso, M.
J.; Ribagorda, M.; Badir, S. O.; Molander, G. A. Nickel-Mediated
Synthesis of Non-Anomeric C-Acyl Glycosides through Electron
Donor-Acceptor Complex Photoactivation. J. Org. Chem.2022 , 87 , 4981-4990.
- Wei, Y.; Lam, J.; Diao, T.
Synthesis of C-acyl furanosides via the cross-coupling of glycosyl
esters with carboxylic acids. Chem. Sci. 2021 ,12 , 11414-11419.
- Jiang, Y.; Yang, K.; Wei, Y.; Wang,
Q.; Li, S. J.; Lan, Y.; Koh, M. J. Catalytic Multicomponent Synthesis
of C-Acyl Glycosides by Consecutive Cross-Electrophile Couplings.Angew. Chem., Int. Ed. 2022 , 61 , e202211043.
- (a) Lee, D.; He, M. Recent Advances
in Aryl C-Glycoside Synthesis. Current Topics in Medicinal
Chemistry 2005 , 5 , 1333-1350;
(b) Du, Y.; Linhardt, R. J.;
Vlahov, I. R. Recent advances in stereoselective c-glycoside
synthesis. Tetrahedron 1998 , 54 , 9913-9959;
(c) Daves, G. D., Jr. C-glycoside
synthesis by palladium-mediated glycal-aglycon coupling reactions.Acc. Chem. Res. 1990 , 23 , 201-206.
- (a) Arai, I.; Daves, G. D. Stable
glucopyranosylpalladium compound with a cis .beta.-hydrogen. J.
Am. Chem. Soc. 2002 , 103 , 7683-7683;
(b) Feducia, J. A.; Campbell, A.
N.; Doherty, M. Q.; Gagne, M. R. Modular catalysts for diene
cycloisomerization: rapid and enantioselective variants for
bicyclopropane synthesis. J. Am. Chem. Soc. 2006 ,128 , 13290-13297; (c)
Oestreich, M.; Dennison, P. R.; Kodanko, J. J.; Overman, L. E.
Thwarting β-Hydride Elimination: Capture of the Alkylpalladium
Intermediate of an Asymmetric Intramolecular Heck Reaction.Angew. Chem., Int. Ed. 2001 , 40 , 1439-1442.
- Gong, H.; Sinisi, R.; Gagne, M. R.
A room temperature negishi cross-coupling approach to C-alkyl
glycosides. J. Am. Chem. Soc. 2007 , 129 ,
1908-1909.
- Gong, H.; Andrews, R. S.;
Zuccarello, J. L.; Lee, S. J.; Gagne, M. R. Sn-free Ni-catalyzed
reductive coupling of glycosyl bromides with activated alkenes.Org. Lett. 2009 , 11 , 879-882.
- Wei, Y.; Wang, Q.; Koh, M. J. A
Photoinduced, Nickel-Catalyzed Reaction for the Stereoselective
Assembly of C-Linked Glycosides and Glycopeptides. Angew. Chem.,
Int. Ed. 2023 , 62 , e202214247.