3. Conclusions and Perspectives
In summary, a variety of successful examples have been presented in the development of nickel-catalyzed glycosylation, providing versatile approaches for the construction of C-glycosides. Although significant progress has been achieved, several challenges remain to be solved in the future, as follows:
  1. Most of the reported methods of aryl C-glycoside preparation exhibit modest diastereoselectivity and require fully or partially protected glycosyl donors and sensitive reagents. Thus, methods that feature wide scopes, high diastereoselectivities, and mild conditions from stable starting are still desirable.
  2. In contrast to the rapid development of aryl C-glycosides, methods accessing vinyl/alkyl/acyl C-glycosides lagged severely behind, although a few elegant works have been reported.
  3. In most reported methods, the glycosyl radical precursors are confined to unstable glycosyl halides. Although several novel glycosyl donors have successfully participated in synthesizing C-glycosides, such as glycosyl esters, [15, 28, 34] and allyl glycosyl sulfones. [20] Further efforts are still needed to exploit their potential in glycosylation.
Acknowledgement
We are grateful to the National Natural Science Foundation of China (21907071, 21922106 and T2221004) and Fok Ying Tung Education Foundation for financial support.
References
  1. (a) Varki, A. Biological roles of glycans. Glycobiology 2017 , 27 , 3-49; (b) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Glycosylation and the immune system. Science 2001 , 291 , 2370-2376; (c) Helenius, A.; Aebi, M. Intracellular functions of N-linked glycans. Science2001 , 291 , 2364-2369; (d) Molinari, M. N-glycan structure dictates extension of protein folding or onset of disposal. Nat. Chem. Biol. 2007 , 3 , 313-320; (e) Schneider, M.; Al-Shareffi, E.; Haltiwanger, R. S. Biological functions of fucose in mammals.Glycobiology 2017 , 27 , 601-618.
  2. (a) Shivatare, S. S.; Shivatare, V. S.; Wong, C. H. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments.Chem. Rev. 2022 , 122 , 15603-15671; (b) Martin, H.; Lazaro, L. R.; Gunnlaugsson, T.; Scanlan, E. M. Glycosidase activated prodrugs for targeted cancer therapy. Chem. Soc. Rev. 2022 ,51 , 9694-9716; (c) Dwek, R. A. Glycobiology: Toward Understanding the Function of Sugars.Chem. Rev. 1996 , 96 , 683-720; (d) Costa, A. F.; Campos, D.; Reis, C. A.; Gomes, C. Targeting Glycosylation: A New Road for Cancer Drug Discovery. Trends Cancer 2020 , 6 , 757-766; (e) Mereiter, S.; Balmana, M.; Campos, D.; Gomes, J.; Reis, C. A. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell2019 , 36 , 6-16.
  3. (a) Grogan, M. J.; Pratt, M. R.; Marcaurelle, L. A.; Bertozzi, C. R. Homogeneous glycopeptides and glycoproteins for biological investigation. Annu. Rev. Biochem. 2002 , 71 , 593-634; (b) Pratt, M. R.; Bertozzi, C. R. Synthetic glycopeptides and glycoproteins as tools for biology. Chem. Soc. Rev. 2005 , 34 , 58-68; (c) Davis, B. G. Synthesis of glycoproteins. Chem. Rev. 2002 , 102 , 579-602; (d) van Kasteren, S. I.; Kramer, H. B.; Gamblin, D. P.; Davis, B. G. Site-selective glycosylation of proteins: creating synthetic glycoproteins. Nat. Protoc.2007 , 2 , 3185-3194.
  4. (a) Li, Y.; Yang, Y.; Yu, B. An efficient glycosylation protocol with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph3PAuOTf. Tetrahedron Lett. 2008 , 49 , 3604-3608; (b) Yang, Y.; Li, Y.; Yu, B. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases. J. Am. Chem. Soc. 2009 ,131 , 12076-12077; (c) Li, Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B. Gold(I)-catalyzed glycosylation with glycosyl ortho-alkynylbenzoates as donors: general scope and application in the synthesis of a cyclic triterpene saponin.Chemistry 2010 , 16 , 1871-1882; (d) Zhang, Q.; Sun, J.; Zhu, Y.; Zhang, F.; Yu, B. An efficient approach to the synthesis of nucleosides: gold(I)-catalyzed N-glycosylation of pyrimidines and purines with glycosyl ortho-alkynyl benzoates. Angew. Chem., Int. Ed. 2011 , 50 , 4933-4936; (e) Yang, F.; Wang, Q.; Yu, B. ortho-Alkynylphenyl thioglycosides as a new type of glycosylation donors under the catalysis of Au(I) complexes. Tetrahedron Lett. 2012 , 53 , 5231-5234; (f) Zhang, X.; Zhou, Y.; Zuo, J.; Yu, B. Total synthesis of periploside A, a unique pregnane hexasaccharide with potent immunosuppressive effects. Nat. Commun. 2015 , 6 , 5879; (g) Chen, X.; Wang, Q.; Yu, B. Gold(i)-catalyzed C-glycosylation of glycosyl ortho-alkynylbenzoates: the role of the moisture sequestered by molecular sieves. Chem. Commun. 2016 , 52 , 12183-12186; (h) Zheng, Z.; Zhang, L. Gold-catalyzed synthesis of alpha-D-glucosides using an o-ethynylphenyl beta-D-1-thioglucoside donor. Carbohydr. Res.2019 , 471 , 56-63; (i) Nicolaou, K. C.; Chen, Q.; Li, R.; Anami, Y.; Tsuchikama, K. Total Synthesis of the Monomeric Unit of Lomaiviticin A. J. Am. Chem. Soc. 2020 , 142 , 20201-20207; (j) Ma, X.; Zheng, Z.; Fu, Y.; Zhu, X.; Liu, P.; Zhang, L. A ”Traceless” Directing Group Enables Catalytic S(N)2 Glycosylation toward 1,2-cis-Glycopyranosides.J. Am. Chem. Soc. 2021 , 143 , 11908-11913; (k) Xu, Z.; DiBello, M.; Wang, Z.; Rose, J. A.; Chen, L.; Li, X.; Herzon, S. B. Stereocontrolled Synthesis of the Fully Glycosylated Monomeric Unit of Lomaiviticin A.J. Am. Chem. Soc. 2022 , 144 , 16199-16205; (l) Zhang, X.; Yang, Y.; Ding, J.; Zhao, Y.; Zhang, H.; Zhu, Y. Stereoselective gold(I)-catalyzed approach to the synthesis of complex alpha-glycosyl phosphosaccharides. Nat. Commun. 2022 , 13 , 421; (m) Zhu, D.; Geng, M.; Yu, B. Total Synthesis of Starfish Cyclic Steroid Glycosides. Angew. Chem., Int. Ed. 2022 , 61 , e202203239; (n) Chakraborty, S.; Mishra, B.; Kumar Das, P.; Pasari, S.; Hotha, S. Synthesis of N-Glycosides by Silver-Assisted Gold Catalysis. Angew. Chem., Int. Ed.2023 , 62 , e202214167.
  5. (a) Romano, N.; Hein, N. M.; Basemann, K.; Seo, Y.; Gagné, M. R. Uniquely Enabling Mechanism for Bis-oxazoline Copper(II)-Catalyzed Azidation of Pyranosides and Furanosides. ACS Catal.2022 , 12 , 12500-12510; (b) Qi, R.; Wang, C.; Ma, Z.; Wang, H.; Chen, Q.; Liu, L.; Pan, D.; Ren, X.; Wang, R.; Xu, Z. Visible-Light-Promoted Stereoselective C(sp(3) )-H Glycosylation for the Synthesis of C-Glycoamino Acids and C-Glycopeptides. Angew. Chem., Int. Ed. 2022 , 61 , e202200822; (c) Zhu, M.; Messaoudi, S. Diastereoselective Decarboxylative Alkynylation of Anomeric Carboxylic Acids Using Cu/Photoredox Dual Catalysis. ACS Catal.2021 , 11 , 6334-6342; (d) Zhu, F.; Zhang, S. Q.; Chen, Z.; Rui, J.; Hong, X.; Walczak, M. A. Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles.J. Am. Chem. Soc. 2020 , 142 , 11102-11113; (e) Yu, F.; Dickson, J. L.; Loka, R. S.; Xu, H.; Schaugaard, R. N.; Schlegel, H. B.; Luo, L.; Nguyen, H. M. Diastereoselective sp(3) C-O Bond Formation via Visible Light-Induced, Copper-Catalyzed Cross-Couplings of Glycosyl Bromides with Aliphatic Alcohols. ACS Catal. 2020 , 10 , 5990-6001; (f) Zhu, F.; Miller, E.; Zhang, S. Q.; Yi, D.; O’Neill, S.; Hong, X.; Walczak, M. A. Stereoretentive C( sp(3))-S Cross-Coupling. J. Am. Chem. Soc.2018 , 140 , 18140-18150.
  6. (a) Wang, Q.; Sun, Q.; Jiang, Y.; Zhang, H.; Yu, L.; Tian, C.; Chen, G.; Koh, M. J. Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides.Nature Synthesis 2022 , 1 , 235-244; (b) Tardieu, D.; Desnoyers, M.; Laye, C.; Hazelard, D.; Kern, N.; Compain, P. Stereoselective Synthesis of C,C-Glycosides from exo-Glycals Enabled by Iron-Mediated Hydrogen Atom Transfer. Org. Lett. 2019 , 21 , 7262-7267; (c) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. Synthesis of Aryl C-Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals. J. Am. Chem. Soc.2017 , 139 , 10693-10701; (d) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C. M.; Baran, P. S. Functionalized olefin cross-coupling to construct carbon-carbon bonds. Nature 2014 ,516 , 343-348.
  7. (a) Xiao, K.; Hu, Y.; Wan, Y.; Li, X.; Nie, Q.; Yan, H.; Wang, L.; Liao, J.; Liu, D.; Tu, Y.; Sun, J.; Codee, J. D. C.; Zhang, Q. Hydrogen bond activated glycosylation under mild conditions.Chem. Sci. 2022 , 13 , 1600-1607; (b) Wu, J.; Kopp, A.; Ackermann, L. Synthesis of C-Oligosaccharides through Versatile C(sp(3) )-H Glycosylation of Glycosides. Angew. Chem., Int. Ed.2022 , 61 , e202114993; (c) Sun, Q.; Zhang, H.; Wang, Q.; Qiao, T.; He, G.; Chen, G. Stereoselective Synthesis of C-Vinyl Glycosides via Palladium-Catalyzed C-H Glycosylation of Alkenes.Angew. Chem., Int. Ed. 2021 , 60 , 19620-19625; (d) Lv, W.; Chen, Y.; Wen, S.; Ba, D.; Cheng, G. Modular and Stereoselective Synthesis of C-Aryl Glycosides via Catellani Reaction. J. Am. Chem. Soc.2020 , 142 , 14864-14870; (e) Liu, Y.; Wang, Y.; Dai, W.; Huang, W.; Li, Y.; Liu, H. Palladium-Catalysed C(sp(3) )-H Glycosylation for the Synthesis of C-Alkyl Glycoamino Acids.Angew. Chem., Int. Ed. 2020 , 59 , 3491-3494; (f) Zhu, F.; Rodriguez, J.; O’Neill, S.; Walczak, M. A. Acyl Glycosides through Stereospecific Glycosyl Cross-Coupling: Rapid Access to C(sp(3))-Linked Glycomimetics. ACS Cent. Sci. 2018 , 4 , 1652-1662; (g) Zhu, F.; Rodriguez, J.; Yang, T.; Kevlishvili, I.; Miller, E.; Yi, D.; O’Neill, S.; Rourke, M. J.; Liu, P.; Walczak, M. A. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides. J. Am. Chem. Soc.2017 , 139 , 17908-17922; (h) Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. Highly Stereospecific Cross-Coupling Reactions of Anomeric Stannanes for the Synthesis of C-Aryl Glycosides. J. Am. Chem. Soc. 2016 , 138 , 12049-12052; (i) Mercer, G. J.; Yang, J.; McKay, M. J.; Nguyen, H. M. Palladium(II)-catalyzed rearrangement of glycal trichloroacetimidates: application to the stereoselective synthesis of glycosyl ureas. J. Am. Chem. Soc.2008 , 130 , 11210-11218; (j) Denmark, S. E.; Regens, C. S.; Kobayashi, T. Total synthesis of papulacandin D. J. Am. Chem. Soc. 2007 , 129 , 2774-2776; (k) Potuzak, J. S.; Tan, D. S. Synthesis of C1-alkyl- and acylglycals from glycals using a B-alkyl Suzuki–Miyaura cross coupling approach. Tetrahedron Lett.2004 , 45 , 1797-1801; (l) Jeanneret, V.; Meerpoel, L.; Vogel, P. C-Glycosides and C-disaccharide precursors through carbonylative Stille coupling reactions. Tetrahedron Lett.1997 , 38 , 543-546; (m) Belosludtsev, Y. C-Glycosides: Pd/Cu Co-Catalyzed Thiocarboxylation of Stannyl Glucopyranosides.Tetrahedron Lett. 1995 , 36 , 5881-5882; (n) Brakta, M.; Lhoste, P.; Sinou, D. Palladium(0)-based approach to functionalized C-glycopyranosides.J. Org. Chem. 2002 , 54 , 1890-1896; (o) Yi, D.; Zhu, F.; Walczak, M. A. Stereoretentive Intramolecular Glycosyl Cross-Coupling: Development, Scope, and Kinetic Isotope Effect Study. Org. Lett.2018 , 20 , 4627-4631.
  8. Gong, H.; Gagne, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 2008 , 130 , 12177-12183.
  9. (a) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. Ligand Redox Effects in the Synthesis, Electronic Structure, and Reactivity of an Alkyl‚àíAlkyl Cross-Coupling Catalyst. J. Am. Chem. Soc. 2006 ,128 , 13175-13183; (b) Phapale, V. B.; Bunuel, E.; Garcia-Iglesias, M.; Cardenas, D. J. Ni-catalyzed cascade formation of C(sp3)–C(sp3) bonds by cyclization and cross-coupling reactions of iodoalkanes with alkyl zinc halides. Angew. Chem., Int. Ed. 2007 , 46 , 8790-8795.
  10. Liu, J.; Gong, H. Stereoselective Preparation of alpha- C-Vinyl/Aryl Glycosides via Nickel-Catalyzed Reductive Coupling of Glycosyl Halides with Vinyl and Aryl Halides. Org. Lett. 2018 ,20 , 7991-7995.
  11. Biswas, S.; Weix, D. J. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem. Soc.2013 , 135 , 16192-16197.
  12. Liu, J.; Lei, C.; Gong, H. Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides. Science China Chemistry 2019 , 62 , 1492-1496.
  13. Dumoulin, A.; Matsui, J. K.; Gutierrez-Bonet, A.; Molander, G. A. Synthesis of Non-Classical Arylated C-Saccharides through Nickel/Photoredox Dual Catalysis.Angew. Chem., Int. Ed. 2018 , 57 , 6614-6618.
  14. Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings.J. Am. Chem. Soc. 2015 , 137 , 4896-4899.
  15. Wei, Y.; Ben-Zvi, B.; Diao, T. Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters via C-O Bond Homolysis. Angew. Chem., Int. Ed. 2021 ,60 , 9433-9438.
  16. Gong, L.; Sun, H. B.; Deng, L. F.; Zhang, X.; Liu, J.; Yang, S.; Niu, D. Ni-Catalyzed Suzuki-Miyaura Cross-Coupling of alpha-Oxo-vinylsulfones To Prepare C-Aryl Glycals and Acyclic Vinyl Ethers. J. Am. Chem. Soc. 2019 ,141 , 7680-7686.
  17. (a) Wang, J.-R.; Manabe, K. High Ortho Preference in Ni-Catalyzed Cross-Coupling of Halophenols with Alkyl Grignard Reagents. Org. Lett. 2009 , 11 , 741-744; (b) Hooper, J. F.; Young, R. D.; Pernik, I.; Weller, A. S.; Willis, M. C. Carbon–carbon bond construction using boronic acids and aryl methyl sulfides: orthogonal reactivity in Suzuki-type couplings. Chem. Sci. 2013 ,4 , 1568-1572.
  18. Mou, Z. D.; Wang, J. X.; Zhang, X.; Niu, D. Stereoselective Preparation of C‐Aryl Glycosides via Visible‐Light‐Induced Nickel-Catalyzed Reductive Cross‐Coupling of Glycosyl Chlorides and Aryl Bromides. Adv. Synth. Catal.2021 , 363 , 3025-3029.
  19. (a) Mohadjer Beromi, M.; Brudvig, G. W.; Hazari, N.; Lant, H. M. C.; Mercado, B. Q. Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling Reactions. Angew. Chem., Int. Ed.2019 , 58 , 6094-6098; (b) Liu, J.; Ye, Y.; Sessler, J. L.; Gong, H. Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives. Acc. Chem. Res.2020 , 53 , 1833-1845.
  20. Zhang, C.; Xu, S.-Y.; Zuo, H.; Zhang, X.; Dang, Q.-D.; Niu, D. Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling. Nature Synthesis 2023 , 1-10.
  21. Ma, Y.; Liu, S.; Xi, Y.; Li, H.; Yang, K.; Cheng, Z.; Wang, W.; Zhang, Y. Highly stereoselective synthesis of aryl/heteroaryl-C-nucleosides via the merger of photoredox and nickel catalysis. Chem. Commun. 2019 ,55 , 14657-14660.
  22. Takeda, D.; Yoritate, M.; Yasutomi, H.; Chiba, S.; Moriyama, T.; Yokoo, A.; Usui, K.; Hirai, G. beta-Glycosyl Trifluoroborates as Precursors for Direct alpha-C-Glycosylation: Synthesis of 2-Deoxy-alpha-C-glycosides.Org. Lett. 2021 , 23 , 1940-1944.
  23. Miller, E. M.; Walczak, M. A. Light-Mediated Cross-Coupling of Anomeric Trifluoroborates. Org. Lett. 2021 , 23 , 4289-4293.
  24. Liu, Y. H.; Xia, Y. N.; Gulzar, T.; Wei, B.; Li, H.; Zhu, D.; Hu, Z.; Xu, P.; Yu, B. Facile access to C-glycosyl amino acids and peptides via Ni-catalyzed reductive hydroglycosylation of alkynes. Nat. Commun. 2021 ,12 , 4924.
  25. (a) Giese, B. The Stereoselectivity of Intermolecular Free Radical Reactions. Angew. Chem., Int. Ed. 1989 , 28 , 969-980; (b) Abe, H.; Shuto, S.; Matsuda, A. Highly alpha- and beta-selective radical C-glycosylation reactions using a controlling anomeric effect based on the conformational restriction strategy. A study on the conformation-anomeric effect-stereoselectivity relationship in anomeric radical reactions.J. Am. Chem. Soc. 2001 , 123 , 11870-11882.
  26. Mao, R.; Xi, S.; Shah, S.; Roy, M. J.; John, A.; Lingford, J. P.; Gade, G.; Scott, N. E.; Goddard-Borger, E. D. Synthesis of C-Mannosylated Glycopeptides Enabled by Ni-Catalyzed Photoreductive Cross-Coupling Reactions. J. Am. Chem. Soc. 2021 , 143 , 12699-12707.
  27. Shi, W. Y.; Ding, Y. N.; Zheng, N.; Gou, X. Y.; Zhang, Z.; Chen, X.; Luan, Y. Y.; Niu, Z. J.; Liang, Y. M. Highly regioselective and stereoselective synthesis of C-Aryl glycosides via nickel-catalyzed ortho-C-H glycosylation of 8-aminoquinoline benzamides. Chem. Commun. 2021 ,57 , 8945-8948.
  28. Li, Y.; Wang, Z.; Li, L.; Tian, X.; Shao, F.; Li, C. Chemoselective and Diastereoselective Synthesis of C-Aryl Nucleoside Analogues by Nickel-Catalyzed Cross-Coupling of Furanosyl Acetates with Aryl Iodides. Angew. Chem., Int. Ed.2022 , 61 , e202110391.
  29. Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel‚ÄêCatalyzed Cross‚ÄêCoupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015 , 54 , 9876-9880.
  30. Zhao, C.; Jia, X.; Wang, X.; Gong, H. Ni-catalyzed reductive coupling of alkyl acids with unactivated tertiary alkyl and glycosyl halides. J. Am. Chem. Soc.2014 , 136 , 17645-17651.
  31. Jia, X.; Zhang, X.; Qian, Q.; Gong, H. Alkyl-aryl ketone synthesis via nickel-catalyzed reductive coupling of alkyl halides with aryl acids and anhydrides. Chem. Commun.2015 , 51 , 10302-10305.
  32. Badir, S. O.; Dumoulin, A.; Matsui, J. K.; Molander, G. A. Synthesis of Reversed C-Acyl Glycosides through Ni/Photoredox Dual Catalysis. Angew. Chem., Int. Ed.2018 , 57 , 6610-6613.
  33. Escolano, M.; Cabrera-Afonso, M. J.; Ribagorda, M.; Badir, S. O.; Molander, G. A. Nickel-Mediated Synthesis of Non-Anomeric C-Acyl Glycosides through Electron Donor-Acceptor Complex Photoactivation. J. Org. Chem.2022 , 87 , 4981-4990.
  34. Wei, Y.; Lam, J.; Diao, T. Synthesis of C-acyl furanosides via the cross-coupling of glycosyl esters with carboxylic acids. Chem. Sci. 2021 ,12 , 11414-11419.
  35. Jiang, Y.; Yang, K.; Wei, Y.; Wang, Q.; Li, S. J.; Lan, Y.; Koh, M. J. Catalytic Multicomponent Synthesis of C-Acyl Glycosides by Consecutive Cross-Electrophile Couplings.Angew. Chem., Int. Ed. 2022 , 61 , e202211043.
  36. (a) Lee, D.; He, M. Recent Advances in Aryl C-Glycoside Synthesis. Current Topics in Medicinal Chemistry 2005 , 5 , 1333-1350; (b) Du, Y.; Linhardt, R. J.; Vlahov, I. R. Recent advances in stereoselective c-glycoside synthesis. Tetrahedron 1998 , 54 , 9913-9959; (c) Daves, G. D., Jr. C-glycoside synthesis by palladium-mediated glycal-aglycon coupling reactions.Acc. Chem. Res. 1990 , 23 , 201-206.
  37. (a) Arai, I.; Daves, G. D. Stable glucopyranosylpalladium compound with a cis .beta.-hydrogen. J. Am. Chem. Soc. 2002 , 103 , 7683-7683; (b) Feducia, J. A.; Campbell, A. N.; Doherty, M. Q.; Gagne, M. R. Modular catalysts for diene cycloisomerization: rapid and enantioselective variants for bicyclopropane synthesis. J. Am. Chem. Soc. 2006 ,128 , 13290-13297; (c) Oestreich, M.; Dennison, P. R.; Kodanko, J. J.; Overman, L. E. Thwarting β-Hydride Elimination: Capture of the Alkylpalladium Intermediate of an Asymmetric Intramolecular Heck Reaction.Angew. Chem., Int. Ed. 2001 , 40 , 1439-1442.
  38. Gong, H.; Sinisi, R.; Gagne, M. R. A room temperature negishi cross-coupling approach to C-alkyl glycosides. J. Am. Chem. Soc. 2007 , 129 , 1908-1909.
  39. Gong, H.; Andrews, R. S.; Zuccarello, J. L.; Lee, S. J.; Gagne, M. R. Sn-free Ni-catalyzed reductive coupling of glycosyl bromides with activated alkenes.Org. Lett. 2009 , 11 , 879-882.
  40. Wei, Y.; Wang, Q.; Koh, M. J. A Photoinduced, Nickel-Catalyzed Reaction for the Stereoselective Assembly of C-Linked Glycosides and Glycopeptides. Angew. Chem., Int. Ed. 2023 , 62 , e202214247.