References
  1. Alvarez C, Brenes-Alvarez M, Molina-Heredia FP, Mariscal V.2022. Quantitative proteomics at early stages of the symbiotic interaction between Oryza sativa and Nostoc punctiformereveals novel proteins iInvolved in the symbiotic crosstalk.Plant and Cell Physiology 63 (10): 1433–1445.https://doi.org/10.1093/PCP/PCAC043
  2. Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Koll F, Cohen J. 2009. Cildb: a knowledgebase for centrosomes and cilia.Database: bap022. https://doi.org/10.1093/database/bap022
  3. Arx M von, Goyret J, Davidowitz G, Raguso RA. 2012. Floral humidity as a reliable sensory cue for profitability assessment by nectar- foraging hawkmoths. Proceedings of the National Academy of Science USA 109 : 9471–9476.https://doi.org/10.1073/pnas.1121624109
  4. Bell‐Doyon P., Laroche J, Saltonstall K, Villlarreal JC.2020. Specialized bacteriome uncovered in the coralloid roots of the epiphytic gymnosperm, Zamia pseudoparasitica .Environmental DNA 2 : 418–428. https://doi.org/10.1002/edn3.66
  5. Bustos-Diaz ED, Cruz-Perez A, Garfias-Gallegos D, D’Agostino PM, Gehringer MM, Cibrian-Jaramillo A, Barona-Gomez F. In review. Phylometagenomics of cycad coralloid roots reveals shared symbiotic signals. Microbial genomics.
  6. Berntzon L, Erasmie S, Celepli N, Eriksson J, Rasmussen U, Bergman B. 2013. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120. Marine Drugs11 : 3091–3108.https://doi.org/10.3390/MD11083091
  7. Cai C, Escalona HE, Li L, Yin Z, Huang D, Engel MS. 2018. Beetle pollination of cycads in the Mesozoic. Current Biology28 : 2806–2812.e1. https://doi.org/10.1016/j.cub.2018.06.036
  8. Calonje M, Meerow AW, Griffith MP, Salas–L D, Vovides AP, Coiro M, Francisco–O J. 2019. A time–calibrated species tree phylogeny of the New World cycad genus Zamia L. (Zamiaceae, Cycadales). International Journal of Plant Sciences180 : 286–314. https://doi.org/10.1086/702642
  9. Calonje M, Stevenson DW, Osborne R . The World List of Cycads http://www.cycadlist.org (2013–2023). Access on: 10 of November 2023
  10. Carrasco MD, Cibrán-Jaramillo A, Bonta MA, Englehardt JD . 2022. Under the shade of Thipaak: The ethnoecology of cycads in Mesoamerica and the Caribbean. Gainsville, USA: University Press of Florida.
  11. Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. 2023. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity.New Phytologist 240: 1616–1635. https://doi.org/10.1111/nph.19010
  12. Condamine FL, Nagalingum NS, Marshall CR, Morlon H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating.BMC Evolutionary Biology 15: 65. https://doi.org/10.1186/s12862-015-0347-8
  13. Dahake A, Jain P, Vogt CC, Kandalaft W, Stroock AD, Raguso RA. 2022. A signal-like role for floral humidity in a nocturnal pollination system. Nature Communications 13 : 7773. https://doi.org/10.1038/s41467-022-35353-8.
  14. Dehm D, Krumbholz J, Baunach M, Wiebach V, Hinrichs K, Guljamow A, Tabuchi T, Jenke-Kodama H, Süssmuth RD, Dittmann E. 2019. Unlocking the Spatial Control of Secondary Metabolism Uncovers Hidden Natural Product Diversity in Nostoc punctiforme . ACS Chemical Biology 14 : 1271–1279.https://doi.org/10.1021/acschembio.9b00240
  15. Delaux P-M, Schornack S. 2021. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science371 : eaba6605. DOI:10.1126/science.aba6605
  16. Donaldson JS. (ed.) 2003. Cycads, status survey and conservation action plan. IUNC/SSC Cycad specialist group. IUCN, Gland, Switzerland and Cambridge, UK.
  17. Donaldson JS. 1997. Is there a floral parasite mutualism in cycad pollination? The pollination biology of Encephalartos villosus (Zamiaceae). American Journal of Botany 84 : 1398–1406. https://doi.org/10.2307/2446138
  18. Freitas S, Castelo-Branco R, Wenzel-Storjohann A, Vasconcelos VM, Tasdemir D, Leão PN. 2022. Structure and Biosynthesis of Desmamides A-C, Lipoglycopeptides from the Endophytic CyanobacteriumDesmonostoc muscorum LEGE 12446. Journal of Natural Products 85 : 1704–1714.https://doi.org/10.1021/acs.jnatprod.2c00162
  19. Goyret J, Markwell PM, Raguso RA . 2008. Context-and scale- dependent effects of floral CO2 on nectar foraging by Manduca sexta . Proceedings of the National Academy of ScienceUSA 105 : 4265–4570.https://doi.org/10.1073/pnas.070862910
  20. Gutiérrez-García K, Bustos-Díaz ED, Corona-Gómez JA, Ramos-Aboites HE, Sélem-Mojica N, Cruz-Morales P, Pérez-Farrera MA, Barona-Gómez F, Cibrián-Jaramillo A. 2019. Cycad Coralloid Roots Contain Bacterial Communities Including Cyanobacteria and Caulobacter spp. That Encode Niche-Specific Biosynthetic Gene Clusters.Genome Biology and Evolution 11 : 319–334. https://doi.org/10.1093/gbe/evy266
  21. Gutiérrez-Ortega JS, Pérez-Farrera MA, Matsuo A, Sato MP, Suyama Y, Calonje M, Vovides AP, Kajita T, Watano Y. 2023. The phylogenetic reconstruction of the Neotropical cycad genusCeratozamia (Zamiaceae) reveals disparate patterns of niche evolution. Molecular Phylogenetics and Evolution 190 : 107960.https://doi.org/10.1016/j.ympev.2023.107960
  22. Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Ito T, Pérez-Farrera MA, Vovides AP, Martínez JF, Molina-Freaner F, Hernández-López A, Kawaguchi L, Nagano AJ, Kajita T et al.2020. Niche conservatism promotes speciation in cycads: the case ofDioon merolae (Zamiaceae) in Mexico. New Phytologist227: 1872–1884. https://doi.org/10.1111/nph.16647
  23. Habib S, Gong Y, Dong S, Lindstrom A, Stevenson DW, Liu Y, Wu H, Zhang S. 2022. Phylotranscriptomics reveal the spatio-temporal distribution and morphological evolution of Macrozamia , an Australian endemic genus of Cycadales. Annals of Botany130 : 671–685. https://doi.org/10.1093/aob/mcac117
  24. Habib S, Gong Y, Dong S, Lindstrom A, Stevenson DW, Wu H, Zhang S. 2023. Phylotranscriptomics shed light on intrageneric relationships and historical biogeography of Ceratozamia(Cycadales). Plants 12 : 478. https://doi.org/10.3390/plants12030478
  25. Hashidoko Y, Nishizuka H, Tanaka M, Murata K, Murai Y, Hashimoto M. 2019. Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae).Scientific Reports 9 : 1–12. https://doi.org/10.1038/s41598-019-39647-8
  26. He Z, Yao Z, Wang K, Li Y, Liu Y. 2023. Genetic Structure and Differentiation of Endangered Cycas Species Indicate a Southward Migration Associated with Historical Cooling Events.Diversity 15 : 643. https://doi.org/10.3390/d15050643
  27. Hodges ME, Wickstead B, Gull K, Langdale JA. 2011. Conservation of ciliary proteins in plants with no cilia. BMC Plant Biology 11 : 1–9. https://doi.org/10.1186/1471-2229-11-185
  28. Janse van Rensburg PD, Bezuidenhout H, Van den Berg J. 2023. Impact of herbivory by Zerenopsis lepida (Lepidoptera: Geometridae) on the endangered Encephalartos eugene-maraisiiunder field conditions. Biodiversity and Conservation32 : 2451–2468.https://doi.org/10.1007/s10531-023-02612-z
  29. Kipp MA, Stüeken EE, Strömberg CAE et al. 2024. Nitrogen isotopes reveal independent origins of N2-fixing symbiosis in extant cycad lineages. Nature Ecology and Evolution 8:57–69.https://doi.org/10.1038/s41559-023-02251-1
  30. Liao Q, Du R, Gou J, Guo L, Shen H, Liu H, Nguyen JK, Ming R, Yin T, Huang S, Yan J. 2020. The genomic architecture of the sex‐determining region and sex‐related metabolic variation inGinkgo biloba . Plant J. 104: 1399–1409 https://doi.org/10.1111/tpj.15009
  31. Lindstrom A, Habib S, Dong S, Gong Y, Liu J, Calonje M, Stevenson D, Zhang S. In press . Transcriptome sequencing data provides a solid base to understand the phylogenetic relationships, biogeography and reticulated evolution of the genus Zamia L. (Cycadales: Zamiaceae). AoB Plants .
  32. Liu J, Xu H, Wang Z, Liu J, Gong X. 2023. Core Endophytic Bacteria and Their Roles in the Coralloid Roots of CultivatedCycas revoluta (Cycadaceae). Microorganisms 11:2364.https://doi.org/10.3390/microorganisms11092364
  33. Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X, Ma J, Chang G, Huang J, Yang Y, Wang H, Liu M, Xu Y, Liang H, Yu J et al. 2022. The Cycas genome and the early evolution of seed plants. Nature Plants 8: 389–401. https://doi.org/10.1038/s41477-022-01129-7
  34. Marler TE, Snyder LR, Shaw CA. 2010. Cycas micronesica(Cycadales) plants devoid of endophytic cyanobacteria increase in β-methylamino-l-alanine. Toxicon 56: 563–568. https://doi.org/10.1016/j.toxicon.2010.05.015
  35. Marler TE, Lindström AJ, Terry LI. 2012. Chilades pandava damage among 85 Cycas species in a common garden setting. HortScience 47: 1832–1836. https://doi.org/10.21273/HORTSCI.47.12.1832
  36. Marler TE, Lindström AJ, Watson GW. 2021. Aulacaspis yasumatsui Delivers a Blow to International Cycad Horticulture.Horticulturae 7: 147. https://doi.org/10.3390/horticulturae7060147
  37. Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O’Neil J, Frank AC. 2016. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist 210: 657–668. https://doi.org/10.1111/nph.13850
  38. Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S. 2011. Recent synchronous radiation of a living fossil.Science 334: 796–799.https://doi.org/10.1126/science.1209926
  39. Ndlovu S, Suinyuy TN, Pérez-Fernández MA, Magadlela A. 2023.Encephalartos natalensis , Their Nutrient-Cycling Microbes and Enzymes: A Story of Successful Trade-Offs. Plants 12:1034.https://doi.org/10.3390/plants12051034
  40. Nesamari R, Coutinho TA, Roux J. 2017. Investigations into Encephalartos insect pests and diseases in South Africa and identification of Phytophthora cinnamomi as a pathogen of the Modjadji cycad. Plant Pathology 66: 612–622.https://doi.org/10.1111/ppa.12619
  41. Normark BB, Normark RD, Vovides AP, Solís-Montero L, González-Gómez R, Pulido-Silva M., Escobar-Castellanos MA, Dominguez M, Pérez‐Farrera MÁ, Janda M, & Cibrián-Jaramillo A. 2017. Cycad Aulacaspis Scale (Aulacaspis yasumatsui Takagi, 1977) in Mexico and Guatemala: a threat to native cycads. BioInvasions Records, 6 : 187-193. https://DOI:10.3391/BIR.2017.6.3.02
  42. Offer E, Moschin S, Nigris S,Baldan B. 2023. Reproductive Mechanisms in Ginkgo and Cycas : Sisters but not Twins.Critical Reviews in Plant Sciences 42: 283–299.https://doi.org/10.1080/07352689.2023.2235173
  43. Prado A, Ledezma J, Cubilla-Rios L, Bede J, Windsor D . 2011. Two genera of Aulacoscelinae beetles reflexively bleed azoxyglycosides found in their host cycads. Journal of Chemical Ecology37 : 736–40. https://doi.org/10.1007/s10886-011-9977-5.
  44. Robbins RK, Cong Q, Zhang J, Shen J, Quer Riera J, Murray D, Busby RC, Faynel C, Hallwachs W, Janzen DH, Grishin NV . 2021. A switch to feeding on cycads generates parallel accelerated evolution of toxin tolerance in two clades of Eumaeus caterpillars (Lepidoptera: Lycaenidae). Proceedings of the National Academy of Science USA 118: e2018965118.https://doi.org/10.1073/pnas.2018965118
  45. Salas-Leiva DE, Meerow AW, Calonje M, Francisco-Ortega J, Griffith MP, Nakamura K, Sánchez V, Knowles L, Knowles D. 2017. Shifting Quaternary migration patterns in the Bahamian archipelago: Evidence from the Zamia pumila complex at the northern limits of the Caribbean island biodiversity hotspot. American Journal of Botany 104: 757–771.https://doi.org/10.3732/ajb.1700054.
  46. Salzman S, Crook D, Calonje M, Stevenson DW, Pierce NE, Hopkins R. 2021. Cycad-weevil pollination symbiosis is characterized by rapidly evolving and highly specific plant-insect chemical communication. Frontiers in Plant Science 12: 639368.https://doi.org/10.3389/fpls.2021.639368.
  47. Salzman S, Crook D, Crall JD, Hopkins R, Pierce NE. 2020. An ancient push-pull pollination mechanism in cycads. Science Advances 6: eaay6169.https://doi.org/10.1126/sciadv.aay6169
  48. Salzman S, Dahake A, Kandalaft W, Valencia-Montoya WA, Calonje M, Specht CD, Raguso RA. 2023. Cone humidity is a strong attractant in an obligate cycad pollination system. Current Biology33: 1654–1664.e4. https://doi.org/10.1016/j.cub.2023.03.021
  49. Salzman S, Whitaker M, Pierce NE. 2018. Cycad-feeding insects share a core gut microbiome. Biological Journal of the Linnean Society 123: 728–738.https://doi.org/10.1093/biolinnean/bly017
  50. Schneider, A . 1894. Mutualistic symbiosis of algae and bacteria with Cycas revoluta . Botanical Gazette19 : 25–32. https://www.jstor.org/stable/2464436
  51. Seymour RS, Matthews PGD. 2006. The role of thermogenesis in the pollination biology of the amazon waterlily Victoria amazonica . Annals of. Botany 98 : 1129–1135.https://doi.org/10.1093/aob/mcl201
  52. Sierra AM, Meléndez O, Bethancourt R, Bethancourt A, Rodriguez-Castro L, López CA., Sedio BE, Saltonstall K, Villarreal JC. In Review. Leaf endophytes correlate with host metabolome expression in tropical gymnosperms. Journal of Chemical Ecology .
  53. Stull GW, Qu XJ, Parins-Fukuchi C, Yang YY, Yang JB, Yang ZY, Hu Y, Ma H, Soltis PS, Soltis DE, Li DZ, Smith SA, Yi TS. 2021. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nature Plants 7:1015–1025.https://doi.org/10.1038/s41477-021-00964-4
  54. Suárez-Moo PJ, Vovides AP, Griffith MP, Barona-Gómez F, Cibrián-Jaramillo A. 2019. Unlocking a high bacterial diversity in the coralloid root microbiome from the cycad genus Dioon .PLoS One 14: e0211271.https://doi.org/10.1371/journal.pone.0211271
  55. Tang W, Xu G, Marler T, Khuraijam JS, Singh R, Lindström AJ, Radha P, Rich S, Nguyen KS, Skelley P. 2020. Beetles (Coleoptera) in cones of cycads (Cycadales) of the northern hemisphere: diversity and evolution. Insecta Mundi 0781: 1–19.
  56. Tang W. 2004. Cycad insects and pollination, in Vistas in Paleobotany and Plant Morphology: Evolutionary and Environmental Perspectives (UP Offset, Lucknow, India, 2004), pp. 383–394.
  57. Teas HJ. 1967. Cycasin synthesis in Sierarctia echo(Lepidoptera) larvae fed metthylazoxymethanol. Biochemical and Biophysical Research Communications 26 : 686-690. https://doi.org/10.1016/S0006-291X(67)80127-X
  58. Terry I, Tang W, Blake AST, Singh R, Vovides AP, Cibrián-Jaramillo A. 2012. An overview of cycad pollination studies, in Proceedings of Cycad 2008 D.W. Stevenson, R. Osborne, A.S.T. Blake, eds. (New York Botanical Garden Press, Bronx, NY, 2012), pp. 352–394.
  59. Terry LI, Roemer RB, Booth DT, Moore CJ, Walter GH. 2016. Thermogenic respiratory processes drive the exponential increase of volatile organic compound emissions in Macrozamia cycad cones.Plant Cell and Environment 39: 1588–1600. https://doi.org/10.1111/pce.12730
  60. Terry LI, Roemer RB, Walter GH, Booth D. 2014. Thrips’ responses to thermogenic associated signals in a cycad pollination system: the interplay of temperature, light, humidity and cone volatiles. Functional Ecology 28: 857–867. DOI: https://doi.org/10.1111/1365-2435.12239
  61. Terry I, Walter GH, Moore C, Roemer R, Hull C. 2007. Odor-mediated push-pull pollination in cycads. Science318: 70. https://doi.org/10.1126/science.1145147
  62. Whitaker MR, Salzman S. 2020. Ecology and evolution of cycad-feeding Lepidoptera. Ecology letters 23:1862–1877. https://doi.org/10.1111/ele.13581
  63. Whitaker MRL, Gilliéron F, Skirgaila C, Mescher MC, De Moraes CM . 2022. Experimental evidence challenges the presumed defensive function of a ”slow toxin” in cycads. Scientific Reports12: 6013. https://doi.org/10.1038/s41598-022-09298-3.
  64. Whitaker MR, Banack SA, Mescher MC, Cox PA, De Moraes, CM.2023. BMAA in cycad-feeding Lepidoptera: defensive sequestration or bioaccumulation? Frontiers in Ecology and Evolution11: 1114636. https://doi.org/10.3389/fevo.2023.1114636
  65. Whitaker MR, Salzman S, Gratacos X, Tucker Lima JM. 2020. Localized Overabundance of an Otherwise Rare Butterfly Threatens Endangered Cycads. Florida Entomologist 103: 519–522.https://doi.org/10.1653/024.103.00416
  66. Wong FCY, Meeks JC. 2002. Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation.Microbiology 148: 315–323. https://doi.org/10.1099/00221287-148-1-315
  67. Xi Z, Rest JS, Davis CC. 2013. Phylogenomics and coalescent analyses resolve extant seed plant relationships. PLoS One8: e80870. https://doi.org/10.1371/journal.pone.0080870
  68. Zheng Y, Gong X. 2019. Niche differentiation rather than biogeography shapes the diversity and composition of microbiome ofCycas panzhihuaensis . Microbiome 7 : 152. https://doi.org/10.1186/s40168-019-0770-y