References
M. Lotfi, M. R. Hamblin, and N. Rezaei, “Covid-19: Transmission,
prevention, and potential therapeutic opportunities,” Clinica
chimica acta, vol. 508, pp. 254–266, 2020.
J. Chen, R. Wang, M. Wang, and G.-W. Wei, “Mutations strengthened
sars-cov-2 infectivity,” Journal of molecular biology, vol. 432,
no. 19, pp. 5212– 5226, 2020.
- K. Tao, P. L. Tzou, J. Nouhin, R. K. Gupta, T. de Oliveira, S. L.
Kosakovsky Pond, D. Fera, and R. W. Shafer, “The biological and
clinical significance of emerging sars-cov-2 variants,” Nature
Reviews Genetics, vol. 22, no. 12, pp. 757–773, 2021.
- S. Elbe and G. Buckland-Merrett, “Data, disease and diplomacy:
Gisaid’s innovative contribution to global health,” Global
challenges, vol. 1, no. 1, pp. 33–46, 2017.
- Y. Cao, J. Wang, F. Jian, T. Xiao, W. Song, A. Yisimayi, W. Huang, Q.
Li, P. Wang, R. An, et al., “Omicron escapes the majority of
existing sars-cov-2 neutralizing antibodies,” Nature, vol.
602, no. 7898, pp. 657–663, 2022.
- T. K. Scheel, J. M. Luna, M. Liniger, E. Nishiuchi, K. Rozen-Gagnon,
A. Shlomai, G. Auray, M. Gerber, J. Fak, I. Keller, et al., “A
broad rna virus survey reveals both mirna dependence and functional
sequestration,” Cell host & microbe, vol. 19, no. 3, pp.
409–423, 2016.
- S. Yekta, I.-h. Shih, and D. P. Bartel, “Microrna-directed cleavage
of hoxb8 mrna,” Science, vol. 304, no. 5670, pp. 594–596,
2004.
- H. Ingle, S. Kumar, A. A. Raut, A. Mishra, D. D. Kulkarni, T.
Kameyama, A. Takaoka, S. Akira, and H. Kumar, “The microrna mir-485
targets host and influenza virus transcripts to regulate antiviral
immunity and restrict viral replication,” Science signaling,
vol. 8, no. 406, pp. ra126–ra126, 2015.
- J. Huang, F. Wang, E. Argyris, K. Chen, Z. Liang, H. Tian, W. Huang,
K. Squires, G. Verlinghieri, and H. Zhang, “Cellular micrornas
contribute to hiv-1 latency in resting primary cd4+ t lymphocytes,”Nature medicine, vol. 13, no. 10, pp. 1241–1247, 2007.
- S. A. Nersisyan, S. Myu, O. Ai, and V. Vi, “Role of ace2/tmprss2
genes regulation by intestinal microrna isoforms in the covid-19
pathogenesis,” Bulletin of Russian State Medical University,
no. 2, pp. 16–18, 2020.
- W. J. Lukiw, “microrna heterogeneity, innate-immune defense and the
efficacy of sars-cov-2 infection—a commentary,” Non-coding
RNA, vol. 7, no. 2, p. 37, 2021.
- M. A.-A.-K. Khan, M. R. U. Sany, M. S. Islam, and A. B. M. M. K.
Islam, “Epigenetic regulator mirna pattern differences among
sars-cov, sars-cov-2, and sars-cov-2 world-wide isolates delineated
the mystery behind the epic pathogenicity and distinct clinical
characteristics of pandemic covid-19,” Frontiers in genetics,
vol. 11, p. 765, 2020.
- M. D. S. Demirci and A. Adan, “Computational analysis of
micrornamediated interactions in sars-cov-2 infection,” PeerJ,
vol. 8, p. e9369, 2020.
- K. J. Capistrano, J. Richner, J. Schwartz, S. K. Mukherjee, D. Shukla,
and A. R. Naqvi, “Host micrornas exhibit differential propensity to
interact with sars-cov-2 and variants of concern,” Biochimica
et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1869, no.
2, p. 166612, 2023.
- J.-Q. Zhou, G.-X. Liu, X.-L. Huang, and H.-T. Gan, “The importance of
fecal nucleic acid detection in patients with coronavirus disease
(covid-19): A systematic review and meta-analysis,” Journal of
Medical Virology, vol. 94, no. 6, pp. 2317–2330, 2022.
- A. Zollner, R. Koch, A. Jukic, A. Pfister, M. Meyer, A. Ro¨ssler, J.
Kimpel, T. E. Adolph, and H. Tilg, “Postacute covid-19 is
characterized by gut viral antigen persistence in inflammatory bowel
diseases,” Gastroenterology, vol. 163, no. 2, pp. 495–506,
2022.
- S. Nersisyan, A. Zhiyanov, M. Shkurnikov, and A. Tonevitsky, “T-cov:
a comprehensive portal of hla-peptide interactions affected by
sars-cov-2 mutations,” Nucleic acids research, vol. 50, no.
D1, pp. D883–D887, 2022.
- S. Khare, C. Gurry, L. Freitas, M. B. Schultz, G. Bach, A. Diallo, N.
Akite, J. Ho, R. T. Lee, W. Yeo, et al., “Gisaid’s role in
pandemic response,” China CDC Weekly, vol. 3, no. 49, p. 1049,
2021.
- A. O’Toole, E. Scher, A. Underwood, B. Jackson, V. Hill, J. T.
McCrone,´ R. Colquhoun, C. Ruis, K. Abu-Dahab, B. Taylor, et
al., “Assignment of epidemiological lineages in an emerging pandemic
using the pangolin tool,” Virus evolution, vol. 7, no. 2, p.
veab064, 2021.
- A. Grimson, K. K.-H. Farh, W. K. Johnston, P. Garrett-Engele, L. P.
Lim, and D. P. Bartel, “Microrna targeting specificity in mammals:
determinants beyond seed pairing,” Molecular cell, vol. 27,
no. 1, pp. 91–105, 2007.
- D. Baek, J. Vill´en, C. Shin, F. D. Camargo, S. P. Gygi, and D. P.
Bartel, “The impact of micrornas on protein output,” Nature,
vol. 455, no. 7209, pp. 64–71, 2008.
- V. Agarwal, G. W. Bell, J.-W. Nam, and D. P. Bartel, “Predicting
effective microrna target sites in mammalian mrnas,” elife,
vol. 4, p. e05005, 2015.
- W. Liu and X. Wang, “Prediction of functional microrna targets by
integrative modeling of microrna binding and target expression data,”Genome
biology, vol. 20, pp. 1–10, 2019.
- K. C. Miranda, T. Huynh, Y. Tay, Y.-S. Ang, W.-L. Tam, A. M. Thomson,
B. Lim, and I. Rigoutsos, “A pattern-based method for the
identification of microrna binding sites and their corresponding
heteroduplexes,” Cell, vol. 126, no. 6, pp. 1203–1217, 2006.
- S. Nersisyan, A. Gorbonos, A. Makhonin, A. Zhiyanov, M. Shkurnikov,
and A. Tonevitsky, “isomirtar: a comprehensive portal of pan-cancer
5’-isomir targeting,” PeerJ, vol. 10, p. e14205, 2022.
- S. Nersisyan, A. Zhiyanov, N. Engibaryan, D. Maltseva, and A.
Tonevitsky,
“A novel approach for a joint analysis of isomir and mrna expression
data reveals features of isomir targeting in breast cancer,”Frontiers in Genetics, vol. 13, 2022.
- K. Katoh, K. Misawa, K.-i. Kuma, and T. Miyata, “Mafft: a novel
method for rapid multiple sequence alignment based on fast fourier
transform,” Nucleic acids research, vol. 30, no. 14, pp.
3059–3066, 2002.
- H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” The annals
of mathematical statistics, pp. 50–60, 1947.
- J. H. Zar, “Significance testing of the spearman rank correlation
coefficient,” Journal of the American Statistical Association,
vol. 67, no. 339, pp. 578–580, 1972.
- C. Spearman, “The proof and measurement of association between two
things,” The American Journal of Psychology, vol. 100, no.
3/4, pp. 441–471, 1987.
- P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.
Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,et al., “Scipy 1.0: fundamental algorithms for scientific
computing in python,” Nature methods, vol. 17, no. 3, pp.
261–272, 2020.
- C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P.
Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,et al., “Array programming with numpy,” Nature, vol.
585, no. 7825, pp. 357–362, 2020.
- O. Tange et al., “Gnu parallel-the command-line power tool,”The USENIX Magazine, vol. 36, no. 1, pp. 42–47, 2011.
- W. McKinney et al., “Data structures for statistical computing
in python,” in Proceedings of the 9th Python in Science
Conference, vol. 445, pp. 51–56, Austin, TX, 2010.
- J. D. Hunter, “Matplotlib: A 2d graphics environment,”Computing in science & engineering, vol. 9, no. 03, pp.
90–95, 2007.
- M. L. Waskom, “seaborn: statistical data visualization,”Journal of Open Source Software, vol. 6, no. 60, p. 3021, 2021.
- B. D. Brown and L. Naldini, “Exploiting and antagonizing microrna
regulation for therapeutic and experimental applications,”Nature Reviews Genetics, vol. 10, no. 8, pp. 578–585, 2009.
- R. Suzuki, D. Yamasoba, I. Kimura, L. Wang, M. Kishimoto, J. Ito, Y.
Morioka, N. Nao, H. Nasser, K. Uriu, et al., “Attenuated
fusogenicity and pathogenicity of sars-cov-2 omicron variant,”Nature, vol. 603, no. 7902, pp. 700–705, 2022.
- U. Bissels, S. Wild, S. Tomiuk, A. Holste, M. Hafner, T. Tuschl, and
A. Bosio, “Absolute quantification of micrornas by using a universal
reference,” Rna, vol. 15, no. 12, pp. 2375–2384, 2009.
- J. Van Cleemput, W. van Snippenberg, L. Lambrechts, A. Dendooven, V.
D’Onofrio, L. Couck, W. Trypsteen, J. Vanrusselt, S. Theuns, N.
Vereecke, et al., “Organ-specific genome diversity of
replication-competent sars-cov-2,” Nature communications, vol.
12, no. 1, p. 6612, 2021.
- M. H. Cha, M. Regueiro, and D. S. Sandhu, “Gastrointestinal and
hepatic manifestations of covid-19: A comprehensive review,”World journal of
gastroenterology , vol. 26, no. 19, p. 2323, 2020.
- Y. Akiyama, N. Kinoshita, K. Sadamasu, M. Nagashima, I. Yoshida, Y.
Kusaba, T. Suzuki, M. Nagashima, M. Ishikane, J. Takasaki, et
al., “A pilot study on viral load in stool samples of patients with
covid-19 suffering from diarrhea,” Japanese Journal of
Infectious Diseases, vol. 75, no. 1, pp. 36–40, 2022.
- D. A. Schwartz, S. B. Mulkey, and D. J. Roberts, “Sars-cov-2
placentitis, stillbirth, and maternal covid-19 vaccination:
clinical–pathologic correlations,” American journal of
obstetrics and gynecology, 2022.
- F. Facchetti, M. Bugatti, E. Drera, C. Tripodo, E. Sartori, V.
Cancila, M. Papaccio, R. Castellani, S. Casola, M. B. Boniotti,et al., “Sars-cov2 vertical transmission with adverse effects
on the newborn revealed through integrated immunohistochemical,
electron microscopy and molecular analyses of placenta,”EBioMedicine, vol. 59, p. 102951, 2020.
- C. Wei, K.-J. Shan, W. Wang, S. Zhang, Q. Huan, and W. Qian,
“Evidence for a mouse origin of the sars-cov-2 omicron variant,”Journal of genetics
and genomics, vol. 48, no. 12, pp. 1111–1121, 2021.
- D. P. Martin, S. Lytras, A. G. Lucaci, W. Maier, B. Gru¨ning, S. D.
Shank, S. Weaver, O. A. MacLean, R. J. Orton, P. Lemey, et al.,
“Selection analysis identifies clusters of unusual mutational changes
in omicron lineage ba. 1 that likely impact spike function,”Molecular biology and evolution, vol. 39, no. 4, p. msac061,
2022.
- Y. Sun, W. Lin, W. Dong, and J. Xu, “Origin and evolutionary analysis
of the sars-cov-2 omicron variant,” Journal of biosafety and
biosecurity, vol. 4, no. 1, pp. 33–37, 2022.
- S. Mallapaty, “Where did omicron come from? three key theories.,”Nature, pp. 26–28, 2022.
- B. Choi, M. C. Choudhary, J. Regan, J. A. Sparks, R. F. Padera, X.
Qiu, I. H. Solomon, H.-H. Kuo, J. Boucau, K. Bowman, et al.,
“Persistence and evolution of sars-cov-2 in an immunocompromised
host,” New England Journal of Medicine, vol. 383, no. 23, pp.
2291–2293, 2020.
- F. A. F. d. Silva, B. B. d. Brito, M. L. C. Santos, H. S. Marques, R.
T. d. Silva Ju´nior, L. S. d. Carvalho, E. S. Vieira, M. V. Oliveira,
and F. F. d. Melo,
“Covid-19 gastrointestinal manifestations: a systematic review,”Revista da Sociedade Brasileira de Medicina Tropical, vol. 53,
2020.
- H. Crook, S. Raza, J. Nowell, M. Young, and P. Edison, “Long
covid—mechanisms, risk factors, and management,” bmj, vol.
374, 2021.
- D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M.
White, M. J. O’Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, et
al., “A sars-cov-2 protein interaction map reveals targets for drug
repurposing,” Nature, vol. 583, no. 7816, pp. 459–468, 2020.
- K. Vermeire, T. W. Bell, V. Van Puyenbroeck, A. Giraut, S. Noppen, S.
Liekens, D. Schols, E. Hartmann, K.-U. Kalies, and M. Marsh, “Signal
peptide-binding drug as a selective inhibitor of co-translational
protein translocation,” PLoS biology, vol. 12, no. 12, p.
e1002011, 2014.
- J. Zou, C. Kurhade, S. Patel, N. Kitchin, K. Tompkins, M. Cutler, D.
Cooper, Q. Yang, H. Cai, A. Muik, et al., “Neutralization of
ba. 4–ba. 5, ba. 4.6, ba.
2.75. 2, bq. 1.1, and xbb. 1 with bivalent vaccine,” New England
Journal of Medicine, 2023.