References
1. Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne,
M., Vignat, J., Gralow, J.R., Cardoso, F., Siesling, S. &
Soerjomataram, I. (2022). Current and future burden of breast cancer:
Global statistics for 2020 and 2040. The Breast , 66,15–23.
2. Azamjah, N., Soltan-Zadeh, Y. & Zayeri, F. (2019). Global trend of
breast cancer mortality rate: A 25-year study. Asian Pacific
Journal of Cancer Prevention , 20(7), 2015–2020.
3. Global Cancer Observatory. International Agency for Research on
Cancer. World Health Organization. Data source: 2020.
https://gco.iarc.fr/
4. Corben, A.D. (2013). Pathology of invasive breast disease.Surgical Clinics of North America , 93(2), 363–392.
5. Waks, A.G. & Winer, E.P. (2019). Breast cancer treatment: A review.Journal of the American Medical Association , 321(3), 288–300.
6. Pearce, A., Haas, M., Viney, R., Pearson, S.A., Haywood, P., Brown,
C. & Ward, R. (2017). Incidence and severity of self-reported
chemotherapy side effects in routine care: A prospective cohort study.PLoS One , 12(10), e0184360.
7. Altun, İ. & Sonkaya, A. (2018). The most common side effects
experienced by patients were receiving first cycle of chemotherapy.Iranian Journal of Public Health , 47(8), 1218–1219.
8. Chauhan, K., Sengar, P., Juarez-Moreno K., Hirata, G.A. &
Vazquez-Duhalt, R. (2020). Camouflaged, activatable and therapeutic
tandem bionanoreactors for breast cancer theranosis. Journal of
Colloid and Interface Science , 580, 365–376.
9. Fu, X., Shi, Y., Qi, T., Qiu, S., Huang, Y., Zhao, X., Sun, Q. &
Lin, G. (2020). Precise design strategies of nanomedicine for improving
cancer therapeutic efficacy using subcellular targeting. Signal
Transduction and Targeted Therapy , 5, 262.
10. Tagde, P., Najda, A., Nagpal, K., Kulkarni, G. T., Shah, M., Ullah,
O., Balant, S. & Rahman, M. H. (2022). Nanomedicine-based delivery
strategies for breast cancer treatment and management.International Journal of Molecular Sciences , 23(5), 2856.
11. Wong, C.M., Wong, K.H. & Chen, X.D. (2008). Glucose oxidase:
natural occurrence, function, properties and industrial applications.Applied Microbiology and Biotechnology , 78, 927–938.
12. Mano, N. (2019). Engineering glucose oxidase for bioelectrochemical
applications. Bioelectrochemistry , 128, 218–240.
13. Fu, L. H., Qi, C., Lin, J. & Huang, P. (2018). Catalytic chemistry
of glucose oxidase in cancer diagnosis and treatment. Chemical
Society Reviews , 47(17), 6454–6472.
14. Dinda, S., Sarkar, S. & Das, P. K. (2018). Glucose oxidase mediated
targeted cancer-starving therapy by biotinylated self-assembled
vesicles. Chemical Communications , 54, 9929–9932.
15. Feng, L., Xie, R., Wang, C., Gai, S., He, F., Yang, D., Yang, P. &
Lin, J. (2018). Magnetic targeting, tumor microenvironment-responsive
intelligent nanocatalysts for enhanced tumor ablation. ACS Nano ,
12 (11), 11000–11012.
16. Chang, K., Liu, Z., Fang, X., Chen, H., Men, X., Yuan, Y., Sun, K.,
Zhang, X., Yuan, Z., & Wu, C. (2017). Enhanced phototherapy by
nanoparticle-enzyme via generation and photolysis of hydrogen peroxide.Nano Letters 17 (7), 4323–4329.
17. Fu, L.-H., Qi, C., Hu, Y.-R., Lin, J. & Huang, P. (2019). Glucose
oxidase-instructed multimodal synergistic cancer therapy. Advanced
Materials , 31, 1808325.
18. Brigger, I., Dubernet, C. & Couvreur, P. (2012) Nanoparticles in
cancer therapy and diagnosis. Advanced Drug Delivery Reviews , 64,
Suppl. 24–36
19. Ding, X., Liu, D., Booth, G., Gao, W. & Lu, Y. (2018). Virus-like
particle engineering: from rational design to versatile applications.Biotechnology Journal , 13(5), e1700324.
20. Koellhoffer, E.C. & Steinmetz, N.F. (2022). Cowpea mosaic virus and
natural killer cell agonism for in situ cancer vaccination.Nano Letters , 22(13), 5348–5356.
21. Nkanga, C.I. & Steinmetz, N.F. (2021). The pharmacology of plant
virus nanoparticles. Virology , 556, 39–61.
22. González-Davis, O., Villagrana-Escareño, M.V., Trujillo, M.A., Gama,
P., Chauhan, K. & Vazquez-Duhalt, R. (2023). Virus-like nanoparticles
as enzyme carriers for Enzyme Replacement Therapy (ERT).Virology , 580, 73–87.
23. Mejía-Méndez, J. L., Vazquez-Duhalt, R., Hernández, L. R.,
Sánchez-Arreola, E. & Bach, H. (2022). Virus-like particles:
fundamentals and biomedical applications. International Journal of
Molecular Sciences, 23(15), 8579.
24. Nooraei, S., Bahrulolum, H., Hoseini1, Z.S., Katalani, C., Hajizade,
A., Easton, A.J. & Ahmadian, G. (2021). Virus-like particles:
preparation, immunogenicity and their roles as nanovaccines and drug
nanocarriers. Journal of Nanobiotechnology , 9, 59.
25. Yu, X., Weng, Z., Zhao, Z., Xu, J., Qi, Z. & Liu, J. (2022).
Assembly of protein cages for drug delivery. Pharmaceutics , 14,
2609.
26. Schoonen, L., & Van Hest, J.C.M. (2014). Functionalization of
protein-based nanocages for drug delivery applications.Nanoscale , 6(13), 7124–7141.
27. Yan, D., Wei, Y.Q., Guo, H.C. & Sun, S.Q. (2015). The application
of virus-like particles as vaccines and biological vehicles.Applied Microbiology and Biotechnology , 99(24), 10415–10432.
28. Kraj, P., Selivanovitch, E., Lee, B., & Douglas, T. (2021). Polymer
coatings on virus-like particle nanoreactors at low ionic
strength—charge reversal and substrate access.Biomacromolecules , 22(5), 2107–2118.
29. Douglas, T. & Young, M. (2006). Viruses: making friends with old
foes. Science , 312(5775), 873–875.
30. Jordan, P., Patterson, D., Saboda, K., Edwards, E., Miettinen, H.,
Basu, G., Thielges, M. & Douglas, T. (2016). Self-assembling
biomolecular catalysts for hydrogen production. Nature Chemistry ,
8, 179–185.
31. Chakraborti, S., Lin, T.-Y., Glatt, S. & Heddle, J.G. (2020).
Enzyme encapsulation by protein cages. RSC Advances , 10(22),
13293–13301.
32. Das, S., Zhao, L., Elofson, K. & Finn, M.G. (2020). Enzyme
stabilization by virus-like particles. Biochemistry , 59 (31),
2870–2881
33. Sánchez-Sánchez, L., Tapia-Moreno, A., Juarez-Moreno, K., Patterson,
D. P., Cadena-Nava, R. D., Douglas, T. & Vazquez-Duhalt, R. (2015).
Design of a VLP-nanovehicle for CYP450 enzymatic activity delivery.Journal of Nanobiotechnology , 13(1), 1–10.
34. Tapia-Moreno, A., Juarez-Moreno, K., Gonzalez-Davis, O.,
Cadena-Nava, R. D. & Vazquez-Duhalt, R. (2017). Biocatalytic virus
capsid as nanovehicle for enzymatic activation of Tamoxifen in tumor
cells. Biotechnology Journal , 12, 1600706.
35. Chauhan, K., Hernandez-Meza, J.M., Rodríguez-Hernández, A.G.,
Juarez‑Moreno, K., Sengar, P. & Vazquez‑Duhalt, R. (2018).
Multifunctionalized biocatalytic P22 nanoreactor for combinatory
treatment of ER+ breast cancer. Journal of Nanobiotechnology , 16,
17.
36. Schwarz, B., Uchida, M. & Douglas T. (2017). Biomedical and
catalytic opportunities of virus-like particles in nanotechnology.Advances in Virus Research , 97, 1–60.
37. Inoue, T., Kawano, M.A., Takahashi, R.U., Tsukamoto, H., Enomoto,
T., Imai, T., Kataoka, K. & Handa, H. (2008). Engineering of SV40-based
nano-capsules for delivery of heterologous proteins as fusions with the
minor capsid proteins VP2/3. Journal of Biotechnology , 134(1-2),
181–92.
38. O’Neil, A., Prevelige, P. E. & Douglas, T. (2013). Stabilizing
viral nano-reactors for nerve-agent degradation. Biomaterials
Science , 1(8), 881–886.
39. Selivanovitch, E., LaFrance, B. & Douglas, T. (2021). Molecular
exclusion limits for diffusion across a porous capsid. Nature
Communications , 12, 2903.
40. Gama, P., Cadena-Nava, R. D., Juarez-Moreno, K., Pérez-Robles, J. &
Vazquez-Duhalt, R. (2021). Virus-based nanoreactors with GALT activity
for classic galactosemia therapy. ChemMedChem , 16, 1438.
41. Vervoort, D.F.M., Heiringhoff, R., Timmermans, S., van Stevendaal,
M. & van Hest J.C.M. (2021). Dual site-selective presentation of
functional handles on protein-engineered Cowpea chlorotic mottle
virus-like particles. Bioconjugate Chemistry , 32 (5), 958–963.
42. Cadena-Nava, R. D., Comas-Garcia, M., Garmann, R. F., Rao, A. L. N.,
Knobler, C. M. & Gelbart, W. M. (2012). Self-Assembly of Viral Capsid
Protein and RNA Molecules of Different Sizes: Requirement for a Specific
High Protein/RNA Mass Ratio. Journal of Virology , 86(6),
3318–3326.
43. Zhou, C., Song, X., Guo, C., Tan, Y., Zhao, J., Yang, Q., Chen, D.,
Tan, T., Sun, X., Gong, T. & Zhang, Z. (2019). An alternative and
injectable preformed albumin-bound anticancer drug delivery system for
anticancer and antimetastasis treatment. ACS Applied Materials &
Interfaces, 11 (45), 42534–42548.
44. Spada, A., Emami, J., Tuszynski, J. A. & Lavasanifar, A. (2021).
The uniqueness of albumin as a carrier in nanodrug delivery.Molecular Pharmaceutics , 8 (5), 1862–1894.
45. Lucas, R. W., Larson, S. B. & McPherson, A. (2002). The
crystallographic structure of brome mosaic virus. Journal of
Molecular Biology , 317(1), 95–108.
46. Brasch, M., Putri, R.M., de Ruiter, M.V., Luque, D., Koay, M.S.T.,
Castón, J.R., & Cornelissen, J.J.L.M. (2017) Assembling enzymatic
cascade pathways inside virus-based nanocages using dual-tasking nucleic
acid tags. Journal of the American Chemistry Society ,
139(4),1512-1519.
47. Al-Barwani, F., Donaldson, B., Pelham, S.J., Young, S.L. & Ward,
V.K. (2014) Antigen delivery by virus-like particles for
immunotherapeutic vaccination. Therapy Delivery 5(11),
1223–1240.
48. Mohsen, M.O., Speiser, D.E., Knuth, A. & Bachmann, M.F. (2020)
Virus-like particles for vaccination against cancer. Wiley
Interdisciplinary Review of Nanomedicine and Nanobiotechnology 12,
1579.
49. Duval, K.E.A., Wagner, R.J., Beiss, V., Fiering, S.N., Steinmetz,
N.F. & Hoopes, P.J. (2020) Cowpea mosaic virus nanoparticle enhancement
of hypofractionated radiation in a B16 murine melanoma model.Frontiers in Oncology. 16(10), 594614.
50. Beatty, P.H. & Lewis, J.D. (2019) Cowpea mosaic virus nanoparticles
for cancer imaging and therapy. Advances in Drug Delivery Review145, 130–144.
51. Patel, R., Czapar, A.E., Fiering, S., Oleinick, N.L. & Steinmetz,
N.F. (2018) Radiation therapy combined with cowpea mosaic virus
nanoparticle in situ vaccination initiates immune-mediated tumor
regression. ACS Omega 3(4), 3702-3707.
52. Li, W., Jing, Z., Wang, S., Li, Q., Xing, Y., Shi, H., Li, S. &
Hong, Z. (2021) P22 virus-like particles as an effective antigen
delivery nanoplatform for cancer immunotherapy. Biomaterials 271,
120726.
53. Sakai, C., Hosokawa, K., Watanabe, T., Suzuki, Y., Nakano, T., Ueda,
K. & Fujimuro, M. (2021) Human hepatitis B virus-derived virus-like
particle as a drug and DNA delivery carrier. Biochemical and
Biophysical Research Communications. 581, 103–109.
54. Huo, M., Wang, L., Chen, Y. & Shi, J. (2017). Tumor-selective
catalytic nanomedicine by nanocatalyst delivery. Nature
Communications , 8(1), 357.
55. Zhao, W., Hu, J. & Gao, W. (2017). Glucose oxidase-polymer nanogels
for synergistic cancer-starving and oxidation therapy. ACS Applied
Materials & Interfaces , (28), 23528–23535.
56. Zhang, R., Feng, L., Dong, Z., Wang, L., Liang, C., Chen, J., Ma,
Q., Zhang, R., Chen, Q., Wang, Y. & Liu, Z. (2018). Glucose & oxygen
exhausting liposomes for combined cancer starvation and
hypoxia-activated therapy. Biomaterials , 162, 123–131.
57. Fan, W., Lu, N., Huang, P., Liu, Y., Yang, Z., Wang, S., Yu, G.,
Liu, Y., Hu, J., He, Q., Qu, J., Wang, T. & Chen, X. (2017).
Glucose-responsive sequential generation of hydrogen peroxide and Nitric
Oxide for Synergistic Cancer Starving-Like/Gas Therapy. Angewandte
Chemie International Edition , 56(5), 1229–1233.
58. Nuñez-Rivera, A., Fournier, P. G. J., Arellano, D. L.,
Rodriguez-Hernandez, A. G., Vazquez-Duhalt, R. & Cadena-Nava, R. D.
(2020). Brome mosaic virus-like particles as siRNA nanocarriers for
biomedical purposes. Beilstein Journal of Nanotechnology , 11,
372–382.
59. Rempel, S. A., Golembieski, W. A., Ge, S., Lemke, N., Elisevich, K.,
Mikkelsen, T. & Gutiérrez, J. A. (1998). SPARC: A Signal of Astrocytic
Neoplastic Transformation and Reactive Response in Human Primary and
Xenograft Gliomas. Journal of Neuropathology and Experimental
Neurology , 57(12), 1112–1121.
60. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A.,
Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V., Iglesias,
J. L., Zhang, H., Soon-Shiong, P., Shi, T., Rajeshkumar, N. V., Maitra,
A. & Hidalgo, M. (2011). Gemcitabine Plus nab-Paclitaxel Is an Active
Regimen in Patients With Advanced Pancreatic Cancer: A Phase I/II Trial.Journal of Clinical Oncology , 29(34), 4548–4554.
61. Gamradt, P., De La Fouchardière, C. & Hennino, A. (2021). Stromal
Protein-Mediated Immune Regulation in Digestive Cancers. Cancers ,
13 (1), 146.
62. Sova, P., Feng, Q., Geiss, G., Wood, T., Strauss, R., Rudolf, V.,
Lieber, A., & Kiviat, N. (2006). Discovery of Novel Methylation
Biomarkers in Cervical Carcinoma by Global Demethylation and Microarray
Analysis. Cancer Epidemiology, Biomarkers & Prevention , 15 (1),
114–123.
63. Bellahcène, A. & Castronovo V. (1995). Increased expression of
osteonectin and osteopontin, two bone matrix proteins, in human breast
cancer. The American Journal of Pathology , 146(1), 95–100.
64. Lien, H. C., Hsiao, Y. H., Lin, Y. S., Yao, Y.T., Juan, H. F., Kuo,
W. H., Hung, M., Chang, K. J. & Hsieh, F. J. (2007). Molecular
Signatures of Metaplastic Carcinoma of the Breast by Large-Scale
Transcriptional Profiling: Identification of Genes Potentially Related
to Epithelial-Mesenchymal Transition. Oncogene , 26, 7859–7871.
65. Jones, C., Mackay, A., Grigoriadis, A., Cossu, A., Reis-Filho, J.
S., Fulford, L., Dexter, T., Davies, S., Bulmer, K., Ford, E., Parry,
S., Budroni, M., Palmieri, G., Neville, A. M., O’Hare, M. J. & Lakhani,
S. R. (2004). Expression Profiling of Purified Normal Human Luminal and
Myoepithelial Breast Cells Identification of Novel Prognostic Markers
for Breast Cancer. Cancer Research , 64 (9), 3037–3045.
66. Shi, S., Ma, H.-Y., Han, X.-Y., Sang, Y.-Z., Yang, M.-Y. & Zhang,
Z.-G. (2022). Prognostic Significance of SPARC Expression in Breast
Cancer: A Meta-Analysis and Bioinformatics Analysis. BioMed
Research International , 2022, 8600419.
67. Puolakkainen, P. A., Brekken, R. A., Muneer, S., & Sage, E. H.
(2004). Enhanced Growth of Pancreatic Tumors in SPARC-Null Mice Is
Associated with Decreased Deposition of Extracellular Matrix and Reduced
Tumor Cell Apoptosis. Molecular Cancer Research , 2, 215–224.
68. Yiu, G. K., Chan, W. Y., Ng, S. W., Chan, P. S., Cheung, K. K.,
Berkowitz, R. S. & Mok S. C. (2001). SPARC (secreted protein acidic and
rich in cysteine) induces apoptosis in ovarian cancer cells. The
American Journal of Pathology , 159(2), 609–622.
69. Yang, E., Kang, H. J., Koh, K. H., Rhee, H., Kim, N. K. & Kim, H.
(2007). Frequent inactivation of SPARC by promoter hypermethylation in
colon cancers. The International Journal of Cancer , 121,
567–575.
70. Cheetham, S., Tang, M. J., Mesak, F., Kennecke, H., Owen, D., &
Tai, I. T. (2008). SPARC promoter hypermethylation in colorectal cancers
can be reversed by 5-Aza-2′deoxycytidine to increase SPARC expression
and improve therapy response. British Journal of Cancer , 98,
1810–1819.
71. Tao, H., Wang, R., Sheng, W., & Zhen, Y. (2021). The development of
human serum albumin-based drugs and relevant fusion proteins for cancer
therapy. International Journal of Biological Macromolecules , 187,
24–34.
72. Are, R. P. & Babu, A. R. (2022). Molecular Interaction Analysis of
SPARC–Collagen with Human Serum Albumin. Journal of Computational
Biophysics and Chemistry , 21 (8), 927–939.