Figure 12 A) Schematic representation of photocatalytic H2 generation on MoS2-CdS nanorods. B) H2 evolution rates of MoS2-CdS nanorods with different MoS2 content. C) Comparison of H2 evolution rates between CdS nanorods, 1 wt.% Pt/CdS nanorods, 3.5 wt.% MoS2 /CdS nanorods, 3.5 wt.% MoS2-CdS nanorods, and 3.5% Pt/CdS nanorods. D) Bright-field TEM image of CdSe-seeded CdS nanorods (length 60 nm). E) MoS3 deposition on a CdSe-seeded CdS nanorod, with photocatalytic hydrogen production in the visible range using triethanolamine (TEOA) as a sacrificial reductant. F) A typical gas chromatogram observed for a MoS3-coated CdS/CdSe nanorod using 450 nm light with an induction period of approximately 50 min. 0.07 nmol of rods were used with 5.0 mL 0.1m tris buffer (pH 7.0) and 0.20 mL TEOA. The inset shows the measurement over a period of four hours. The activities are derived from the maximum rate of H2 produced, as indicated by the arrows. G)-H) Wide-area TEM images of ZAIS nanodumbbells prepared when xp=0.5 and corresponding ZAIS nanoellipsoids simultaneously formed as a byproduct. ZAIS nanocrystals of each shape were separated from as-prepared mixture nanocrystals by a size-selective precipitation technique. I) Schematic illustration of the formation mechanism of ZAIS nanodumbbells and nanoellipsoids. J) Dependence of R(H2) on the kind of ZAIS nanocrystals used. Samples were (i) ZAIS(x/0.24/x) nanodumbbells, (ii) ZAIS(x) nanoellipsoids, (iii) ZAIS(0.24) nanorods, and (iv) mixtures of ZAIS(0.24) nanorods and ZAIS(x) nanoellipsoids (1:2). The scale bar is 20 nm. A-C) Reproduced with permission.[35] Copyright 2016, Wiley-VCH. D-F) Reproduced with permission.[36] Copyright 2011, Wiley-VCH. G-J) Reproduced with permission.[37]Copyright 2018, American Chemical Society.
3. Conclusion and outlook
This Review presents a variety of strategies to engineer the metal-semiconductor nanorods hybrid nanostructures so that their electronic properties could be tuned to perform optimal photocatalytic functions in solar-driven water splitting. While the scope of this engineering is broad and the photocatalytic properties of derived hybrid nanomaterials are impressive, this area of research still faces significant challenges before the full potential of the hybrid nanomaterials is realized. One challenge is to expand these engineering strategies from cadmium-based 1D hybrid structures to additional semiconductor materials, in particular to heavy-metal-free earth abundant systems. This will require further development of synthetic routes in combination with emerging engineering strategies which may lead to less or even non-toxic “green” photocatalysts for solar-driven fuel production through water splitting but also may provide an avenue to sustainable and environmental friendly clean fuels. On the other hand, the construction of multifunctional heterostructure seems to be a promising approach for water splitting with the realization of high hydrogen evolution efficiency and prevention from the degradation induced by holes accumulation.
It is worth noting that this Reviews is mainly focused on metal-semiconductor nanorods hybrid nanostructures with elongated shape. Two-dimensional (2D) metal-semiconductor nanoplatelets hybrid nanostructures with excitons being confined in their thickness direction are less studies and not well developed. As the catalytic reactions are more likely to take place on the edge atoms, selectively depositing the metal atoms, especially the noble metal atoms, onto the edges of semiconductor nanoplatelets will increase their exposure, which can reduce their amount of deposition and cost. Furthermore, exploration of the engineering strategies to this type of intriguing hybrid materials are meaningful and exciting because studies into this area may lead to unexpected observations and unprecedented photocatalytic performances.
To summarize, metal-semiconductor hybrid nanoparticles have significant potential in solar-driven photocatalysis for clean fuel production. The remarkable advances in the engineering strategies of these materials alongside with the in-depth understanding the physico-chemical principals that govern the photocatalytic reactions provide a solid basis for their photocatalytic applications.
Acknowledgement
This work is supported by the Australian Research Council (ARC) Future Fellowship Scheme (FT210100509), ARC Discovery Project (DP220101959), the Hebrew University of Jerusalem - Zelman Cowen Academic Initiatives (ZCAI) Joint Projects 2021, the Innovation and Technology Commission (grant no. MHP/104/21), Shenzhen Science Technology and Innovation Commission (grant no. 20210324125612035), and City University of Hong Kong (grant no. 9360140).
References
  1. a) T. Wang, J. Zhuang, J. Lynch, O. Chen, Z. Wang, X. Wang, D. LaMontagne, H. Wu, Z. Wang, Y. C. Cao, Science 2012 ,338 , 358; b) J. Hu, L. S. Li, W. Yang, L. Manna, L.W. Wang, A. P. Alivisatos, Science 2001 , 292 , 2060; c) C. M. Wolff, P. D. Frischmann, M. Schulze, B. J. Bohn, R. Wein, P. Livadas, M. T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J. K. Stolarczyk, Nat. Energy 2018 , 3 , 862; d) A. A. Pawar, S. Halivni, N. Waiskopf, Y. Ben-Shahar, M. Soreni-Harari, S. Bergbreiter, U. Banin, S. Magdassi, Nano Lett. 2017 ,17 , 4497; e) D. Chen, H. Zhang, Y. Li, Y. Pang, Z. Yin, H. Sun, L. C. Zhang, S. Wang, M. Saunders, E. Barker, G. Jia, Adv. Mater. 2018 , 30 , 1803351; f) G. Jia, Y. Pang, J. Ning, U. Banin, B. Ji, Adv. Mater. 2019 , 31 , 1900781; g) W. U. Huynh, J. J. Dittmer, A. P. Alivisatos,Science 2002 , 295, 2425; h) G. Jia, A. Sitt, G. B. Hitin, I. Hadar, Y. Bekenstein, Y. Amit, I. Popov, U. Banin,Nat. Mater. 2014 , 13 , 301; i) G. Jia, U. Banin,J. Am. Chem. Soc. 2014 , 136 , 11121.
  2. a) N. Waiskopf, Y. Ben-Shahar, U. Banin, Adv. Mater.2018 , 30 , 1706697; b) S. S. Lo, T. Mirkovic, C. Chuang, C. Burda, G. D. Scholes, Adv. Mater. 2011 ,23 , 180; c) C. Tan, J. Chen, X. Wu, H. Zhang, Nat. Rev. Mater . 2018 , 3 , 17089; d) K. Wu, J. Chen, J. R. McBride, T. Lian, Science 2015 , 349 , 6248.
  3. a) N. Oh, B. H. Kim, S. Y. Cho, S. Nam, S. P. Rogers, Y. Jiang, J. C. Flanagan, Y. Zhai, J. H. Kim, J. Lee, Y. Yu, Y. K. Cho, G. Hur, J. Zhang, P. Trefonas, J. A. Rogers, M. Shim, Science2017 , 355 , 616; b) S. Kumar, M. Jones, S. S. Lo, G. D. Scholes, Small 2007 , 3 , 1633; c) A. Vaneski, A. S. Susha, J. Rodríguez-Fernández, M. Berr, F. Jäckel, J. Feldmann, A. L. Rogach, Adv. Funct. Mater. 2011 , 21 , 1547; d) H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 2006 , 5 , 782; e) J. Maynadie, A. Salant, A. Falqui, M. Respaud, E. Shahiv, U. Banin, K. Soulantica, B. Chaudret,Angew. Chem. Int. Ed. 2009 , 48 , 1814.
  4. a) D. K. Zhong, J. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc. 2009 , 131 , 6086; b) H. Dotan, N. Mathews, T. Hisatomi, M. Gratzel, A. Rothschild, J. Phys. Chem. Lett.2014 , 5 , 3330; c) S. K. Dutta, S. K. Mehetor, N. Pradhan, J. Phys. Chem. Lett. 2015 , 6 , 936; d) T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater.2014 , 13 , 1013.
  5. a) P. D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev.2006 , 35 , 1195; b) L. Carbonea, P. D. Cozzoli,Nano Today 2010 , 5 , 449; c) U. Banin, Y. Ben-Shahar, K. Vinokurov, Chem. Mater. 2014 ,26 , 97; d) R. Jiang, B. Li, C. Fang, J. Wang, Adv. Mater. 2014 , 26 , 5274; e) R. Costi, A. E. Saunders, U. Banin, Angew. Chem. Int. Ed. 2010 , 49 , 4878.
  6. a) A. Demortière, R. D. Schaller, T. Li, S. Chattopadhyay, G. Krylova, T. Shibata, P. C. dos S. Claro, C. E. Rowland, J. T. Miller, R. Cook, B. Lee, E. V. Shevchenko, J. Am. Chem. Soc. 2014 ,136 , 2342; b) T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 2004 , 304 , 1787; c) G. Dukovic, M. G. Merkle, J. H. Nelson, S. M. Hughes, A. P. Alivisatos, Adv. Mater. 2008 , 20 , 4306; d) G. Menagen, J. E. Macdonald, Y. Shemesh, I. Popov, U. Banin, J. Am. Chem. Soc.2009 , 131 , 17406.
  7. T. Bala, A. Singh, A. Sanyal1, C. O’Sullivan, F. Laffir, C. Coughlan, K. M. Ryan, Nano Research 2013 , 6 , 121.
  8. a) P. D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev.2006 , 35 , 1195; b) C. Coughlan, A. Singh, K. M. Ryan,Chem. Mater. 2013 , 25 , 653; c) F. Wang, Y. Wang, Y. Liu, P. J. Morrison, R. A. Loomis, W. E. Buhro, Acc. Chem. Res. 2015 , 48 , 13; d) F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem. 2006 ,45 , 7511.
  9. H. Shen, H. Shang, J. Niu, W. Xu, H. Wang, L. Li, Nanoscale2012 , 4 , 6509.
  10. a) S. Chakrabortty, G. Xing, Y. Xu, S. W. Ngiam, N. Mishra, T. C. Sum, Y. Chan, Small 2011 , 7 , 2847; b) S. Kraus-Ophir, Y. Ben-Shahar, U. Banin, D. Mandler, Adv. Mater. Interfaces 2014 , 1 , 1300030; c) N. Zhao, J. Vickery, G. Guerin, J. I. Park, M. A. Winnik, E. Kumacheva, Angew. Chem. Int. Ed. 2011 , 50 , 4606; d) P. Rukenstein, A. Teitelboim, M. Volokh, M. Diab, D. Oron, T. Mokari, J. Phys. Chem. C 2016 , 120 , 15453; e) P. Yu, X. Wen, Y. Lee, W. Lee, C. Kang, J. Tang, J. Phys. Chem. Lett. 2013 ,4 , 3596; f) T. O’Connor, M. S. Panov, A. Mereshchenko, A. N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, M. Zamkov, ACS Nano 2012 , 6 , 8156; g) D. Zeng, Y. Chen, Z. Wang, J. Wang, Q. Xie, D. Peng, Nanoscale2015 , 7 , 11371; h) A. Ganai, P. S. Maiti, L. Houben, R. Bar-Ziv, M. B. Sadan, J. Phys. Chem. C 2017 ,121 , 7062; i) J. R. D. Retamal, D. Periyanagounder, J. Ke, M. Tsai, J. He, Chem. Sci. 2018 , 9 , 7727.
  11. D. Stone, Y. Ben-Shahar, N. Waiskopf, U. Banin, ChemCatChem2018 , 10, 5119.
  12. P. Tongying, F. Vietmeyer, D. Aleksiuk, G. J. Ferraudi, G. Krylova, M. Kuno, Nanoscale 2014 , 6 , 4117.
  13. Aronovitch, P. Kalisman, L. Houben, L. Amirav, M. Bar-Sadan,Chem. Mater. 2016 , 28 , 1546.
  14. a) Y. Xu, A. V. Ruban, M. Mavrikakis, J. Am. Chem. Soc.2004 , 126 , 4717; b) F. Tao, M. E. Grass, Y. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M. Salmeron, G. A. Somorjai, Science , 2008 , 322 , 932.
  15. P. Kalisman, L. Houben, E. Aronovitch, Y. Kauffmann, M. Bar-Sadanc, L. Amirav, J. Mater. Chem. A 2015 , 3 , 19679.
  16. J. Maynadié, A. Salant, A. Falqui, M. Respaud, E. Shaviv, U. Banin, K. Soulantica, B. Chaudret, Angew. Chem. Int. Ed. 2009 ,48 , 1814.
  17. a) F. F. Schweinberger, M. J. Berr, M. Döblinger, C. Wolff, K. E. Sanwald, A. S. Crampton, C. J. Ridge, F. Jäckel, J. Feldmann, M. Tschurl, U. Heiz, J. Am. Chem. Soc. 2013 , 135 , 13262; b) Y. Tian, L. Wang, S. Yu, W. Zhou, Nanotechnology2015 , 26 , 325702; c) C. O’Sullivan, R. D. Gunning, C. A. Barrett, A. Singhab, K. M. Ryan, J. Mater. Chem.2010 , 20 , 7875; d) Y. Khalavka, S. Harms, A. Henkel, M. Strozyk, R. Ahijado-Guzmán, C. Sönnichsen, Langmuir2018 , 34, 187; e) N. Waiskopf, Y. Ben-Shahar, M. Galchenko, In. Carmel, G. Moshitzky, H. Soreq, U. Banin, Nano Lett. 2016 , 16 , 4266.
  18. Y. Ben-Shahar, J. P. Philbin, F. Scotognella, L. Ganzer, G. Cerullo, E. Rabani, U. Banin, Nano Lett. 2018 , 18 , 5211.
  19. Y. Nakibli, Y. Mazal, Y. Dubi, M. Wächtler, L. Amirav, Nano Lett. 2018 , 18 , 357.
  20. Y. Ben-Shahar, F. Scotognella, I. Kriegel, L. Moretti, G. Cerullo, E. Rabani, U. Banin, Nat Commun 2016 , 7 , 10413.
  21. a) E. Shaviv, O. Schubert, M. Alves-Santos, G. Goldoni, R. Di Felice, F. Vallée, N. D. Fatti, U. Banin, C. Sönnichsen, ACS Nano2011 , 5 , 4712; b) M. G. Alemseghed, T. P. A. Ruberu, J. Vela, Chem. Mater. 2011 , 23 , 3571; c) C. Caddeo, V. Calzia, L. Bagolini, M. T. Lusk, A. Mattoni, J. Phys. Chem. C 2015 , 119 , 22663; d) H. Schlicke, D. Ghosh, L. Fong, H. L. Xin, H. Zheng, A. P. Alivisatos, Angew. Chem. Int. Ed. 2013 , 52 , 980; e) L. J. Hill, M. M. Bull, Y. Sung, A. G. Simmonds, P. T. Dirlam, N. E. Richey, S. E. DeRosa, I. Shim, D. Guin, P. J. Costanzo, N. Pinna, M. Willinger, W. Vogel, K. Char, J. Pyun, ACS Nano 2012 , 6 , 8632; f) J. W. Ha, T. P. A. Ruberu, R. Han, B. Dong, J. Vela, N. Fang, J. Am. Chem. Soc. 2014 , 136 , 1398.
  22. Y. Nakibli, P. Kalisman, L. Amirav, J. Phys. Chem. Lett.2015 , 6 , 2265.
  23. T. Simon, M. T. Carlson, J. K. Stolarczyk, J. Feldmann, ACS Energy Lett. 2016 , 1 , 1137.
  24. J. U. Bang, S. J. Lee, J. S. Jang, W. Choi, H. Song, J. Phys. Chem. Lett. 2012 , 3 , 3781.
  25. a) L. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett .2010 , 1 , 1051; b) V. L. Bridewell, R. Alam, C. J. Karwacki, P. V. Kamat, Chem. Mater. 2015 , 27 , 5064.
  26. a) C. M. Wolff , P. D. Frischmann , M. Schulze, B. J. Bohn, R. Wei, P. Livadas, M. T. Carlson, F. Jäckel , J. Feldmann , F. Würthner , J. K. Stolarczyk, Nat. Energy . 2018 , 3 , 862; b) M. F. Kuehnel, C. E. Creissen, C. D. Sahm, D. Wielend, A. Schlosser, K. L. Orchard, E. Reisner, Angew. Chem. Int. Ed . 2019 ,58 , 5059.
  27. a) T. Zhuang, Y. Liu, Y. Li, M. Sun, Z. Sun, P. Du, J. Jiang, S. Yu,Small . 2017 , 13 , 1602629; b) P. D. Cozzoli, M. L. Curri, C. Giannini, A. Agostiano, Small. 2006 ,2 , 413; c) A. Debangshi, U. Thupakula, A. H. Khan, G. S. Kumar, Piyush K. Sarkar, S. Acharya, ACS Appl. Nano Mater .2018 , 1 , 2104; d) Q.Liu, Q. Shang, A. Khalil, Q. Fang, S. Chen, Q. He, T. Xiang, D. Liu, Q. Zhang, Y. Luo, L. Song,ChemCatChem . 2016 , 8 , 2614; e) Q. Xiang, F. Cheng, D. Lang, ChemSusChem . 2016 , 9 , 996; f) R. Bera, S. Kundu, A. Patra, ACS Appl. Mater. Interfaces .2015 , 7 , 13251; g) S. Liang, B. Han, X. Liu, W. Chen, M. Peng, G. Guan, H. Deng, Z. Lin, J. Alloys Compd .2018 , 754 , 105; h) D. Chen, A. Wang, H. Li, L. A. Galán, C. Su, Z. Yin, M. Massi, A Suvorova, M. Saunders, J. Li, A. Sitt, G. Jia, Nanoscale . 2019 ,11 , 10190; i) P. S. Dilsaver, M. D. Reichert, B. L. Hallmark, M. J. Thompson, J. Vela,J. Phys. Chem. C . 2014 , 118 , 21226; j) B. Xu, P. He, H. Liu, P. Wang, G. Zhou, X. Wang, Angew. Chem. Int. Ed .2014 , 53 , 2339.
  28. T. Zhuang, Y. Liu, M. Sun, S. Jiang, M. Zhang, X. Wang, Q. Zhang, J. Jiang, S. Yu, Angew. Chem. Int. Ed . 2015 , 54 , 11495.
  29. a) C. Ye , M. D. Regulacio, S. H. Lim, S. Li, Q. Xu, M. Han,Chem. Eur. J . 2015 , 21 , 9514; b) C. Ye, M. D. Regulacio, S. H. Lim, Q.-H. Xu, M.-Y. Han, Chem. Eur. J.2012 , 18 , 11258.
  30. Y. Ben-Shahar, F. Scotognella, N. Waiskopf, I. Kriegel, S. D. Conte, G. Cerullo, U. Banin, Small . 2015 , 11 , 462.
  31. a) Y. Feng, X. Shi, X. Wang, H. Lee, J. Liu, Y. Qu, W. He, S. S. Kumar, B. H. Kim, N. Ren, Biosens. Bioelectron. 2012 ,35 , 413; b) M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. S. Susha, A. L. Rogach, F. Jäckel, J. Feldmann, Small .2012, 8 , 291; c) K. Wu, H. Zhu, T. Lian, Acc. Chem. Res . 2015 , 48 , 851.
  32. K. Wu, Z. Chen, H. Lv, H. Zhu, C. L. Hill, T. Lian, J. Am. Chem. Soc . 2014 , 136 , 7708.
  33. M. J. Berr, P. Wagner, S. Fischbach, A. Vaneski, J. Schneider, A. S. Susha, A. L. Rogach, F. Jäckel, J. Feldmann, Appl. Phys. Lett .2012 , 100, 223903.
  34. a) I. J. Plante, A. Teitelboim, I. Pinkas, D. Oron, T. Mokari,J. Phys. Chem. Lett . 2014 , 5 , 590; b) T. P. A. Ruberu, J. Vela, ACS Nano , 2011 , 5 , 5775; c) S. Kumar, M. Jones, S. S. Lo, G. D. Scholes, Small . 2007 ,3 , 1633; d) A. N. Grennell, J. K. Utterback, O. M. Pearce, M. B. Wilker, G. Dukovic, Nano Lett. 2017 , 17 , 3764; e) S. Kudera, L. Carbone, M. F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W. J. Parak, L. Manna, Nano Lett. 2005 ,5 , 445; f) S. Shen, Y. Zhang, L. Peng, Y. Du, Q. Wang,Angew. Chem. Int. Ed. 2011 , 50 , 7115; g) X. Yu, A. Shavel, X. An, Z. Luo, M. Ibáñez, Andreu Cabot, J. Am. Chem. Soc. 2014 , 136 , 9236.
  35. K. Zhang, J. K. Kim, M. Ma, S. Y. Yim, C. Lee, H. Shin, J. H. Park,Adv. Funct. Mater . 2016 , 26 , 4527.
  36. M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, A. P. Alivisatos, Angew. Chem. Int. Ed. 2011 , 50 , 10203.
  37. T. Kameyama, S. Koyama, T. Yamamoto, S. Kuwabata, T. Torimoto,J. Phys. Chem. C . 2018, 122 , 13705.