References

  1. ICH. (2006) Q3A(R2): Impurities: Impurities in New Drug Substances. (accessed December 12, 2021).
  2. ICH. (2021) Q3C(R8): Impurities: Guideline for Residual Solvents. (accessed December 12, 2021).
  3. ICH. (2022) Q3D(R2): Impurities: Guideline for elemental impurities. (accessed April 26, 2022).
  4. Dhangar KR, Jagtap RB, Surana SJ, et al. Impurity profiling of drugs towards safety and efficacy: theory and practice. J Chil Chem Soc. 2017;62(2): 3543-3557.doi.org/10.4067/S0717-97072017000200024 .
  5. Xu Y, Wang DD, Tang L, et al. Separation and characterization of allergic polymerized impurities in cephalosporins by 2D-HPSEC× LC-IT-TOF MS. J Pharm Biomed Anal . 2017;145: 742-750. doi.org/10.1016/j.jpba.2017.07.063
  6. Du Y, Wu Y, Liu Y, et al. Identification and genotoxicity evaluation of potential impurities in rabeprazole sodium using in silico and in vitro analyses. Drug Chem Toxicol. 2022; 45(5): 2116-2122. doi.org/10.1080/01480545.2021.1908712
  7. Li M, Yao L, Chen H, et al. Chiral toxicity of muscone to embryonic zebrafish heart. Aquat Toxicol . 2020; 222: 105451. doi.org/10.1016/j.aquatox.2020.105451
  8. ICH (2017) M7(R1): Mutagenic impurities: Assessment And Control of DNA reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk, (accessed December 12, 2021).
  9. Snodin DJ. Elusive impurities—evidence versus hypothesis. Technical and regulatory update on alkyl sulfonates in sulfonic acid salts. Org Process Res Dev. 2019; 23(5): 695-710. doi.org/10.1021/acs.oprd.8b00397
  10. U. S. FDA. 2008. Guidance for Industry, Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommend Approaches.
  11. Gogna K. Regulatory aspects of impurity profiling. International Journal of Drug Regulatory Affairs, 2020; 8(4): 45-54. doi.org/10.22270/ijdra.v8i4.433
  12. Yue Y, Wang J, Zhao Y, et al. Impurity profiling of Cefteram pivoxil based on Fourier transform ion cyclotron resonance MS. J Pharm Biomed Anal . 2020; 191: 113591. doi.org/10.1016/j.jpba.2020.113591
  13. Chen Y, Wu S, Yang Q. Development and validation of LC-MS/MS for analyzing potential genotoxic impurities in Pantoprazole starting materials. J Anal Methods Chem . 2020; 2020. doi.org/10.1155/2020/6597363
  14. Martin S, Tonnesmann R, Hierlmeier I, et al. Identification, characterization, and suppression of side products formed during the synthesis of [177Lu] Lu-PSMA-617. J Med Chem . 2021; 64(8): 4960-4971. doi.org/10.1021/acs.jmedchem.1c00045
  15. Viola A, Ferrazzano L, Martelli G, et al. Novel insights into the chemistry of an old medicine: a general degradative pathway for penicillins from a piperacillin/tazobactam stability study. Eur J Pharm Sci . 2019; 136: 104957. doi.org/10.1016/j.ejps.2019.104957
  16. Van der Vossen AC, Van Der Velde I, Smeets O, et al. Design and stability study of an oral solution of amlodipine besylate for pediatric patients. Eur J Pharm Sci . 2016; 92: 220-223. doi.org/10.1016/j.ejps.2016.05.019
  17. Arruda C, Ribeiro VP, Almeida MO, et al. Effect of light, oxygen and temperature on the stability of artepillin C and p-coumaric acid from Brazilian green propolis. J Pharm Biomed Anal . 2020; 178: 112922. doi.org/10.1016/j.jpba.2019.112922
  18. Singh G, Gollapalli R, Blinder A, et al. Identification of leachable impurities in an ophthalmic drug product originating from a polymer additive Irganox 1010 using mass spectroscopy. J Pharm Biomed Anal. 2018; 152: 197-203. doi.org/10.1016/j.jpba.2018.01.053
  19. Prajapati PB, Bhayani DR, Mehta PJ. Accelerated stability testing of levosimendan: isolation and characterization of degradation impurities utilizing preparative HPLC, LC–MS, NMR, and IR. J Liq Chromatogr Relat Technol. 2018; 41(9): 498-507. doi.org/10.1080/10826076.2018.1470982
  20. Mahajan AA, Marathe AM, Jarande SS, et al. Characterization and toxicity evaluation of degradation products of febantel. Future Journal of Pharmaceutical Sciences. 2020; 6: 1-12. doi.org/10.1186/s43094-020-00138-7
  21. Paskiet D, Kraft C, Tullo E, et al. Assessment of Extractable Elements from Elastomers. PDA J Pharm Sci Technol . 2019; 73(1): 83-91. doi.org/10.5731/pdajpst.2017.008193
  22. Johri N, Jacquillet G, Unwin R. Heavy metal poisoning: the effects of cadmium on the kidney. BioMetals. 2010; 23: 783-792. doi.org/10.1007/s10534-010-9328-y
  23. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014; 88: 1929-1938. doi.org/10.1007/s00204-014-1355-y
  24. Chahrour O, Malone J, Collins M, et al. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP< 232>/< 233. J Pharm Biomed Anal. 2017; 145: 84-90. doi.org/10.1016/j.jpba.2017.06.045
  25. Morley R, Minceva M. Trapping multiple dual mode liquid-liquid chromatography: Preparative separation of nootkatone from a natural product extract. J Chromatogr A . 2020; 1625: 461272. doi.org/10.1016/j.chroma.2020.461272
  26. Li T, Su C. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis. Spectrochim. Acta, Part A. 2018; 204: 131-140. doi.org/10.1016/j.saa.2018.06.004
  27. Nan G, Guo L, Gao Y, et al. Speciation analysis and dynamic absorption characteristics of heavy metals and deleterious element during growing period of Chinese peony. Int J Phytorem. 2019; 21(14): 1407-1414. doi.org/10.1080/15226514.2019.1633261
  28. Cao P, Wang G, Wei X, et al. How to improve CHMs quality: Enlighten from CHMs ecological cultivation. Chin Herb Med. 2021; 13(3): 301-312. doi.org/10.1016/j.chmed.2021.04.014
  29. Bi B, Bao J, Xi G, et al. Determination of multiple mycotoxin residues in Panax ginseng using simultaneous UPLC‐ESI‐MS/MS. J Food Saf. 2018; 38(4): e12458. doi.org/10.1111/jfs.12458
  30. Lee MJ, Ramanathan S, Ismail R, et al. Stability test for the enzyme immunoassay reagents of Mitragynine. Asian Pac J Trop Dis. 2014; 4(3): 244. doi.org/10.1016/S2222-1808(14)60553-3
  31. Luo H, Li Y, Robbins D, et al. Safety risk management for low molecular weight process‐related impurities in monoclonal antibody therapeutics: Categorization, risk assessment, testing strategy, and process development with leveraging clearance potential. Biotechnol Prog. 2021; 37(3): e3119. doi.org/10.1002/btpr.3119
  32. Zhang C, Sun G, Senapati S, et al. A bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput nucleic acid extraction and purification. Lab Chip. 2019; 19(22): 3853-3861. doi.org/10.1039/C9LC00818G
  33. Levourch G, Lebaz N, Elaissari A. Hydrophilic submicron nanogel particles for specific recombinant proteins extraction and purification. Polymers. 2020; 12(6): 1413. doi.org/10.3390/polym12061413
  34. Bradley SA, Jackson Jr WC, Mahoney PP. Measuring Protein Concentration by Diffusion-Filtered Quantitative Nuclear Magnetic Resonance Spectroscopy. Anal Chem. 2019; 91(3): 1962-1967. doi.org/10.1021/acs.analchem.8b04283
  35. Beg S, Malik AK, Afzal O, et al. Systematic development and validation of a RP-HPLC method for estimation of abiraterone acetate and its degradation products. J Chromatogr Sci. 2021; 59(1): 79-87. doi.org/10.1093/chromsci/bmaa080
  36. Palacharla SK, Krishna Mohan GV, Naga Babu A. RP-HPLC estimation of bumetanide and its impurities in oral solid dosage form. Asian J. Chem. 2019; 31(10): 2275-2283. Doi: 10.14233/ajchem.2019.22069
  37. Luo L, Tan M, Luo Y. Determination of related substances in ketoprofen injection by RP-HPLC method. Pak J Pharm Sci. 2019; 32(4): 1607-1615.
  38. Mieszkowski D, Koba M, Marszałł MP. Application of Ionic Liquids for the Determination of Lipophilicity Parameters Using TLC Method, and QSRR Analysis for the Antipsychotic Drugs. Med chemistry. 2020; 16(7): 848-859. doi.org/10.2174/1573406415666190723162959
  39. Ordoñez EY, Rodil R, Quintana JB, et al. Determination of artificial sweeteners in beverages with green mobile phases and high temperature liquid chromatography–tandem mass spectrometry. Food chemistry. 2015; 169: 162-168. doi.org/10.1016/j.foodchem.2014.07.132
  40. Mohan TSSJ, Jogia HA, Mukkanti K. A stability indicating UHPLC method for the simultaneous estimation of perindopril, indapamide in presence of potential impurities: An application of QbD for robustness study. Anal Chem Lett. 2020; 10(4): 477-497. doi.org/10.1080/22297928.2020.1817776
  41. Kasagić-Vujanović I, Jančić-Stojanović B. Quality by Design oriented development of hydrophilic interaction liquid chromatography method for the analysis of amitriptyline and its impurities. J Pharm Biomed Anal. 2019; 173: 86-95. doi.org/10.1016/j.jpba.2019.05.026
  42. Douša M. Quantification of 2-aminoisobutyric acid impurity in enzalutamide bulk drug substance using hydrophilic interaction chromatography with fluorescence detection. J Pharm Biomed Anal. 2019; 164: 296-301. doi.org/10.1016/j.jpba.2018.10.049
  43. Jain M, Srivastava V, Kumar R, et al. Determination of five potential genotoxic impurities in dalfampridine using liquid chromatography. J Pharm Biomed Anal. 2017; 133: 27-31. doi.org/10.1016/j.jpba.2016.10.013
  44. Colombo M, Ferretti R, Zanitti L, et al. Direct separation of the enantiomers of ramosetron on a chlorinated cellulose‐based chiral stationary phase in hydrophilic interaction liquid chromatography mode. J Pharm Biomed Anal. 2020; 43(13): 2589-2593. doi.org/10.1002/jssc.202000290
  45. Kühnreich R, Holzgrabe U. Impurity profiling of l-methionine by HPLC on a mixed mode column. J Pharm Biomed Anal. 2016; 122: 118-125. doi.org/10.1016/j.jpba.2016.01.057
  46. Chin S, Lin XX, Santarra B, et al. Multiplexed small molecule impurity monitoring in antibody-based therapeutics by mixed-mode chromatography paired with charged aerosol detection. J Pharm Biomed Anal. 2021; 197: 113952. doi.org/10.1016/j.jpba.2021.113952
  47. García-Gómez D, Díaz B A, Rodríguez-Gonzalo E. LC-HRMS based on mixed-mode chromatography for the separation of teicoplanin and the unravelment of its composition. J Pharm Biomed Anal. 2020; 186: 113308. doi.org/10.1016/j.jpba.2020.113308
  48. Chen D, Yuan Y, Yu J, et al. Purification of semiconducting polymer dots by size exclusion chromatography prior to cytotoxicity assay and stem cell labeling. Anal Chem. 2018; 90(9): 5569-5575. Doi:10.1021/acs.analchem.8b00095
  49. Glöckner G, van der Berg JHM. Precipitation and adsorption phenomena in polymer chromatography. J Chromatogr A. 1986; 352: 511-522. doi.org/10.1016/S0021-9673(01)83405-1
  50. Lin Z, Yun KY, Ling M, et al. High-molecular weight impurity screening by size-exclusion chromatography on a reversed-phase column. J Pharm Biomed Anal. 2021; 196: 113908. doi.org/10.1016/j.jpba.2021.113908
  51. Xu Y, Wang D, Zhu B, et al. Separation and characterization of allergenic polymerized impurities from cephalosporin for injection by trap free two-dimensional high performance size exclusion chromatography× reversed phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry. J Pharm Biomed Anal. 2018; 154: 425-432. doi.org/10.1016/j.jpba.2018.03.043
  52. Karu N, Hutchinson JP, Dicinoski GW, et al. Determination of pharmaceutically related compounds by suppressed ion chromatography: IV. Interfacing ion chromatography with universal detectors. J Chromatogr A. 2012; 1253: 44-51. doi.org/10.1016/j.chroma.2012.06.101
  53. Karu N, Dicinoski GW, Hanna-Brown M, et al. Determination of pharmaceutically related compounds by suppressed ion chromatography: I. Effects of organic solvent on suppressor performance. J Chromatogr A. 2011; 1218(50): 9037-9045. doi.org/10.1016/j.chroma.2011.10.011
  54. Xu F, Xu Y, Liu G, et al. Separation of twelve posaconazole related stereoisomers by multiple heart-cutting chiral–chiral two-dimensional liquid chromatography. J Chromatogr A. 2020; 1618: 460845. doi.org/10.1016/j.chroma.2019.460845
  55. Ahmad I AH, Chen W, Halsey HM, et al. Multi-column ultra-high performance liquid chromatography screening with chaotropic agents and computer-assisted separation modeling enables process development of new drug substances. Analyst, 2019; 144(9): 2872-2880. doi.org/10.1039/C8AN02499E
  56. Miniyar PB, Kulkarni RD, Thomas AB, et al. Development and validation of an analytical method for the identification of 2-nitrophenyl (phenyl) sulfane as potential genotoxic impurity of quetiapine fumarate at trace levels by high-performance thin-layer chromatography. JPC-Journal of Planar Chromatography-Modern TLC. 2019; 32(6): 511-516. doi.org/10.1556/1006.2019.32.6.10
  57. Soliman SM. Factor optimization study to develop and validate a reversed-phase thin-layer chromatography method for the determination of trimetazidine dihydrochloride and its reported impurities in pharmaceuticals. JPC-Journal of Planar Chromatography-Modern TLC. 2019; 32(4): 273-283. doi.org/10.1556/1006.2019.32.4.2
  58. Abdelaleem EA, Naguib IA, Farag SA, et al. Reversed-phase high-performance liquid chromatography and high-performance thin-layer liquid chromatography methods for simultaneous determination of theophylline, Guaifenesin and guaifenesin impurity (Guaiacol) in their bulk powders and in dosage form. J Chromatogr Sci. 2018; 56(9): 846-852. doi.org/10.1093/chromsci/bmy062
  59. Dlamini B, Rangarajan V, Clarke KG. A simple thin layer chromatography based method for the quantitative analysis of biosurfactant surfactin vis-a-vis the presence of lipid and protein impurities in the processing liquid. Biocatal Agric Biotechnol. 2020; 25: 101587. doi.org/10.1016/j.bcab.2020.101587
  60. Abdelaleem EA, Abou El Ella DA, Mahmoud AM, et al. Green analysis of newly approved binary omeprazole/aspirin mixture in presence of aspirin impurity using ultra‐high‐performance liquid chromatography and thin‐layer chromatography methods. Biomed Chromatogr. 2021; 35(2): e4986. doi.org/10.1002/bmc.4986
  61. Kalíková K, Martínková M, Schmid MG, et al. Cellulose tris‐(3, 5‐dimethylphenylcarbamate)‐based chiral stationary phase for the enantioseparation of drugs in supercritical fluid chromatography: comparison with HPLC. J Sep Sci. 2018; 41(6): 1471-1478. doi.org/10.1002/jssc.201701341
  62. Harnisch H, Scriba GKE. Capillary electrophoresis method for the determination of (R)-dapoxetine,(3S)-3-(dimethylamino)-3-phenyl-1-propanol,(S)-3-amino-3-phenyl-1-propanol and 1-naphthol as impurities of dapoxetine hydrochloride. J Pharm Biomed Anal. 2019; 162: 257-263. doi.org/10.1016/j.jpba.2018.09.039
  63. Pagliano E, Campanella B, D’Ulivo A, et al. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography-a review. Anal Chim Acta. 2018; 1025: 12-40. doi.org/10.1016/j.aca.2018.03.043
  64. Liu S, Yao S, Zhang H, et al. Determination of relative response factors of cefazolin impurities by quantitative NMR. AAPS PharmSciTech. 2017; 18: 1895-1900. doi.org/10.1208/s12249-016-0654-4
  65. Villedieu-Percheron E, Ferreira V, Campos JF, et al. Quantitative determination of Andrographolide and related compounds in Andrographis paniculata extracts and biological evaluation of their Anti-Inflammatory Activity. Foods. 2019; 8(12): 683. doi.org/10.3390/foods8120683
  66. Pawellek R, Schilling K, Holzgrabe U. Impurity profiling of l-aspartic acid and glycine using high-performance liquid chromatography coupled with charged aerosol and ultraviolet detection. J Pharm Biomed Anal. 2020; 183: 113149. doi.org/10.1016/j.jpba.2020.113149
  67. Katakam LNR, Dongala T. A novel RP‐HPLC refractive index detector method development and validation for determination of trace‐level alcohols (un‐sulfated) in sodium lauryl sulfate raw material. Biomed Chromatogr. 2020, 34(7): e4827. doi.org/10.1002/bmc.4827
  68. Wang C, Chen S, Caceres-Cortes J, et al. Chromatography-based methods for determining molar extinction coefficients of cytotoxic payload drugs and drug antibody ratios of antibody drug conjugates. J Chromatogr A. 2016; 1455: 133-139. doi.org/10.1016/j.chroma.2016.05.086
  69. Kumar SA, Bhaskar BL. Spectroscopic and volumetric techniques for the estimation of Ivabradine impurity 3, 3’-(propane-1, 3-diyl) bis (7, 8-dimethoxy-1, 3, 4, 5-tetrahydro-2H-benzo [d] azepin-2-one). Int J Appl Sci. 2019; 11(3): 216-218.
  70. Zhu P, Lu J, Wang Z, et al. Characterization of impurities in sodium cromoglycate drug substance and eye drops using LC-ESI-ion trap MS and LC-ESI-QTOF MS. J Pharm Biomed Anal. 2017; 145: 537-548. doi.org/10.1016/j.jpba.2017.07.015
  71. Hertzler SA, Knuth K, Preston R, et al. Investigation of unknown impurities of paromomycin in a 15% topical cream by liquid chromatography combined with mass spectrometry. Rapid Commun Mass Spectrom. 2019; 33(21): 1660-1669. doi.org/10.1002/rcm.8513
  72. Patil S, Kantikar G, Koppula S, et al. Identification and characterization of a new process related impurity in terbutaline sulfate by Accurate-Mass Q-TOF LC/MS/MS and NMR. Chromatographia. 2021; 84: 381-391. doi.org/10.1007/s10337-021-04021-2
  73. Pesek M, Juvan A, Jakoš J, et al. Database Independent Automated Structure Elucidation of Organic Molecules Based on IR, 1H NMR, 13C NMR, and MS Data. J Chem Inf Model. 2020; 61(2): 756-763. doi.org/10.1021/acs.jcim.0c01332
  74. Pagliano E, Meija J. A tool to evaluate nonlinearity in calibration curves involving isotopic internal standards in mass spectrometry. Int J Mass Spectrom. 2021; 464: 116557. doi.org/10.1016/j.ijms.2021.116557
  75. Andrade PD, Dantas RR, de Moura TLS, et al. Determination of multi-mycotoxins in cereals and of total fumonisins in maize products using isotope labeled internal standard and liquid chromatography/tandem mass spectrometry with positive ionization. J Chromatogr A. 2017; 1490: 138-147. doi.org/10.1016/j.chroma.2017.02.027
  76. Jin B, Guo K, Zhang T, et al. Simultaneous determination of 15 sulfonate ester impurities in phentolamine mesylate, amlodipine besylate, and tosufloxacin tosylate by LC-APCI-MS/MS. J Anal Methods Chem. 2019; 2019. doi.org/10.1155/2019/4059765
  77. Babu MD, Babu SK, Kishore K. Development and validation of a GC-MS with SIM method for the determination of trace levels of methane sulfonyl chloride as an impurity in Itraconazole API. J Anal Bioanal Tech. 2016; 7(2): 10.4172. DOI: 10.4172/2155-9872.1000316
  78. Iliou K, Malenović A, Loukas Y L, et al. Analysis of potential genotoxic impurities in rabeprazole active pharmaceutical ingredient via Liquid Chromatography-tandem Mass Spectrometry, following quality-by-design principles for method development. J Pharm Biomed Anal. 2018; 149: 410-418. doi.org/10.1016/j.jpba.2017.11.037
  79. Van Wijk AM, Niederländer HAG, Siebum AHG, et al. A new derivatization reagent for LC–MS/MS screening of potential genotoxic alkylation compounds. J Pharm Biomed Anal. 2013; 74: 133-140. doi.org/10.1016/j.jpba.2012.10.004
  80. Zhao MJ, Cheng L, Huang YJ, et al. Establishment and Validation of an ICP-MS Method for Simultaneous Measurement of 24 Elemental Impurities in Ubenimex APIs According to USP/ICH guidelines. Curr Pharm Anal. 2021; 17(6): 723-730. doi.org/10.2174/1573412916999200423103711
  81. Jurowski K, Krośniak M, Fołta M, et al. The toxicological analysis of Cu, Mn and Zn as elemental impurities in pharmaceutical herbal products for teething available in pharmacies in Poland. J Trace Elem Med Biol. 2019; 53: 109-112. doi.org/10.1016/j.jtemb.2019.02.011
  82. Janchevska K, Stafilov T, Memed-Sejfulah S, et al. ICH Q3D based elemental impurities study in liquid pharmaceutical dosage form with high daily intake–comparative analysis by ICP-OES and ICP-MS. Drug Dev Ind Pharm. 2020; 46(3): 456-461. doi.org/10.1080/03639045.2020.1724136
  83. Sauer B, Xiao Y, Zoontjes M, et al. Application of X-ray fluorescence spectrometry for screening pharmaceutical products for Elemental Impurities according to ICH guideline Q3D. J Pharm Biomed Anal. 2020; 179: 113005. doi.org/10.1016/j.jpba.2019.113005
  84. Katakam LNR, Aboul-Enein HY. Elemental impurities determination by ICP-AES/ICP-MS: A review of theory, interpretation of concentration limits, analytical method development challenges and validation criterion for pharmaceutical dosage forms. Curr Pharm Anal. 2020; 16(4): 392-403. doi.org/10.2174/1573412915666190225160512
  85. Zhang Q, Cheng Y, Yang J, et al. Isolation, identification, and characterization of potential impurities of doramectin and evaluation of their insecticidal activity. J Pharm Biomed Anal. 2020; 191: 113600. doi.org/10.1016/j.jpba.2020.113600
  86. Wang J, Zhou J, Xu Y, et al. Characterization of two unknown impurities in roxithromycin by 2D LC–QTOF/MS/MS and NMR. J Pharm Biomed Anal. 2020; 184: 113196. doi.org/10.1016/j.jpba.2020.113196
  87. Narkedimilli J, Vavilala V, Mohanty S, et al. Isolation and structure characterization of related impurity in olanzapine key starting material by LC/ESI-MS and NMR. Asian J Res Chem. 2018; 11(3): 539-544. doi.org/10.5958/0974-4150.2018.00096.2
  88. Santhosh, G , Anji Karun Mutha, et al. Isolation and Structural Characterization of Degradation Products of Finasteride by Preparative HPLC, HRMS and 2D NMR; Asian J Chem. 2019; 31: 1514-1518. doi:10.14233/ajchem.2019.21955
  89. Rajesh Reddy P, Musunuri S, Rama Sekhara Reddy D, et al. Identification, synthesis, and characterization of potential genotoxic impurities of sildenafil citrate drug substance. Future Journal of Pharmaceutical Sciences. 2020; 6: 1-10. doi.org/10.1186/s43094-020-00095-1
  90. Xie BC, Song SY, Xie XY, et al. Isolation, synthesis, and cytotoxicity evaluation of two impurities in nomegestrol acetate. Arch Pharm. 2019; 352(3): 1800295. doi.org/10.1002/ardp.201800295
  91. PONDURI R, KUMAR P, VADALI L RAO, et al. Synthesis and Characterization of Potential Pharmacopeial Impurities of Oseltamivir: An Antiviral Drug. Asian J Chem. 2018; 30(9): 2003-2007. doi:10.14233/ajchem.2018.21376
  92. Gebretsadik T, Linert W, Thomas M, et al. LC-NMR for natural products analysis: a journey from an academic curiosity to a robust analytical tool. Sci. 2019; 1(31): 10.3390. doi:10.3390/sci1010031
  93. Styles P, Soffe NF, Scott CA, et al. A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J Magn Reson.(1969). 1984; 60(3): 397-404. doi.org/10.1016/0022-2364(84)90050-7
  94. Sturm S, Seger C. Liquid chromatography–nuclear magnetic resonance coupling as alternative to liquid chromatography–mass spectrometry hyphenations: Curious option or powerful and complementary routine tool? J Chromatogr A. 2012; 1259: 50-61. doi.org/10.1016/j.chroma.2012.05.032
  95. Tokunaga T, Akagi K, Okamoto M. Sensitivity enhancement by chromatographic peak concentration with ultra-high performance liquid chromatography–nuclear magnetic resonance spectroscopy for minor impurity analysis. J Chromatogr A. 2017; 1508: 163-168. doi.org/10.1016/j.chroma.2017.06.014
  96. Huang T, Li H, Zhang W, et al. Advanced approaches and applications of qNMR. Metrologia; 2020; 57(1): 014004. Doi:10.1088/1681-7575/ab336b
  97. Singh S, Roy R. The application of absolute quantitative 1H NMR spectroscopy in drug discovery and development. Expert Opin Drug Discovery. 2016; 11(7): 695-706. doi.org/10.1080/17460441.2016.1189899
  98. Saito N, Kitamaki Y, Otsuka S, et al. Extended internal standard method for quantitative 1H NMR assisted by chromatography (EIC) for analyte overlapping impurity on 1H NMR spectra. Talanta. 2018; 184: 484-490. doi.org/10.1016/j.talanta.2018.03.003
  99. Liu S, Yao S, Zhang H, et al. Determination of relative response factors of cefazolin impurities by quantitative NMR. AAPS PharmSciTech. 2017; 18: 1895-1900. doi.org/10.1208/s12249-016-0654-4
  100. Xie B, Liu A, Fang X, et al. Rapid determination of alendronate to quality evaluation of tablets by high resolution 1H NMR spectroscopy. J Pharm Biomed Anal. 2014; 93: 73-76. doi.org/10.1016/j.jpba.2013.07.006
  101. Dousheng Z, Yan C, Yaping L, et al. A digitized impurity database analysis method for determining the impurity profiles of gatifloxacin in bulk materials and injections. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2012; 67(10): 827-833. doi.org/10.1691/ph.2012.1162