References
  1. Funk DJ, Parrillo JE, Kumar A. Sepsis and septic shock: a history. Crit Care Clin. 2009 Jan;25(1):83-101, viii.
  2. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018 Jul 7;392(10141):75-87.
  3. Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med. 2021 Nov 1;49(11):e1063-e1143.
  4. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K; International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016 Feb 1;193(3):259-72.
  5. Zhang Y, Cao B, Cao W, Miao H, Wu L. Clinical Characteristics and Death Risk Factors of Severe Sepsis in Children. Comput Math Methods Med. 2022 Jan 24;2022:4200605.
  6. Font MD, Thyagarajan B, Khanna AK. Sepsis and Septic Shock - Basics of diagnosis, pathophysiology and clinical decision making. Med Clin North Am. 2020 Jul;104(4):573-585.
  7. Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018 Jul;14(7):417-427.
  8. Esposito S, De Simone G, Boccia G, De Caro F, Pagliano P. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J Glob Antimicrob Resist. 2017 Sep;10:204-212.
  9. Muhammad J, Khan A, Ali A, Fang L, Yanjing W, Xu Q, Wei DQ. Network Pharmacology: Exploring the Resources and Methodologies. Curr Top Med Chem. 2018;18(12):949-964.
  10. Boezio B, Audouze K, Ducrot P, Taboureau O. Network-based Approaches in Pharmacology. Mol Inform. 2017 Oct;36(10).
  11. Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt HHHW. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci. 2022 Feb;43(2):136-150.
  12. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol. 2007 Oct;25(10):1119-26.
  13. Hopkins AL. Network pharmacology. Nat Biotechnol. 2007 Oct;25(10):1110-1.
  14. Jacunski A, Tatonetti NP. Connecting the dots: applications of network medicine in pharmacology and disease. Clin Pharmacol Ther. 2013 Dec;94(6):659-69.
  15. Zhang R, Zhu X, Bai H, Ning K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front Pharmacol. 2019 Feb 21;10:123.
  16. Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chin J Integr Med. 2020 Jan;26(1):72-80.
  17. Wang X, Wang ZY, Zheng JH, Li S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med. 2021 Jan;19(1):1-11.
  18. Dai YJ, Wan SY, Gong SS, Liu JC, Li F, Kou JP. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19. Chin J Nat Med. 2020 Dec;18(12):881-889.
  19. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020 Mar 16;6:14.
  20. Su H, Wu G, Zhan L, Xu F, Qian H, Li Y, Zhu X. Exploration of the Mechanism of Lianhua Qingwen in Treating Influenza Virus Pneumonia and New Coronavirus Pneumonia with the Concept of ”Different Diseases with the Same Treatment” Based on Network Pharmacology. Evid Based Complement Alternat Med. 2022 Feb 8;2022:5536266.
  21. Lei S, Lei X, Liu L. Drug repositioning based on heterogeneous networks and variational graph autoencoders. Front Pharmacol. 2022 Dec 21;13:1056605.
  22. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498-504.
  23. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61.
  24. Hugo Montes A, Valle-Garay E, Martin G, Collazos J, Alvarez V, Meana A, Pérez-Is L, Carton JA, Taboada F, Asensi V. The TNF-α (-238 G/A) polymorphism could protect against development of severe sepsis. Innate Immun. 2021 Jul;27(5):409-420.
  25. Fisher CJ Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA. 1994 Jun 15;271(23):1836-43.
  26. Huang Y, Zang K, Shang F, Guo S, Gao L, Zhang X. HMGB1 mediates acute liver injury in sepsis through pyroptosis of liver macrophages. Int J Burns Trauma. 2020 Jun 15;10(3):60-67.
  27. Andersson U, Yang H. HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. J Intensive Med. 2022 Mar 9;2(3):156-166.
  28. Chen L, Lu Q, Deng F, Peng S, Yuan J, Liu C, Du X. miR-103a-3p Could Attenuate Sepsis-Induced Liver Injury by Targeting HMGB1. Inflammation. 2020 Dec;43(6):2075-2086.
  29. Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014 May 1;10(5):520-9.
  30. Kumar V. Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. Int Immunopharmacol. 2018 May;58:173-185. doi: 10.1016/j.intimp.2018.03.005. Epub 2018 Apr 3.
  31. Liao ST, Han C, Xu DQ, Fu XW, Wang JS, Kong LY. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun. 2019 Nov 8;10(1):5091.
  32. Hu Q, Lyon CJ, Fletcher JK, Tang W, Wan M, Hu TY. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B. 2021 Jun;11(6):1493-1512.
  33. Gao YL, Zhai JH, Chai YF. Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis. Mediators Inflamm. 2018 Mar 7;2018:5823823.
  34. Pai MH, Wu JM, Yang PJ, Lee PC, Huang CC, Yeh SL, Lin MT. Antecedent Dietary Glutamine Supplementation Benefits Modulation of Liver Pyroptosis in Mice with Polymicrobial Sepsis. Nutrients. 2020 Apr 14;12(4):1086.
  35. Ward PA, Gao H. Sepsis, complement and the dysregulated inflammatory response. J Cell Mol Med. 2009 Oct;13(10):4154-60.
  36. Wood AJT, Vassallo A, Summers C, Chilvers ER, Conway-Morris A. C5a anaphylatoxin and its role in critical illness-induced organ dysfunction. Eur J Clin Invest. 2018 Dec;48(12):e13028.
  37. Sommerfeld O, Medyukhina A, Neugebauer S, Ghait M, Ulferts S, Lupp A, König R, Wetzker R, Schulz S, Figge MT, Bauer M, Press AT. Targeting Complement C5a Receptor 1 for the Treatment of Immunosuppression in Sepsis. Mol Ther. 2021 Jan 6;29(1):338-346.
  38. Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 2021 Nov 25;6(1):407.
  39. Yuan H, Ma Q, Cui H, Liu G, Zhao X, Li W, Piao G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules. 2017 Jul 7;22(7):1135.
  40. Salomão R, Ferreira BL, Salomão MC, Santos SS, Azevedo LCP, Brunialti MKC. Sepsis: evolving concepts and challenges. Braz J Med Biol Res. 2019;52(4):e8595.
  41. Zhou W, Lai X, Wang X, Yao X, Wang W, Li S. Network pharmacology to explore the anti-inflammatory mechanism of Xuebijing in the treatment of sepsis. Phytomedicine. 2021 May;85:153543.
  42. Li R, Guo C, Li Y, Qin Z, Huang W. Therapeutic targets and signaling mechanisms of vitamin C activity against sepsis: a bioinformatics study. Brief Bioinform. 2021 May 20;22(3):bbaa079.
  43. Lu J, Yan J, Yan J, Zhang L, Chen M, Chen Q, Cheng L, Li P. Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis. Biomed Pharmacother. 2020 Feb;122:109777.
  44. Fu ZH, Zhao LL, Zhou L, Li XC, Zhang XC. [Mechanism and experimental verification of Dachengqi Decoction in treatment of sepsis based on network pharmacology]. Zhongguo Zhong Yao Za Zhi. 2021 Oct;46(20):5351-5361. Chinese.
  45. Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol. 2023 Jan 19;14:1003658.
  46. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801-10.
  47. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):762-74.
  48. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016 Feb 23;315(8):788-800.
  49. Bittencourt-Mernak MI, Pinheiro NM, Santana FP, Guerreiro MP, Saraiva-Romanholo BM, Grecco SS, Caperuto LC, Felizardo RJ, Câmara NO, Tibério IF, Martins MA, Lago JH, Prado CM. Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2017 Feb 1;312(2):L217-L230.
  50. Margaria JP, Moretta L, Alves-Filho JC, Hirsch E. PI3K Signaling in Mechanisms and Treatments of Pulmonary Fibrosis Following Sepsis and Acute Lung Injury. Biomedicines. 2022 Mar 23;10(4):756.
  51. Yang R, Yang H, Wei J, Li W, Yue F, Song Y, He X, Hu K. Mechanisms Underlying the Effects of Lianhua Qingwen on Sepsis-Induced Acute Lung Injury: A Network Pharmacology Approach. Front Pharmacol. 2021 Oct 14;12:717652.
  52. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019 Nov;96(5):1083-1099.
  53. Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ. 2019 Jan 9;364:k4891.
  54. Yao T, Zhang L, Fu Y, Yao L, Zhou C, Chen G. Saikosaponin-d Alleviates Renal Inflammation and Cell Apoptosis in a Mouse Model of Sepsis via TCF7/FOSL1/Matrix Metalloproteinase 9 Inhibition. Mol Cell Biol. 2021 Sep 24;41(10):e0033221.
  55. Tang JL, Xin M, Zhang LC. Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury. Aging (Albany NY). 2022 Jul 20;14(14):5855-5877.
  56. Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res. 2022 Jul 26;15:4275-4290.
  57. Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care. 2016 Mar 23;4:22.
  58. Walley KR. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care. 2018 Aug;24(4):292-299.
  59. Wang X, Kong C, Liu P, Zhou B, Geng W, Tang H. Therapeutic Effects of Retinoic Acid in Lipopolysaccharide-Induced Cardiac Dysfunction: Network Pharmacology and Experimental Validation. J Inflamm Res. 2022 Aug 30;15:4963-4979.
  60. Wu J, Wang Z, Xu S, Fu Y, Gao Y, Wu Z, Yu Y, Yuan Y, Zhou L, Li P. Analysis of the role and mechanism of EGCG in septic cardiomyopathy based on network pharmacology. PeerJ. 2022 Mar 9;10:e12994.
  61. Azmi AS. Adopting network pharmacology for cancer drug discovery. Curr Drug Discov Technol. 2013 Jun;10(2):95-105.
  62. Poornima P, Kumar JD, Zhao Q, Blunder M, Efferth T. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res. 2016 Sep;111:290-302.
  63. Gomez-Cadena A, Barreto A, Fioretino S, Jandus C. Immune system activation by natural products and complex fractions: a network pharmacology approach in cancer treatment. Cell Stress. 2020 May 18;4(7):154-166.
  64. Wu C, Huang ZH, Meng ZQ, Fan XT, Lu S, Tan YY, You LM, Huang JQ, Stalin A, Ye PZ, Wu ZS, Zhang JY, Liu XK, Zhou W, Zhang XM, Wu JR. A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med. 2021 Nov 22;16(1):121.
  65. Wong YH, Lin CL, Chen TS, Chen CA, Jiang PS, Lai YH, Chu L, Li CW, Chen JJ, Chen BS. Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand-based and structure-based virtual screening methods. BMC Med Genomics. 2015;8 Suppl 4(Suppl 4):S4.
  66. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005 Apr 21;352(16):1685-95.
  67. Musunuru K, Hershberger RE, Day SM, Klinedinst NJ, Landstrom AP, Parikh VN, Prakash S, Semsarian C, Sturm AC; American Heart Association Council on Genomic and Precision Medicine; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Genetic Testing for Inherited Cardiovascular Diseases: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2020 Aug;13(4):e000067.
  68. Van Camp G. Cardiovascular disease prevention. Acta Clin Belg. 2014 Dec;69(6):407-11.
  69. Shi M, Li B, Yuan Q, Gan X, Ren X, Jiang S, Liu Z. Network Pharmacology-Based Approach to Investigate the Mechanisms of Mahai Capsules in the Treatment of Cardiovascular Diseases. Evid Based Complement Alternat Med. 2020 May 12;2020:9180982.
  70. Yu T, Zhang YX, Liu XJ, Chen DQ, Wang DD, Zhu GQ, Gao Q. Investigation of the pharmacological effect and mechanism of mountain-cultivated ginseng and garden ginseng in cardiovascular diseases based on network pharmacology and zebrafish experiments. Front Pharmacol. 2022 Sep 1;13:920979.
  71. Zhang X, Wang D, Ren X, Atanasov AG, Zeng R, Huang L. System Bioinformatic Approach Through Molecular Docking, Network Pharmacology and Microarray Data Analysis to Determine the Molecular Mechanism Underlying the Effects of Rehmanniae Radix Praeparata on Cardiovascular Diseases. Curr Protein Pept Sci. 2019;20(10):964-975.
  72. Shalev D, Fields L, Shapiro PA. End-of-Life Care in Individuals With Serious Mental Illness. Psychosomatics. 2020 Sep-Oct;61(5):428-435.
  73. Zhang H, Zhang S, Hu M, Chen Y, Wang W, Zhang K, Kuang H, Wang Q. An integrative metabolomics and network pharmacology method for exploring the effect and mechanism of Radix Bupleuri and Radix Paeoniae Alba on anti-depression. J Pharm Biomed Anal. 2020 Sep 10;189:113435.
  74. Qi Y, Ni S, Heng X, Qu S, Ge P, Zhao X, Yao Z, Guo R, Yang N, Zhang Q, Zhu H. Uncovering the Potential Mechanisms of Coptis chinensis Franch. for Serious Mental Illness by Network Pharmacology and Pharmacology-Based Analysis. Drug Des Devel Ther. 2022 Feb 9;16:325-342.
  75. Xia QD, Xun Y, Lu JL, Lu YC, Yang YY, Zhou P, Hu J, Li C, Wang SG. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif. 2020 Dec;53(12):e12949.
  76. Tao Q, Du J, Li X, Zeng J, Tan B, Xu J, Lin W, Chen XL. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev Ind Pharm. 2020 Aug;46(8):1345-1353.
  77. Liu DY, Liu JC, Liang S, Meng XH, Greenbaum J, Xiao HM, Tan LJ, Deng HW. Drug Repurposing for COVID-19 Treatment by Integrating Network Pharmacology and Transcriptomics. Pharmaceutics. 2021 Apr 14;13(4):545.