References
1. Ragauskas AJ, Williams CK, Davison BH, et al. The path
forward for biofuels and biomaterials. science.2006;311(5760):484-489.
2. Teong SP, Yi G, Zhang Y. Hydroxymethylfurfural production
from bioresources: past, present and future. Green Chemistry.2014;16(4):2015-2026.
3. Manochio C, Andrade B, Rodriguez R, Moraes B. Ethanol from
biomass: A comparative overview. Renewable and Sustainable Energy
Reviews. 2017;80:743-755.
4. Liu Y, Nie Y, Lu X, et al. Cascade utilization of
lignocellulosic biomass to high-value products. Green Chemistry.2019;21(13):3499-3535.
5. Mao L, Zhang L, Gao N, Li A. Seawater-based furfural
production via corncob hydrolysis catalyzed by FeCl 3 in acetic acid
steam. Green chemistry. 2013;15(3):727-737.
6. van Osch DJ, Kollau LJ, van den Bruinhorst A, Asikainen S,
Rocha MA, Kroon MC. Ionic liquids and deep eutectic solvents for
lignocellulosic biomass fractionation. Physical Chemistry Chemical
Physics. 2017;19(4):2636-2665.
7. Schutyser W, Renders aT, Van den Bosch S, Koelewijn S-F,
Beckham G, Sels BF. Chemicals from lignin: an interplay of
lignocellulose fractionation, depolymerisation, and upgrading.Chemical Society Reviews. 2018;47(3):852-908.
8. Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin
valorization: improving lignin processing in the biorefinery.science. 2014;344(6185):1246843.
9. Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the
chemical compositions and physical structures affecting the enzymatic
hydrolysis of lignocellulose. Biofuels, Bioproducts and
Biorefining. 2012;6(4):465-482.
10. Zhang Q, De Oliveira Vigier K, Royer S, Jerome F. Deep
eutectic solvents: syntheses, properties and applications. Chem.
Soc. Rev. Nov 7 2012;41(21):7108-7146.
11. Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ.
Natural deep eutectic solvents for lignocellulosic biomass pretreatment:
Recent developments, challenges and novel opportunities.Biotechnol. Adv. Dec 2018;36(8):2032-2050.
12. Wang Y, Kim KH, Jeong K, Kim N-K, Yoo CG. Sustainable
biorefinery processes using renewable deep eutectic solvents.Curr. Opin. Green Sustain. Chem. 2021;27.
13. Shen X-J, Wen J-L, Mei Q-Q, et al. Facile fractionation of
lignocelluloses by biomass-derived deep eutectic solvent (DES)
pretreatment for cellulose enzymatic hydrolysis and lignin valorization.Green Chem. 2019;21(2):275-283.
14. Kim KH, Dutta T, Sun J, Simmons B, Singh S. Biomass
pretreatment using deep eutectic solvents from lignin derived phenols.Green Chem. 2018;20(4):809-815.
15. Wang Y, Meng X, Jeong K, et al. Investigation of a
Lignin-Based Deep Eutectic Solvent Using p-Hydroxybenzoic Acid for
Efficient Woody Biomass Conversion. ACS Sustainable Chem. Eng.2020;8(33):12542-12553.
16. Huang C, Zhan Y, Cheng J, et al. Facilitating enzymatic
hydrolysis with a novel guaiacol-based deep eutectic solvent
pretreatment. Bioresour. Technol. Apr 2021;326:124696.
17. Wang Y, Kim KH, Jeong K, Kim N-K, Yoo CG. Sustainable
biorefinery processes using renewable deep eutectic solvents.Current Opinion in Green and Sustainable Chemistry.2021;27:100396.
18. Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent
developments in pretreatment technologies on lignocellulosic biomass:
effect of key parameters, technological improvements, and challenges.Bioresource technology. 2020;300:122724.
19. Shen X-J, Wen J-L, Mei Q-Q, et al. Facile fractionation of
lignocelluloses by biomass-derived deep eutectic solvent (DES)
pretreatment for cellulose enzymatic hydrolysis and lignin valorization.Green chemistry. 2019;21(2):275-283.
20. Padilha CEdA, Nogueira CdC, Alencar BRA, et al. Production
and application of lignin-based chemicals and materials in the
cellulosic ethanol production: An overview on lignin closed-loop
biorefinery approaches. Waste and Biomass Valorization.2021;12(12):6309-6337.
21. Kumar AK, Parikh BS, Pravakar M. Natural deep eutectic
solvent mediated pretreatment of rice straw: bioanalytical
characterization of lignin extract and enzymatic hydrolysis of
pretreated biomass residue. Environ. Sci. Pollut. Res. Int. May
2016;23(10):9265-9275.
22. Xia Q, Liu Y, Meng J, et al. Multiple hydrogen bond
coordination in three-constituent deep eutectic solvents enhances lignin
fractionation from biomass. Green Chem. 2018;20(12):2711-2721.
23. Okamura-Abe Y, Abe T, Nishimura K, et al. Beta-ketoadipic
acid and muconolactone production from a lignin-related aromatic
compound through the protocatechuate 3,4-metabolic pathway. J
Biosci Bioeng. Jun 2016;121(6):652-658.
24. Kunjapur AM, Prather KLJ. Development of a vanillate
biosensor for the vanillin biosynthesis pathway in E. coli.ACS Synth. Biol. 2019;8:1958-1967.
25. Chen Z, Shen X, Wang J, Wang J, Yuan Q, Yan Y. Rational
engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic
acid synthesis via a novel artificial biosynthetic pathway.Biotechnol Bioeng. Nov 2017;114(11):2571-2580.
26. Tian Y, Yang M, Lin C-Y, et al. Expression of
Dehydroshikimate Dehydratase in Sorghum Improves Biomass Yield,
Accumulation of Protocatechuate, and Biorefinery Economics. ACS
Sustainable Chemistry & Engineering. 2022;10(38):12520-12528.
27. Alt S, Burkard N, Kulik A, Grond S, Heide L. An artificial
pathway to 3, 4-dihydroxybenzoic acid allows generation of new
aminocoumarin antibiotic recognized by catechol transporters of E. coli.Chemistry & biology. 2011;18(3):304-313.
28. Wang Y, Meng X, Tian Y, et al. Engineered Sorghum Bagasse
Enables a Sustainable Biorefinery with p‐Hydroxybenzoic Acid‐Based Deep
Eutectic Solvent. ChemSusChem. 2021;14(23):5235-5244.
29. Sluiter A, Hames B, Ruiz R, et al. Determination of
Structural Carbohydrates and Lignin in Biomass. Technical Report
NREL. 2008;NREL/TP-510-42618.
30. Adney B, Baker J. Measurement of Cellulase
Activities 1996.
31. Resch MG, Baker JO, Decker SR. Low Solids Enzymatic
Saccharification of Lignocellulosic Biomass 2015.
32. Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi YM, Al-Wahaibi
T, Hashim MA. Glucose-based deep eutectic solvents: Physical properties.Journal of Molecular Liquids. 2013;178:137-141.
33. Wang Y, Meng X, Tian Y, et al. Engineered Sorghum Bagasse
Enables a Sustainable Biorefinery with p-Hydroxybenzoic Acid-Based Deep
Eutectic Solvent. ChemSusChem. Sep 17 2021.
34. Tian Y, Yang M, Lin C-Y, et al. Expression of
Dehydroshikimate Dehydratase in Sorghum Improves Biomass Yield,
Accumulation of Protocatechuate, and Biorefinery Economics. ACS
Sustainable Chemistry & Engineering. 2022;10(38):12520-12528.
35. Kumar AK, Shah E, Patel A, Sharma S, Dixit G.
Physico-chemical characterization and evaluation of neat and aqueous
mixtures of choline chloride + lactic acid for lignocellulosic biomass
fractionation, enzymatic hydrolysis and fermentation. Journal of
Molecular Liquids. 2018;271:540-549.
36. Li N, Meng F, Yang H, Shi Z, Zhao P, Yang J. Enhancing
enzymatic digestibility of bamboo residues using a three-constituent
deep eutectic solvent pretreatment. Bioresour Technol. Feb
2022;346:126639.
37. Usman MA, Fagoroye OK, Ajayi TO. Evaluation of hybrid
solvents featuring choline chloride-based deep eutectic solvents and
ethanol as extractants for the liquid-liquid extraction of benzene from
n-hexane: towards a green and sustainable paradigm. Appl Petrochem
Res. 2021;11(3):335-351.
38. Meng X, Pu Y, Yoo CG, et al. An in‐depth understanding of
biomass recalcitrance using natural poplar variants as the feedstock.ChemSusChem. 2017;10(1):139-150.
39. Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ.
Physicochemical Structural Changes of Poplar and Switchgrass during
Biomass Pretreatment and Enzymatic Hydrolysis. ACS Sustainable
Chemistry & Engineering. 2016;4(9):4563-4572.
40. Han Y, Bai Y, Zhang J, Liu D, Zhao X. A comparison of
different oxidative pretreatments on polysaccharide hydrolyzability and
cell wall structure for interpreting the greatly improved enzymatic
digestibility of sugarcane bagasse by delignification.Bioresources and Bioprocessing. 2020;7(1):1-16.
41. Chiranjeevi T, Mattam AJ, Vishwakarma KK, et al. Assisted
single-step acid pretreatment process for enhanced delignification of
rice straw for bioethanol production. ACS Sustainable Chemistry &
Engineering. 2018;6(7):8762-8774.
42. He J, Huang C, Lai C, Jin Y, Ragauskas A, Yong Q.
Investigation of the effect of lignin/pseudo-lignin on enzymatic
hydrolysis by Quartz Crystal Microbalance. Industrial Crops and
Products. 2020;157:112927.
43. Hu F, Jung S, Ragauskas A. Pseudo-lignin formation and its
impact on enzymatic hydrolysis. Bioresource technology.2012;117:7-12.
44. Huang C, Cheng J, Zhan Y, et al. Utilization of
guaiacol-based deep eutectic solvent for achieving a sustainable
biorefinery. Bioresource Technology. 2022;362:127771.
45. Wen JL, Sun SL, Xue BL, Sun RC. Recent Advances in
Characterization of Lignin Polymer by Solution-State Nuclear Magnetic
Resonance (NMR) Methodology. Materials Jan 23 2013;6(1):359-391.
46. Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall
characterization using solution-state 2D NMR. Nat. Protoc. Sep
2012;7(9):1579-1589.
47. Ralph J. Hydroxycinnamates in lignification.Phytochemistry Reviews. 2009;9(1):65-83.
48. Grabber JH, Hatfield RD, Lu F, Ralph J. Coniferyl Ferulate
Incorporation into Lignin Enhances the Alkaline Delignification and
Enzymatic Degradation. Biomacromolecules. 2008;9.