REFERENCES
1. Kaplon H, Reichert JM. Antibodies to watch in 2021. mAbs 2021;
13:1860476.
2. Labrijn AF, Janmaat ML, Reichert JM, Parren P. Bispecific antibodies:
a mechanistic review of the pipeline. Nat Rev Drug Discov 2019;
18:585-608.
3. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and
inflammation. Nature reviews Immunology 2010; 10:301-16.
4. Grandjenette C, Dicato M, Diederich M. Bispecific antibodies: an
innovative arsenal to hunt, grab and destroy cancer cells. Current
pharmaceutical biotechnology 2015; 16:670-83.
5. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug discovery
today 2015.
6. Dickopf S, Georges GJ, Brinkmann U. Format and geometries matter:
Structure-based design defines the functionality of bispecific
antibodies. Comput Struct Biotechnol J 2020; 18:1221-7.
7. Datta-Mannan A. Mechanisms Influencing the Pharmacokinetics and
Disposition of Monoclonal Antibodies and Peptides. Drug metabolism and
disposition: the biological fate of chemicals 2019; 47:1100-10.
8. Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, et
al. Five computational developability guidelines for therapeutic
antibody profiling. Proceedings of the National Academy of Sciences of
the United States of America 2019; 116:4025-30.
9. Jain T1 ST, Durand S3, Hall A3, Houston NR3,4, Nett JH5, Sharkey B5,
Bobrowicz B5, Caffry I2, Yu Y2, Cao Y2, Lynaugh H2, Brown M2, Baruah H4,
Gray LT4, Krauland EM4, Xu Y6, Vásquez M7, Wittrup KD. Biophysical
properties of the clinical-stage antibody landscape. Proceedings of the
National Academy of Sciences of the United States of America 2017;
115:944-9.
10. Datta-Mannan A, Brown RM, Fitchett J, Heng AR, Balasubramaniam D,
Pereira J, et al. Modulation of the Biophysical Properties of
Bifunctional Antibodies as a Strategy for Mitigating Poor
Pharmacokinetics. Biochemistry 2019; 58:3116-32.
11. Datta-Mannan A, Estwick S, Zhou C, Choi H, Douglass NE, Witcher DR,
et al. Influence of physiochemical properties on the subcutaneous
absorption and bioavailability of monoclonal antibodies. mAbs 2020;
12:1770028.
12. Datta-Mannan A, Thangaraju A, Leung D, Tang Y, Witcher DR, Lu J, et
al. Balancing charge in the complementarity-determining regions of
humanized mAbs without affecting pI reduces non-specific binding and
improves the pharmacokinetics. mAbs 2015; 7:483-93.
13. Datta-Mannan A CJ, Schirtzinger L, Torgerson S, Breyer M, Wroblewski
VJ. Aberrant bispecific antibody pharmacokinetics linked to liver
sinusoidal endothelium clearance mechanism in cynomolgus monkeys. mAbs
2016 8:969-82.
14. Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K.
Engineering the variable region of therapeutic IgG antibodies. mAbs
2011; 3:243-52.
15. Rossi EA, Chang CH, Cardillo TM, Goldenberg DM. Optimization of
multivalent bispecific antibodies and immunocytokines with improved in
vivo properties. Bioconjugate chemistry 2013; 24:63-71.
16. Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, et al. Monoclonal
Antibodies with Identical Fc Sequences Can Bind to FcRn Differentially
with Pharmacokinetic Consequences. Drug Metabolism and Disposition 2011;
39:1469-77.
17. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al.
High Resolution Mapping of the Binding Site on Human IgG1 for FcγRI,
FcγRII, FcγRIII, and FcRn and Design of IgG1 Variants with Improved
Binding to the FcγR. Journal of Biological Chemistry 2001; 276:6591-604.
18. Stubenrauch K, Wessels U, Regula JT, Kettenberger H, Schleypen J,
Kohnert U. Impact of molecular processing in the hinge region of
therapeutic IgG4 antibodies on disposition profiles in cynomolgus
monkeys. Drug metabolism and disposition: the biological fate of
chemicals 2010; 38:84-91.
19. Boswell CA, Tesar DB, Mukhyala K, Theil F-P, Fielder PJ, Khawli LA.
Effects of Charge on Antibody Tissue Distribution and Pharmacokinetics.
Bioconjugate chemistry 2010; 21:2153-63.
20. Datta-Mannan A, Chow CK, Dickinson C, Driver D, Lu J, Witcher DR, et
al. FcRn affinity-pharmacokinetic relationship of five human IgG4
antibodies engineered for improved in vitro FcRn binding properties in
cynomolgus monkeys. Drug metabolism and disposition: the biological fate
of chemicals 2012; 40:1545-55.
21. Datta-Mannan A, Wroblewski VJ. Application of FcRn binding assays to
guide mab development. Drug metabolism and disposition: the biological
fate of chemicals 2014; 42:1867-72.
22. Hotzel I, Theil FP, Bernstein LJ, Prabhu S, Deng R, Quintana L, et
al. A strategy for risk mitigation of antibodies with fast clearance.
mAbs 2012; 4:753-60.
23. Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, et
al. Reduced elimination of IgG antibodies by engineering the variable
region. Protein Eng Des Sel 2010; 23:385-92.
24. Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Jiang W, Wroblewski
VJ. Humanized IgG1 variants with differential binding properties to the
neonatal Fc receptor: relationship to pharmacokinetics in mice and
primates. Drug metabolism and disposition: the biological fate of
chemicals 2007; 35:86-94.
25. Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ.
Monoclonal antibody clearance. Impact of modulating the interaction of
IgG with the neonatal Fc receptor. The Journal of biological chemistry
2007; 282:1709-17.
26. Schoch A, Kettenberger H, Mundigl O, Winter G, Engert J, Heinrich J,
et al. Charge-mediated influence of the antibody variable domain on
FcRn-dependent pharmacokinetics. Proceedings of the National Academy of
Sciences of the United States of America 2015.
27. Datta-Mannan A, Witcher DR, Lu J, Wroblewski VJ. Influence of
improved FcRn binding on the subcutaneous bioavailability of monoclonal
antibodies in cynomolgus monkeys. mAbs 2012; 4.
28. Dela Cruz JS, Trinh KR, Morrison SL, Penichet ML. Recombinant
anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen
specificity and cytokine function and demonstrates antitumor activity.
Journal of immunology 2000; 165:5112-21.
29. Dong J, Sereno A, Aivazian D, Langley E, Miller BR, Snyder WB, et
al. A stable IgG-like bispecific antibody targeting the epidermal growth
factor receptor and the type I insulin-like growth factor receptor
demonstrates superior anti-tumor activity. mAbs 2011; 3:273-88.
30. Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Chang CH. Hexavalent
bispecific antibodies represent a new class of anticancer therapeutics:
1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood 2009;
113:6161-71.
31. Sillero A, Ribeiro JM. Isoelectric points of proteins: theoretical
determination. Anal Biochem 1989; 179:319-25.
32. Holness CL, Simmons DL. Molecular cloning of CD68, a human
macrophage marker related to lysosomal glycoproteins. Blood 1993;
81:1607-13.
33. Kishimoto T, Goyert S, Kikutani H, Mason D, Miyasaka M, Moretta L,
et al. Update: new CD antigens, 1996. Tissue antigens 1997; 49:287-8.