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Abstract

This paper aims to develop a robust decomposed system control (RDSC) strategy un-
der input constraints for an electro-mechanical linear actuator (EMLA) with model
uncertainty and external disturbances. At first, a state-space model of a complex
multi-stage gearbox EMLA system, driven by a permanent magnet synchronous mo-
tor (PMSM), is developed, and the non-ideal characteristics of the ball screw are
presented through the model. This results in a six-order nonlinear strict-feedback
form (NSFF) system that is decomposed into three subsystems. As the paper’s main
result, a novel RDSC strategy with uniform exponential stability for controlling
subsystem states is presented. This developed controller avoids the "explosion of
complexity" problem associated with backstepping by treating the time derivative of
the virtual control input as an uncertain system term. The proposed method, while
assuming load disturbances and input constraints with arbitrary bounds, offers a
straightforward control approach for a broader range of applications. The controller’s
performance is evaluated through the simulation of two distinct duty cycles, each
representing different levels of demand on the actuator facing load disturbances near
the rated motor performance.
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1 INTRODUCTION

The robotics industry is projected to dominate the upcoming decade, as well as to experience considerable market growth. As
such, advanced robotic systems are receiving significant attention from both academia and industry, especially concerning their
essential role in the development of autonomous technology and battery electric vehicles (BEVs) to enhance the efficiency,
safety, and sustainability of mobility.1,2,3 Mobile manipulators, which are robotic arms mounted on wheeled platforms for in-
dustrial use, can benefit from the development of BEVs, as these systems capable of performing a wide range of tasks in various
environments, from manufacturing and logistics to search and rescue operations and beyond.4 The on-board robotic arms of mo-
bile manipulators can be equipped with hydraulic actuators, to enable their movement and manipulation capabilities. Hydraulic
actuators are commonly used in mobile manipulators arms due to their high power-to-weight ratio. Although hydraulic actua-
tors have been a mainstay in many industries for decades, utilizing them in mobile manipulators presents several challenges and
limitations. The main drawback of hydraulic actuators is that they are energy-inefficient.5 In addition, another disadvantage of
hydraulic actuators is their susceptibility to leakage, which can lead to decreased pressure and performance.6

Electrified actuators have emerged as a popular alternative to hydraulic actuators due to their high potential performance. The
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primary advantage of electrified over hydraulic actuators lies in their improved efficiency and fewer maintenance as well.7 In
addition, they offer more accurate control, as they integrate with sensors and advanced electronic control systems that enable
greater precision when performing such tasks as lifting and moving heavy objects.8,9 The ongoing trend towards electrification
in the field of mobile manipulators has led to the emergence of electro-mechanical linear actuators (EMLAs) as an alternative
to hydraulic actuators. EMLAs are a class of devices designed to transform electrical energy into linear motion, enabling the
execution of various functions10 and typically consisting of of several components, including a motor, lead screw or ball screw,
nut, and load-bearing component.11,12

The motor is responsible for providing the required rotational force and the lead or ball screw is utilized to convert the ro-
tational motion of the motor into linear motion. Permanent magnet synchronous motors (PMSMs) are a common motor type
utilized in EMLAs due to their numerous benefits, including high power and torque density, allowing them to generate sub-
stantial force and power relative to their size.13,14 In addition, PMSMs are highly efficient in converting electrical power into
mechanical power, making them well-suited for energy-efficient applications, such as mobile manipulators, whose battery can
store limited energy.15,16

EMLAs are considered a multidisciplinary problem, and their interaction creates intricate dynamics that are difficult to model
for control design.17. Accurately modeling the multi-stage components of an EMLA is crucial because of their complex behav-
ior, which can vary under different operating conditions such as variable loads and uncertainty in parameters. In particular, the
ball screw exhibits nonlinear and non-ideal characteristics that must be considered in modeling and control design17. In this
way, to simplify the structure of EMLAs, nonlinear strict-feedback form (NSFF) is a proper option, as it can mathematically
express a cascade of functions, where each function takes its input the output from the previous function. The system input
can be directly controlled, but the intermediate variables and system output are determined by the system dynamics. In general,
NSFF systems are typically controlled using feedback control, such as adaptive control, nonlinear control, or backstepping con-
trol, among others. These methods enable easy modification of a part of the entire system and a separate investigation of the
performance of each subsystem for high-quality results18. Hence, some recent research has utilized the NSFF control structure
for the design of PMSM control to offer effective solutions to the challenges of achieving stability, tracking performance, and
robustness in the presence of disturbances, uncertainties, and input constraints in PMSM control applications.19,20,21

In recent years, backstepping control, which is one method compatible with NSFF systems, has gained attention as a research
area to address robust control in the electric machinery field, like PMSMs, due to its autonomy and ability to handle complex
nonlinear systems, providing a straightforward way to design robust control systems. This recursive control method is based on
the backstepping technique, which involves designing a sequence of controllers, each of which stabilizes one subsystem of the
overall system.22. Furthermore, numerous studies in the literature have focused on enhancing the robustness of PMSMs using
different types of adaptive backstepping control techniques. These methods have been demonstrated to possess significant po-
tential for modeling complex systems and as adaptive controllers for nonlinear systems, as evidenced in previous works.23,24,25
In the field of PMSM control, most research and studies have been conducted with a focus on velocity control. However, the
current work is being discussed in a context focused primarily on position servocontrol.26,27 Conversely, there is a drawback
to backstepping algorithms, which can engender complexity, called "explosion of complexity" due to the repeated time deriva-
tive of the virtual control input, which should be solved in complex applications.28 Hence, Lu and Wang29 proposed the use of
a fractional-order command filter for PMSMs to address this issue, and a the command filtering-based neural network control
scheme was developed to handle input saturation in PMSMs. They, in another paper,30 studied observer-based command-filtered
adaptive neural network tracking control for a fractional-order chaotic PMSM subject to parameter uncertainties and external
load disturbances. Likewise, to resolve the complexity of backstepping, they employed a command-filtering approach based on
the first-order Levant differentiator. As we can see, most prior research tackled the issue by utilizing various filtering techniques.
In contrast, the present work deviates from this approach and instead treats the time derivative of the virtual control input as an
uncertain term in the system, without relying on any explicit filtering.

Precise measurements of electrical and mechanical parameters, including stator resistance and the friction coefficient, for
PMSM, are often challenging. Moreover, commonly, the external load torque value is unknown and cannot be determined ac-
curately. These factors highlight the critical need for the design of robust control methods, as the absence of robust control can
jeopardize a system’s performance and safety, as well as result in costly downtime or even catastrophic failure. Specifically, load
disturbances can have a significant impact on the performance and stability of PMSMs, resulting in reduced efficiency, increased
wear and tear, and potential damage to both the motor and the driven system. Hence, a nonlinear disturbance observer designed
to estimate load disturbances by Liu, et al.31 to regulate the PMSM speed when driving using backstepping control, combin-
ing the speed and current controllers. PMSM systems with unknown load torques were studied by Sun, et al.19 and Ali, et al.32
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proposing new adaptive backstepping control methods to address the position/speed tracking problem, while the method ensures
asymptotic stability of the overall system. Although recent studies on PMSMs’ control have emphasized addressing external
disturbances and uncertainties, they have not adequately addressed the issue of input constraints, which is a common problem
in PMSMs. Input constraints are crucial factors to consider in the control of PMSMs, owing to the inherent physical limitations
on the input voltage and current of these motors. The application of control signals exceeding these limits can result in system
instability, motor overheating, and permanent damage. Furthermore, the presence of load disturbances and model uncertainties
can also cause the control signals to surpass the physical limitations of the motor. In such situations, it is imperative to design
control systems that ensure stable and dependable operation of the motor while adhering to these constraints, thus enabling
the operation of the motor within a safe and stable region and safeguarding it from damage. To address general disturbances
and input saturation in PMSMs, Tan, et al.33 proposed a sensorless robust optimal control scheme utilizing two neural network
(NN)-based observers. The first observer was designed to estimate the back-electromotive force (EMF), while the second was
designed to estimate the tracking errors of rotor position and speed in uniform boundedness.

As extensively discussed previously, in recent years, robust backstepping control has gained significant interest for PMSMs
in NSFF structures. However, it has been observed that this control method has not been widely utilized in current studies con-
cerning EMLAs actuated by PMSMs within NSFF structures. In addition, few studies have comprehensively addressed control
problems pertaining to EMLAs, such as external disturbances, uncertainties, and input constraints. However, an adaptive back-
stepping tuning-function sliding-mode controller was proposed by Coban34 for a class of NSFF systems to overcome quickly
the varying parametric and unstructured uncertainties and avoid complexity. The effectiveness of the proposed controller was
demonstrated by studying its implementation on an EMA system actuated by a DC motor. Although Lin and Lee35 discussed
linear induction motors (LIMs), these motors may not be directly relevant to our application. In addition, they have also not ad-
dressed input constraints in the EMA systems.

The present study makes several significant contributions to the field of EMLA control. Initially, this article introduced a
modeling approach for a complex EMLA system with multi-stage gearbox, driven by a PMSM, that can generate all the required
state variables for the design of control algorithms, including torques acting on the motor and force on the load side, to satisfy
all conditions for achieving the prescribed dynamics. In addition, a robust control for the EMLA system is designed to achieve
prescribed state responses by transforming the model into a six-order NSFF decomposed into three subsystems, while guaran-
teeing uniformly exponential bounded solutions, which has rarely been achieved. Furthermore, the proposed control approach
is capable of avoiding the "explosion of complexity" problem without the need for filters, while remaining independent of the
load conditions and accommodating input constraints. Finally, we present a comprehensive analysis of the EMLA in the NSFF
system, which encompasses a variety of cycle duties utilizing the robust decomposed system control (RDSC) approach, such
that the results of our analysis indicate that the control performance, including tracking accuracy and speed, is significant.

The remainder of the paper is organized as follows:

• Section 2 presents the various components of the EMLA servomechanism, along with the development of its analytical
models to examine the energy conversions occurring within the system. The state-space model of the EMLA is then
obtained by considering the aforementioned sub-models, and it is presented as a function of linear motion on the load
side of the servomechanism to facilitate position control purposes. Finally, the specifications of the EMLA components,
including the PMSM, gearbox, and screw, are listed at the end of this section.

• In Section 3, we investigate the control problems of the EMLA system, including input constraints, external disturbances,
and uncertainties. To do so, we transform the EMLA system into a six-order NSFF system, consisting of three subsystems,
the first of which is associated with the linear motion dynamic of the EMLA, while the second and third are associated
with Park frame related to the PMSM.

• In Section 4, we define the RDSC and provide implementable equations to meet the requirements of the EMLA system.
In addition, this section includes an extensive analysis of the uniformly exponential stability of all subsystems.

• The performance validity of RDSC is investigated in section 5 by considering two different types of cycle duties, depending
on the type of load and the moment of loading and unloading, and the numerical performance of the RDSC for the EMLA
is summarized in Table 3 and Table 4.
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2 ELECTRO-MECHANICAL LINEAR ACTUATOR MODELING

2.1 Mathematical model of EMLA
This paper presents a study on an EMLA that utilizes a surface-mounted PMSM to convert the electric power to a mechanical
one. The mathematical model for this EMLA is developed in the current section, and the system configuration is illustrated in
Figure 1. The electric motor of the servomechanism is connected to a reduction gear, which in turn is coupled to a screw-nut
mechanism to convert rotary motion into linear motion and to provide mechanical movement to the load. To simplify the process
of modeling the EMLA, the paper considers three sub-models, namely the PMSM, the gears, and the screw–nut mechanisms,
as follows:

FIGURE 1 EMLA schematic.

2.1.1 Permanent magnet synchronous motor
The rotary part of the PMSM is equipped with PMs, and their flux linking can be written in three ABC phases, as in (1):36,37
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where 𝜓𝑃𝑀 is the PM flux linkage and 𝜃𝑒 is the electrical angle of the rotor. The total flux in each stator phase, which comprises
the PM and three windings, can be calculated as a function of the self-inductance of the stator windings, the mutual inductance
between stator windings, and the PM fluxes. This relationship is expressed in (2):
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Lastly, the voltage across the stator windings can be determined based on the magnetic flux change rate for each stator winding
and the stator current, as given in (3):
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where the resistance of the stator winding is denoted as 𝑅𝑠. To eliminate the dependence of the PMSM’s three-phase voltage on
the rotor angle, the Park transformation (PT) can be utilized, as it converts the voltage from the ABC frame to the 𝑑𝑞0 frame,
as illustrated in equation (4).

𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑
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𝑑𝑖𝑞
𝑑𝑡

+ 𝑃𝜔𝐿𝑑𝑖𝑑 + 𝑃𝜔𝜓𝑃𝑀
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𝑑𝑖0
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(4)

where 𝐿𝑑 , 𝐿𝑞 , and 𝐿0 are inductance in the d-axis, q-axis, and zero sequence, respectively. In addition, 𝜔 is the mechanical
rotational speed and 𝑃 is the number of rotor PM pole pairs. Subsequently, the electromagnetic torque produced by the PMSM
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can be expressed as (5):
𝜏𝑚 = 3

2
𝑃 𝑖𝑞(𝜓𝑃𝑀 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑) (5)

As the rotor of the studied surface-mounted PMSM has a non-salient shape, the inductances 𝐿𝑑 and 𝐿𝑞 are identical. Therefore,
the torque equation can be simplified and expressed as a function of 𝑖𝑞 , as obtained in (6).38

𝜏𝑚 = 3
2
𝑃 𝑖𝑞𝜓𝑃𝑀 (6)

The linear momentum changes made to the moving parts of the EMLA in the motor side can be explained as (7):
𝜏𝑚 = 𝐽𝑚𝜃̈𝑚 + 𝜏𝑓 + 𝜏𝑔1 (7)

where 𝜏𝑚 is the electromagnetic torque produced by the electric motor; 𝐽𝑚 is the motor inertia; 𝜏𝑓 is the mechanical loss of the
motor, including friction and windage; 𝜏𝑔1 is the input torque of the gearbox; and 𝜃̈ is the angular acceleration of the motor.

2.1.2 Reduction gear
The relationship between the input and output torques of the gearbox is as follows (8):39

𝜏𝑔1 =
𝑛

𝜂𝐺𝐵(𝜏𝐺𝐵 , 𝜔𝐺𝐵)
𝜏𝑔2 (8)

where 𝑛 is gear ratio, 𝜏𝑔2 is the output torque of the gearbox, and 𝜂𝐺𝐵 is the efficiency of the gearbox. It is worth mentioning
𝜂𝐺𝐵 is a function of the applied torque and angular velocity of the gearbox. The gear ratio can be defined as (9):

𝑛 =
𝑛1
𝑛2

(9)
where 𝑛1 and 𝑛2 are the numbers of input and output gear teeth. The output torque of the gears is coupled to the transmission
system of the EMLA to deliver the power from the gears to the screw nut, and the motion equation can be considered as in (10):

𝜏𝑔2 = 𝐽𝑡𝜃̈𝑡 + 𝑏𝑡𝜃̇𝑡 + 𝜏𝐵𝑆 (10)
where 𝐽𝑡 and 𝑏𝑡 are the inertia and viscosity of the transmission system, respectively. In addition, 𝜃𝑡 and 𝜃̇𝑡 are the angular
acceleration and angular velocity of the transmission system, respectively, while 𝜏𝐵𝑆 is the torque applied to the ball screw, and
it will be calculated in section 2. A.3.

2.1.3 Screw-nut mechanism
The screw-nut mechanism of an EMLA is responsible for converting the rotary motion into linear motion. The motion equation
of a screw-nut can be written as (11):40,41

𝜏𝐵𝑆 =
𝜌

2𝜋𝜂𝐵𝑆(𝜏𝐵𝑆 , 𝜔𝐵𝑆)
𝐹𝐵𝑆 (11)

where the direct and reverse roller-screw efficiencies were obtained using (12):42

𝜂𝑑 = 1
1 + ( 𝜇

𝑡𝑎𝑛𝛼
)

𝜂𝑖 = 1 −
𝜇
𝑡𝑎𝑛𝛼

(12)

where 𝜇 is the friction coefficient of the roller-screw and 𝛼 is the lead angle of the roller-screw. For simplification, the coefficient
of converting rotary movement to linear movement, called 𝑐𝑅𝐿, is defined as in (13):

𝑐𝑅𝐿 = 2𝜋
𝑛𝜌

(13)
where 𝜌 is the ball screw pitch and 𝜂𝐵𝑆 is the efficiency of the ball screw. 𝐹𝐵𝑆 is the output force and can be computed as (14):

𝐹𝐵𝑆 = 𝑚𝐵𝑆 𝑥̈𝐿 + 𝑏𝐵𝑆 𝑥̇𝐿 + 𝑘𝐵𝑆𝑥𝐿 + 𝐹𝐿 (14)
A mathematical model of the EMLA can be derived by developing motion equations between its different components. As a
result, the electromagnetic torque of the electric motor can be written as in (15) as the function of linear motion at the end of
EMLA (𝑥̈𝐿,𝑥̇𝐿,𝑥𝐿).

𝜏𝑚 = 𝐼𝑒𝑞𝑥̈𝐿 + 𝐵𝑒𝑞𝑥̇𝐿 +𝐾𝑒𝑞𝑥𝐿 + 𝑓𝑒𝑞𝐹𝐿 (15)
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where 𝐼𝑒𝑞 , 𝐵𝑒𝑞 , 𝐾𝑒𝑞 , and 𝑓𝑒𝑞 are the equivalent inertia, damping, spring effect, and load coefficient of the EMLA system. To
form the two-mass model of the system, the inertia of the EMLA can be expressed at a single point, as in (16).

1
2
𝐼𝑒𝑞𝜔

2
𝑚 =1

2
𝐽𝑚𝜔

2
𝑚 + 1

2
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2
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1
2
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2
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The speed of different components can be written with respect to the motor side, as in (17).

𝐼𝑒𝑞 =𝐽𝑚 + 𝑛2𝐽𝑡 +
𝑀𝐵𝑆

𝑐2𝑅𝐿 (17)

Similarly, the equivalent stiffness at the motor side can be expressed as a function of motor twist as in (18).
1
2
𝐾𝑒𝑞Δ𝜃2𝑚 =1

2
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2
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1
2
𝑘3Δ𝑥2𝐵𝑆 (18)

By with considering Δ𝑥 = 𝐹
𝑘

and Δ𝛿 = 𝜏
𝑘𝜏

, the stiffness of the system can be obtained using (19).

𝐾𝑒𝑞 =
1
𝑘𝜏1

+ 1
𝑛2𝑘𝜏2

+
𝑐2𝑅𝐿
𝑘3 (19)

Finally, the equivalent viscosity of the entire system and the force coefficient can be written as in (20) and (21), respectively.

𝐵𝑒𝑞 =[𝑐𝑅𝐿(𝑏𝑚 + 𝑛2

𝜂𝐺𝐵(𝜏𝐺𝐵 , 𝜔𝐺𝐵)
𝑏𝑡) +

1
𝑐𝑅𝐿

( 1
𝜂𝐵𝑆(𝜏𝐵𝑆 , 𝜔𝐵𝑆)𝜂𝐺𝐵(𝜏𝐺𝐵 , 𝜔𝐺𝐵))

𝑏𝐵𝑆] (20)

𝑓𝑒𝑞 =
1

𝑐𝑅𝐿𝜂𝐺𝐵(𝜏𝐺𝐵 , 𝜔𝐺𝐵)𝜂𝐵𝑆(𝜏𝐵𝑆 , 𝜔𝐵𝑆)
(21)

2.2 State-space model of EMLA
To suit the control objectives, the state-space model equations are formulated in terms of the linear motion of the EMLA at the
load side, and the equations for the derivatives of the motor current can be obtained using (22).

𝑑𝑖𝑑
𝑑𝑡

= 1
𝐿𝑑

(𝑢𝑑 − 𝑅𝑠𝑖𝑑 + 𝑃𝑐𝑅𝐿𝑥̇𝐿2𝐿𝑞𝑖𝑞)

𝑑𝑖𝑞
𝑑𝑡

= 1
𝐿𝑞

(𝑢𝑞 − 𝑅𝑠𝑖𝑞 − 𝑃𝑐𝑅𝐿𝑥̇𝐿𝐿𝑑𝑖𝑑 − 𝑃𝑐𝑅𝐿𝑥̇𝐿𝜓𝑃𝑀 ) (22)

The 𝑑-axis current, 𝑖𝑑 , is controlled to track a reference value of zero in position control applications of PMSMs. In this study,
the objective of the control is to maintain a constant load position while regulating 𝑖𝑑 to follow the reference current 𝑖∗𝑑 = 0. By
setting 𝑖𝑑 to zero, the magnetic field along the 𝑑-axis is eliminated, and the torque generated by the electric machine becomes
independent of the rotor’s position. As a result, the load position can be controlled without affecting the magnetic field along
the 𝑑-axis. The 𝑞-axis current, 𝑖𝑞 , can be used to generate the torque necessary for position control, and the time derivatives of
the currents can be expressed in a simplified form, as shown in equation (23), which facilitates the design and analysis of the
control system for the EMLA.

𝑑𝑖𝑑
𝑑𝑡

= 1
𝐿𝑑

(𝑢𝑑 + 𝑃𝑐𝑅𝐿𝑥̇𝐿2𝐿𝑞𝑖𝑞)

𝑑𝑖𝑞
𝑑𝑡

= 1
𝐿𝑞

(𝑢𝑞 − 𝑅𝑠𝑖𝑞 − 𝑃𝑐𝑅𝐿𝑥̇𝐿𝜓𝑃𝑀 ) (23)
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In addition, the linear velocity and acceleration can be found using (24):
𝑥̇𝐿 = 1

𝑐𝑅𝐿
𝜃̇𝑚

𝑥̈𝐿 = 1
𝐼𝑒𝑞

[3
2
𝑃 𝑖𝑞𝜓𝑃𝑀 − 𝑏𝑒𝑞𝑥̇𝐿 − 𝑘𝑒𝑞𝑥𝐿 − 𝑓𝑒𝑞𝐹𝐿] (24)

The state vectors can be defined using (25) for the system:
𝑋(𝑡) = [𝑖𝑑(𝑡) 𝑖𝑞(𝑡) 𝑥̇𝐿 𝑥𝐿]𝑇 (25)

Input vectors (control variables) of the system are given in (26) :
𝑈 (𝑡) = [𝑢𝑑(𝑡) 𝑢𝑞(𝑡)]𝑇 (26)

Output vectors of the system can be defined using (27):
𝑌 (𝑡) = [𝑖𝑑(𝑡) 𝑖𝑞(𝑡) 𝑥̇𝐿 𝑥𝐿]𝑇 (27)

The load disturbance input of the system is considered the mechanical load of the EMLA, as in (28):
𝑍(𝑡) = 𝐹𝐿 (28)

All the mentioned matrices form a continuous state-space model for EMLA powered by PMSM, which can be expressed as in
(29), and 𝐴, 𝐵, and 𝐶 can be obtained accordingly.

𝑋̇(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈 (𝑡) + 𝐶𝑍(𝑡)
𝑌 (𝑡) = 𝐷𝑋(𝑡) + 𝐸𝑈 (𝑡) + 𝐹𝑍(𝑡)

(29)

In this paper, the PMSM adopted for the study case is the 400V 3.99kW Nidec PMSM servo motor. In addition, the ball screw
BSG-ZUAZO model HLF "63x16-13-8-R". Characteristics of the EMLA components, including the motor, gearbox, and ball
screw are listed in Table 1.

TABLE 1 PMSM and Gearbox Parameters
Parameter Value Unit

PMSM
PM Magnetic Flux 0.357 Weber

Number of Pole Pairs 3 -
Rated Power 3.99 kW

Rated Current 7.9 A
Rated Torque 12.70 N.m

Motor Stall Torque 16.00 N.m
Motor Peak Torque 48.00 N.m

Rated Speed 3000 rpm
Phase Resistance 1.23 Ω
Phase Inductance 9.89 mH

Gearbox and BallScrew
Gear Ratio 24.35 -

Gearbox Efficiency 96 %
Screw Lead 16 mm

Screw Diameter 63 mm
Screw Lead Angle 4.55 Degree◦
Screw Efficiency 87 %
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3 PROBLEM FORMULATION AND PRELIMINARIES

In this section, the entire EMLA system, expressed in section 2, is transformed into a six-order NSFF, decomposed into three
subsystems, each of which has two sub-subsystems, in consideration of control input constraints similar to43 for subsystems, as
follows:

𝑥̇1 = 𝑥2 + 𝐹1(𝑥1) + 𝑑1
𝑥̇2 = 𝑔2𝑆(𝑖∗𝑞) + 𝐹2(𝑥1, 𝑥2) + 𝑑2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑥̇3 = 𝑥4 + 𝐹3(𝑥1, ..., 𝑥3) + 𝑑3
𝑥̇4 = 𝑔4𝑆(𝑢𝑑) + 𝐹4(𝑥1, ..., 𝑥4) + 𝑑4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑥̇5 = 𝑥6 + 𝐹5(𝑥1, ..., 𝑥5) + 𝑑5
𝑥̇6 = 𝑔6𝑆(𝑢𝑞) + 𝐹6(𝑥1, ..., 𝑥6) + 𝑑6

(30)

For (𝑘 = 1, ..., 6), 𝑥𝑘 are states of subsystems, 𝐹𝑘 are uncertainties, and 𝑑𝑘 are external disturbances, including load effects,
where 𝐹𝑘 and 𝑑𝑘 are assumed nonlinear and unknown. According to Table 1, regarding the PMSM’s specifications, it expresses
the input constraints 𝑆(.), which is important for the motor, meaning the control inputs 𝑖∗𝑞 , 𝑢𝑑 , and 𝑢𝑞 are unable to be applied
directly to the each subsystem, which will be defined later in (35) and (36).

The first subsystem is based on the dynamic of the EMLA, representing the linear position and velocity in (24), and current-q
control 𝑖∗𝑞 , is proposed to control the position and velocity. The second subsystem exploits the voltage-d control (𝑢𝑑) for (22),
after receiving the 𝑖∗𝑞 control value from the previous subsystem, to force the states 𝑖𝑑 and 𝑖̇𝑑 to track the 𝑖∗𝑑(= 0), according to
Park’s concept. Finally, the last subsystem determines the voltage-q control (𝑢𝑞) for (22) to force the real 𝑖𝑞 and 𝑖̇𝑞 to track 𝑖∗𝑞and 𝑖̇∗𝑞 received from the first subsystem as the reference value. Because the RDSC uses the model-based EMLA, it must be
robust enough against nonlinear load effects and modelling errors. In this process, the RDSC, which requires only reference
trajectories and real state values, can sufficiently produce the voltages and currents to tolerate a high load and uncertainties. For
more details, the interconnection between subsystems of the RDSC structure regarding the EMLA has been illustrated in Fig.
2. Before investigating each subsystem analysis separately, we must provide some definitions, as follows.

Definition (1): assuming the function 𝑎𝑘 values for 𝑘 = 1, ..., 5 are virtual controls and differentiable, we define the following
function to reduce the backstepping complexity and uncertainties, as follows:

𝐹 1 = 𝐹1(𝑥1)

𝐹 2 = 𝐹2(𝑥1, 𝑥2) −
𝜕𝑎1
𝜕𝑥1

d𝑥1
d𝑡

−
𝜕𝑎1
𝜕𝜃̂1

d𝜃̂1
d𝑡

𝐹 3 = 𝐹3(𝑥1, ..., 𝑥3)

𝐹 4 = 𝐹4(𝑥1, ..., 𝑥4) −
𝜕𝑎3
𝜕𝑥3

d𝑥3
d𝑡

−
𝜕𝑎3
𝜕𝜃̂3

d𝜃̂3
d𝑡

𝐹 5 = 𝐹5(𝑥1, ..., 𝑥5)

𝐹 6 = 𝐹6(𝑥1, ..., 𝑥6) −
𝜕𝑎5
𝜕𝑥5

d𝑥5
d𝑡

−
𝜕𝑎5
𝜕𝜃̂5

d𝜃̂5
d𝑡

(31)

where 𝑎0 = 𝑎2 = 𝑎4 = 0. By assuming that there is a positive constant Λ, and a smooth function 𝑟, which is assumed always
within the upper bound of uncertainties, 𝑑𝑚𝑎𝑥, as the bound of external disturbances, and a positive parameter Ω, which all can
be unknown, we can define:

∣ 𝐹 𝑘 ∣ ≤ Λ𝑘𝑟𝑘 , ∣ 𝑑𝑘 ∣ ≤ 𝑑𝑚𝑎𝑥(𝑘) ⇐⇒ 𝑘 = 1, ..., 6
∣ 𝑥̈𝑑 ∣ ≤ Ω

(32)



AUTHOR ONE ET AL 9

FIGURE 2 The control structure.

Where 𝑥𝑑 can be the reference value of the states 𝑥1, 𝑥3, and 𝑥5. To consider a robust adaptive law, we define the functions for
subsystems to compensate for estimation errors, as follows:

1
2
𝜁1𝜃

∗
1 = 1

2
+ 𝜇1𝜆𝑚𝑖𝑛Λ2

1 + 𝜈1𝜆𝑚𝑖𝑛𝑑
2
𝑚𝑎𝑥(1)

1
2
𝜆𝑚𝑖𝑛𝜁2𝜃

∗
2 = 1

2
𝜆𝑚𝑖𝑛 + 𝜇2Λ2

2 + 𝜈2𝑑
2
𝑚𝑎𝑥(2) +𝜈3 (Ω)

2 + 𝜈4
(

𝑔2𝜆̄max
)2

1
2
𝜁3𝜃

∗
3 = 1

2
+ 𝜇3𝜆𝑚𝑖𝑛Λ2

3 + 𝜈5𝜆𝑚𝑖𝑛𝑑
2
𝑚𝑎𝑥(3)

1
2
𝜆𝑚𝑖𝑛𝜁4𝜃

∗
4 = 1

2
𝜆𝑚𝑖𝑛 + 𝜇4Λ2

4 + 𝜈6𝑑
2
𝑚𝑎𝑥(4) +𝜈7

(

𝑔4𝜆̄max
)2

1
2
𝜁5𝜃

∗
5 = 1

2
+ 𝜇5𝜆𝑚𝑖𝑛Λ2

5 + 𝜈8𝜆𝑚𝑖𝑛𝑑
2
𝑚𝑎𝑥(5)

1
2
𝜆𝑚𝑖𝑛𝜁6𝜃

∗
6 = 1

2
𝜆𝑚𝑖𝑛 + 𝜇6Λ2

6 + 𝜈9𝑑
2
𝑚𝑎𝑥(6) +𝜈10 (Ω)

2 + 𝜈11
(

𝑔6𝜆̄max
)2

(33)

All parameters are assumed positive and will be defined later, and they can be unknown except 𝜁𝑘 for 𝑘 = 1, ..., 6, which will be
used as a control design parameter. 𝜃∗𝑘 is a finite function to adjust the adaptive estimation, and it is also unknown.

Definition (2): Uniform exponential stability is a property of dynamical systems that ensures system solutions decay ex-
ponentially at a uniform rate. More formally, a dynamical system is said to be uniformly exponentially stable if there exist
positive constants 𝛼 and 𝑐, such that for any initial condition 𝑥(0), and positive 𝜇̃, the distance between their trajectories decays
exponentially at a uniform rate:

‖𝑥(𝑡) − 𝑥𝑑(𝑡)‖ ≤ 𝑐𝑒−𝛼𝑡‖𝑥(0)‖ + 𝜇̃ (34)
where ‖ ⋅ ‖ denotes a norm on the state space of the system, and 𝑡 ≥ 0 is the time variable. Uniform exponential stability is an
important concept in the field of control theory, referring to a property of a dynamical system where, for any initial condition,
the system’s response converges exponentially fast to an equilibrium point, and the rate of convergence is independent of the
initial condition.

Definition (3): As mentioned earlier in (30), it is mandatory to consider control input constraints in the EMLA application.
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In this way, S(u(t)), as a function of the constraints on the control inputs, is defined as follows:

𝑆(𝑢(𝑡)) =

⎧

⎪

⎨

⎪

⎩

𝑢1, if 𝑢(𝑡) ≥ 𝑢1
𝑢(𝑡) if 𝑢1 ≤ 𝑢(𝑡) ≤ 𝑢2
𝑢2 if 𝑢(𝑡) ≤ 𝑢2

(35)

where 𝑢1 and 𝑢2 are the high and low bound values of 𝑢(𝑡). To a greater extent:
𝑆(𝑢(𝑡)) = 𝜆𝑖 𝑢(𝑡) + 𝜆̄𝑖 ⇐⇒ 𝑖 = 1, 2, 3 specifying the number of subsystems. (36)

where
𝜆𝑖 =

{ 1
∣𝑢(𝑡)∣+1

, if 𝑢(𝑡) ≥ 𝑢1 or 𝑢(𝑡) ≤ 𝑢2
1 if 𝑢1 ≤ 𝑢(𝑡) ≤ 𝑢2

(37)

and

𝜆̄𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑢1 −
𝑢(𝑡)

∣𝑢(𝑡)∣+1
, if 𝑢(𝑡) ≥ 𝑢1

0 if 𝑢1 ≤ 𝑢(𝑡) ≤ 𝑢2
𝑢2 −

𝑢(𝑡)
∣𝑢(𝑡)∣+1

if 𝑢(𝑡) ≤ 𝑢2

(38)

As we can see, 𝜆̄𝑖 ≤ max(∣ 𝑢1 ∣ +1, ∣ 𝑢2 ∣ +1) = 𝜆̄𝑚𝑎𝑥, and 𝜆𝑖 ≤ 1, and we can define 0 ≤ 𝜆𝑚𝑖𝑛 = inf(𝜆𝑖), which were expressed
before in (33).

Assumption (1): It is assumed that all states of the system are known and differentiable.
Assumption (2): It is assumed that external disturbances, and uncertainties are unknown and bounded. Except for the upper

and lower constraints of control input (𝑢1 and 𝑢2) based on the EMLA specification, we assume that we do not require any more
knowledge about input saturation.
In the following, the RDSC for the EMLA system, expressed in section 2, will be defined, and a stability analysis will be
conducted.

4 EMLA CONTROL BASED ON RDSC

As expressed in section 3, in each subsystem, we have two sub-subsystems, the first of which is controlled by the virtual control
𝑎𝑘, which expressed in (31), and the second is controlled by factual control law. Now, we introduce the virtual control for each
subsystem, as follows:

Subsystem 1 ⇐⇒ 𝑎0 = 0 , 𝑎1 = −1
2
(𝛽1 + 𝜁1𝜃̂1)𝑃1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subsystem 2 ⇐⇒ 𝑎2 = 0 , 𝑎3 = −1

2
(𝛽3 + 𝜁3𝜃̂3)𝑃3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subsystem 3 ⇐⇒ 𝑎4 = 0 , 𝑎5 = −1

2
(𝛽5 + 𝜁5𝜃̂5)𝑃5

(39)

Similar to (39), by knowing 𝑔2, 𝑔4, 𝑎𝑛𝑑𝑔6, as the factors of the control inputs, are non-zero, the current-q, voltage-d, and voltage-q
control for the three subsystems can be proposed as follows:

Subsystem 1 ⇐⇒ 𝑖∗𝑞 =
−1
2𝑔2

(𝛽2 + 𝜁2𝜃̂2)𝑃2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subsystem 2 ⇐⇒ 𝑢𝑑 = −1

2𝑔4
(𝛽4 + 𝜁4𝜃̂4)𝑃4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subsystem 3 ⇐⇒ 𝑢𝑞 =

−1
2𝑔6

(𝛽6 + 𝜁6𝜃̂6)𝑃6

(40)

where for 𝑘 = 1, ..., 6, 𝜁𝑘 follows (33), and 𝛽𝑘 are positive constants, and 𝑃𝑘 = 𝑥̄𝑘−𝑎𝑘−1, which 𝑥̄𝑘 will be introduced later. 𝜃̂𝑘, an
adaptive function that can compensate for unknown effects that are imposed both outside and inside of the system, is introduced
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for all six sub-subsystems as follows:
̇̂𝜃𝑘 = −𝛿𝑘𝜎𝑘𝜃̂𝑘 +

1
2
𝜁𝑘𝛿𝑘|𝑃𝑘|

2 ⇐⇒ 𝑘 = 1, ..., 6 (41)

where 𝛿𝑘 and 𝜎𝑘 are assumed positive parameters. As mentioned earlier, the RDSC has a straightforward form and only requires
a simple mathematical, which showed in (39), (40), and (41).

Assumption 3: Assuming, for 𝑘 = 2, 4, 6, 𝜃̂𝑘(0) > 0, we can establish the following guarantee: for all 𝑡 ≥ 0, if the system
evolves according to the dynamics that govern 𝜃̂𝑘(𝑡), then 𝜃̂𝑘(𝑡) ≥ 0.

By defining the adaptation error 𝜃𝑘 = 𝜃̂𝑘 − 𝜃∗𝑘 and inserting it into (41), we have:
̇̃𝜃𝑘 = −𝛿𝑘𝜎𝑘𝜃𝑘 +

1
2
𝜁𝑘𝛿𝑘|𝑃𝑘|

2 − 𝛿𝑘𝜎𝑘𝜃∗𝑘 (42)
where 𝜃∗𝑘 follows (33) to tune the adaptation law and compensate for the load effect, and uncertainties are unknown. The im-
plementation of the proposed control approach, illustrated in Figure 2, in the EMLA system, allows a schematic representation
of the RDSC for EMLA as observed in Figure 3. After obtaining the desired trajectories from the motion profile of the EMLA
and retrieving the immediate states of the EMLA from the state detection section, the RDSC generates the necessary command
voltages for the PMSM, similar to Fig. 1 illustrated by Chai, et al. in44.

FIGURE 3 Schemtic of the proposed controller for the EMLA

Remark 1: We defined many parameters, although most are considered for the stability analysis and can be unknown. Thus,
only few parameters will be used in the RDSC including 𝛽, 𝜁 , 𝛿, and 𝜎 as the control design parameters, which bring a straight-
forward control form.

Theorem (1): Regarding the issue of enough robustness to force states to track the desired trajectory of the EMLA with un-
known external disturbances and uncertainties, and considering the control input constraints expressed in (35), we claim that
all states provided in all three subsystems by following the RDSC satisfy the tracking process of the model, and are uniformly
exponentially bounded, which expressed in Definition (2).
Now, we aim to investigate each subsystem via stability analysis and Theorem 1 proof separately, although the methods for each
are highly similar.

4.1 Current control-q stability (subsystem 1)
Following the previous section, we can define the first subsystem of the EMLA, according to (24) and (30), as follows:

𝑥̇1 = 𝑥2 + 𝐹1(𝑥1) + 𝑑1
𝑥̇2 = 𝑔2𝑆(𝑖∗𝑞) + 𝐹2(𝑥1, 𝑥2) + 𝑑2

(43)
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where 𝑥1 = 𝑥𝐿 immediate linear position, 𝑥2 = 𝑥̇𝐿 immediate linear velocity, 𝐹1(𝑥1) = 𝑓1 is the unknown uncertainties,
𝑔2 = 3

2
𝐼−1𝑒𝑞 𝑃𝜓𝑃𝑀 , 𝐹2 = −𝐼−1𝑒𝑞 (𝑏𝑒𝑞𝑥2 + 𝑘𝑒𝑞𝑥1) + 𝑓2 is the uncertainties, and 𝑑1 and 𝑑2 are load disturbances. In this way, we

define the error of tracking as follows:
𝑥1 = 𝑥1 − 𝑥𝑑
𝑥2 = 𝑥2 − 𝑥̇𝑑

(44)
where 𝑥𝑑 and 𝑥̇𝑑 are the reference trajectories for the linear position and velocity, respectively. We alter the form of the system
to the tracking form as shown:45

𝑃1 = 𝑥1
𝑃2 = 𝑥2 − 𝑎1

(45)
where 𝑎1 is a virtual control for sub-subsystem 1 introduced in (39). To avoid the "explosion of the complexity", derived from
Wang, et al.,28 the time derivative of the virtual control input is treated as an uncertain term in the system, according to (39). In
this way, by differentiating (45) and inserting (43) and (44) into it, we will have a new form of the first subsystem, as follows:

𝑃̇1 = 𝑃2 + 𝐹 1 + 𝑎1 + 𝑑1
𝑃̇2 = 𝑔2𝑆(𝑖∗𝑞) + 𝐹 2 − 𝑥̈𝑑 + 𝑑2

(46)

and 𝑖∗𝑞 is the current-q control in the first subsystem. In addition, the current-q control constraint derived from (35) is introduced
as follows:

𝑆(𝑖∗𝑞) =

⎧

⎪

⎨

⎪

⎩

𝑖∗𝑞1, if 𝑖∗𝑞 ≥ 𝑖∗𝑞1
𝑖∗𝑞 if 𝑖∗𝑞2 ≤ 𝑖∗𝑞 ≤ 𝑖∗𝑞1
𝑖∗𝑞2 if 𝑖∗𝑞 ≤ 𝑖∗𝑞2

(47)

The Lyapunov function for the first sub-subsystem are suggested as follows:
𝑉1 =

1
2
𝜆𝑚𝑖𝑛[𝑃12 + 𝛿−11 𝜃21] (48)

After differentiating 𝑉1 and inserting (46), we obtain:
𝑉̇1 = 𝑃1𝜆𝑚𝑖𝑛[𝑃2 + 𝐹 1 + 𝑎1 + 𝑑1] + 𝛿−11 𝜆𝑚𝑖𝑛𝜃1 ̇̃𝜃1 (49)

After conducting simple mathematical work, we obtain:
𝑉̇1 = 𝜆𝑚𝑖𝑛𝑃1𝑃2 + 𝜆𝑚𝑖𝑛𝑃1𝐹 1 + 𝜆𝑚𝑖𝑛𝑃1𝑑1 + 𝜆𝑚𝑖𝑛𝑃1𝑎1 + 𝛿−11 𝜆𝑚𝑖𝑛𝜃1 ̇̃𝜃1 (50)

By considering (32), we have:
𝑉̇1 ≤ 𝜆𝑚𝑖𝑛𝑃1𝑃2 + 𝜆𝑚𝑖𝑛 ∣ 𝑃1 ∣ Λ1𝑟1 + 𝜆𝑚𝑖𝑛 ∣ 𝑃1 ∣ 𝑑𝑚𝑎𝑥(1) + 𝜆𝑚𝑖𝑛𝑃1𝑎1 + 𝛿−11 𝜆𝑚𝑖𝑛𝜃1 ̇̃𝜃1 (51)

By using the mathematical concept (𝑃1 − 𝑃2)2 ≥ 0, we obtain
𝑉̇1 ≤

1
2
𝜆𝑚𝑖𝑛𝑃

2
1 + 1

2
𝜆𝑚𝑖𝑛𝑃

2
2 + 𝜆𝑚𝑖𝑛 ∣ 𝑃1 ∣ Λ1𝑟1 + 𝜆𝑚𝑖𝑛 ∣ 𝑃1 ∣ 𝑑𝑚𝑎𝑥(1) + 𝜆𝑚𝑖𝑛𝑃1𝑎1 + 𝛿−11 𝜆𝑚𝑖𝑛𝜃1 ̇̃𝜃1 (52)

Because Λ1𝑟1 and 𝑑𝑚𝑎𝑥(1) are meant to be finite, we can assume positive values for 𝜈1, and 𝜇1, as follows:
𝜆𝑚𝑖𝑛 ∣ 𝑃1 ∣ Λ1𝑟1 ≤ 𝜇1𝜆

2
𝑚𝑖𝑛 ∣ 𝑃1 ∣

2 Λ2
1 +

1
4
𝜇−1
1 𝑟

2
1

𝜆𝑚𝑖𝑛 ∣ 𝑃1 ∣ 𝑑𝑚𝑎𝑥(1) ≤ 𝜈1𝜆
2
𝑚𝑖𝑛 ∣ 𝑃1 ∣

2 𝑑2𝑚𝑎𝑥(1) +
1
4
𝜈−11

(53)

Then, by considering the definition of 𝜃∗1 in (33) and the definition of (53), we achieve:
𝑉̇1 ≤

1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

2
𝜆𝑚𝑖𝑛𝜁1𝜃

∗
1 ∣ 𝑃1 ∣2 +

1
4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 + 𝜆𝑚𝑖𝑛𝑃1𝑎1 + 𝛿−1𝜆𝑚𝑖𝑛𝜃1 ̇̃𝜃1 (54)

Now, by inserting (39) and (42), we have:
𝑉̇1 ≤

1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

2
𝜆𝑚𝑖𝑛𝜁1𝜃

∗
1 ∣ 𝑃1 ∣2 +

1
4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 − 1

2
𝜆𝑚𝑖𝑛𝛽1𝑃

2
1 − 1

2
𝜆𝑚𝑖𝑛𝜁1𝜃̂1𝑃

2
1

− 𝜆𝑚𝑖𝑛𝜎1𝜃21 +
1
2
𝜆𝑚𝑖𝑛𝜁1|𝑃1|

2𝜃1 − 𝜆𝑚𝑖𝑛𝜎1𝜃∗1𝜃1
(55)

Because 𝜃1 = 𝜃̂1 − 𝜃∗1 :
𝑉̇1 ≤

1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 − 1

2
𝜆𝑚𝑖𝑛𝛽1𝑃

2
1 − 𝜆𝑚𝑖𝑛𝜎1𝜃21 − 𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1𝜃1 (56)
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After dividing 𝜆𝑚𝑖𝑛𝜎1𝜃21 into 1
2
𝜆𝑚𝑖𝑛𝜎1𝜃21 +

1
2
𝜆𝑚𝑖𝑛𝜎1𝜃21 , and considering (48), we have:

𝑉̇1 ≤ − 𝜙1𝑉1 +
1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 − 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

2
1 − 𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1𝜃1 (57)

where
𝜙1 = min[𝛽1, 𝛿1𝜎1] (58)

From (57), we have:
𝑉̇1 ≤ − 𝜙1𝑉1 +

1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 − 1

2
𝜆𝑚𝑖𝑛𝜎1(𝜃̂1 − 𝜃∗1 )

2 − 𝜆𝑚𝑖𝑛𝜎1𝜃∗1 (𝜃̂1 − 𝜃
∗
1 ) (59)

Because − 1
2
𝜆𝑚𝑖𝑛𝜎1𝜃̂21 ≤ 0, we can eliminate this part from the right side and reach:

𝑉̇1 ≤ − 𝜙1𝑉1 +
1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 (60)

Later, we will return to the stability of 𝑃1. Now, we continue the stability proof for the second sub-subsystem, which implies
the stability of the entire subsystem 1. Similar to the previous sub-subsystem, we can provide the same proof for the second
sub-subsystem by defining the Lyapunov function as follows:

𝑉2 = 𝑉1 +
1
2
[𝑃 2

2 + 𝛿−1𝜆𝑚𝑖𝑛𝜃22] (61)
where 𝑉1 is the Lyapunov function introduced for sub-subsystem 1 in (48). By differentiating 𝑉2 and inserting (46), we have:

𝑉̇2 =𝑉̇1 + 𝑃2[𝑔2𝑆(𝑖∗𝑞) + 𝐹 2 − 𝑥̈𝑑 + 𝑑2] + 𝛿−12 𝜆𝑚𝑖𝑛𝜃2 ̇̃𝜃2 (62)
Likewise, we continue by considering (60), inserted into (62) as follows:

𝑉̇2 ≤ − 𝜙1𝑉1 +
1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2

+ 𝑃2𝑔2𝑆(𝑖∗𝑞) + 𝑃2𝐹 2 − 𝑃2𝑥̈𝑑 + 𝑃2𝑑2 + 𝛿−12 𝜆𝑚𝑖𝑛𝜃2 ̇̃𝜃2
(63)

By inserting (36) into (63), we have:
𝑉̇2 ≤ − 𝜙1𝑉1 +

1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2

+ 𝑃2𝑔2𝜆1 𝑖∗𝑞 + 𝑃2𝑔2𝜆̄1 + 𝑃2𝐹 2 − 𝑃2𝑥̈𝑑 + 𝑃2𝑑2 + 𝛿−12 𝜆𝑚𝑖𝑛𝜃2 ̇̃𝜃2
(64)

By inserting current-q control 𝑖∗𝑞 inserted from (40) into (64)

𝑉̇2 ≤ − 𝜙1𝑉1 +
1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 − 1

2
𝜆1𝛽2𝑃2

2

− 1
2
𝜆1𝜁2𝜃̂2𝑃2

2 + 𝑃2𝑔2𝜆̄1 + 𝑃2𝐹 2 − 𝑃2𝑥̈𝑑 + 𝑃2𝑑2 + 𝛿−12 𝜆𝑚𝑖𝑛𝜃2 ̇̃𝜃2
(65)

By considering 𝜃̂2(0) ≥ 0 according to assumption 3, and because 𝜆𝑚𝑖𝑛, 𝜆1 ≥ 0, and 𝜆𝑚𝑖𝑛 ≤ 𝜆1, we can say:
𝑉̇2 ≤ − 𝜙1𝑉1 +

1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4
𝜇−1
1 𝑟

2
1 +

1
4
𝜈−11 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 − 1

2
𝜆𝑚𝑖𝑛𝛽2𝑃2

2

− 1
2
𝜆𝑚𝑖𝑛𝜁2𝜃̂2𝑃2

2 + 𝑃2𝑔2𝜆̄1 + 𝑃2𝐹 2 − 𝑃2𝑥̈𝑑 + 𝑃2𝑑2 + 𝛿−12 𝜆𝑚𝑖𝑛𝜃2 ̇̃𝜃2
(66)

Similar to (53), by knowing (32) and (38), we can assume:
𝑃2𝐹 2 ≤ 𝜇2Λ2

2𝑃
2
2 + 1

4
𝜇−1
2 𝑟

2
2

𝑃2𝑑2 ≤ 𝜈2𝑑
2
𝑚𝑎𝑥2𝑃

2
2 + 1

4
𝜈−12

−𝑃2𝑥̈𝑑 ≤ 𝜈3Ω2𝑃 2
2 + 1

4
𝜈−13

𝑃2𝑔2𝜆̄1 ≤ 𝜈4𝑔
2
2 𝜆̄

2
𝑚𝑎𝑥𝑃

2
2 + 1

4
𝜈−14

(67)
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where we have:
𝑉̇2 ≤ − 𝜙1𝑉1 +

1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

4

2
∑

𝑖=1
𝜇−1
𝑖 𝑟

2
𝑖 +

1
4

4
∑

𝑖=1
𝜈−1𝑖 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 − 1

2
𝜆𝑚𝑖𝑛𝛽2𝑃2

2

− 1
2
𝜆𝑚𝑖𝑛𝜁2𝜃̂2𝑃2

2 + 𝜈4𝑔22 𝜆̄
2
𝑚𝑎𝑥𝑃

2
2 + 𝜇2Λ2

2𝑃
2
2 + 𝜈3Ω2𝑃 2

2 + 𝜈2𝑑2𝑚𝑎𝑥2𝑃
2
2 + 𝛿−12 𝜆𝑚𝑖𝑛𝜃2 ̇̃𝜃2

(68)

By considering 𝜃∗2 in (33):

𝑉̇2 ≤ − 𝜙1𝑉1 +
1
4

2
∑

𝑖=1
𝜇−1
𝑖 𝑟

2
𝑖 +

1
4

4
∑

𝑖=1
𝜈−1𝑖 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 − 1

2
𝜆𝑚𝑖𝑛𝛽2𝑃2

2

− 1
2
𝜆𝑚𝑖𝑛𝜁2𝜃̂2𝑃2

2 + 1
2
𝜆𝑚𝑖𝑛𝜁2𝜃

∗
2𝑃

2
2 + 𝛿−12 𝜆𝑚𝑖𝑛𝜃2 ̇̃𝜃2

(69)

By inserting 𝜃2 from (42) into (69):

𝑉̇2 ≤ − 𝜙1𝑉1 +
1
4

2
∑

𝑖=1
𝜇−1
𝑖 𝑟

2
𝑖 +

1
4

4
∑

𝑖=1
𝜈−1𝑖 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 − 1

2
𝜆𝑚𝑖𝑛𝛽2𝑃2

2

− 1
2
𝜆𝑚𝑖𝑛𝜁2𝜃̂2𝑃2

2 + 1
2
𝜆𝑚𝑖𝑛𝜁2𝜃

∗
2𝑃

2
2 − 𝜆𝑚𝑖𝑛𝜎2𝜃22 +

1
2
𝜆𝑚𝑖𝑛𝜁2𝜃2|𝑃2|

2 − 𝜆𝑚𝑖𝑛𝜎2𝜃∗2𝜃2

(70)

Some mathematical works:
𝑉̇2 ≤ − 𝜙1𝑉1 +

1
4

2
∑

𝑖=1
𝜇−1
𝑖 𝑟

2
𝑖 +

1
4

4
∑

𝑖=1
𝜈−1𝑖 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 − 1

2
𝜆𝑚𝑖𝑛𝛽2𝑃2

2 − 𝜆𝑚𝑖𝑛𝜎2𝜃22 − 𝜆𝑚𝑖𝑛𝜎2𝜃
∗
2𝜃2 (71)

By dividing −𝜆𝑚𝑖𝑛𝜎2𝜃22 , knowing (61), and noting that 0 ≤ 𝜆𝑚𝑖𝑛 ≤ 1:

𝑉̇2 ≤ − 𝜙2𝑉2 +
1
4

2
∑

𝑖=1
𝜇−1
𝑖 𝑟

2
𝑖 +

1
4

4
∑

𝑖=1
𝜈−1𝑖 + 1

2

2
∑

𝑖=1
𝜆𝑚𝑖𝑛𝜎𝑖𝜃

∗
𝑖
2 (72)

where
𝜙2 = min[𝜙1, 𝛽2, 𝛿2𝜎2] (73)

For brevity, we introduce:
𝜇̃2 =

1
2

2
∑

𝑖=1
𝜆𝑚𝑖𝑛𝜎𝑖𝜃

∗
𝑖
2 + 1

4

4
∑

𝑖=1
𝜈−1𝑖 (74)

Thus,
𝑉̇2 ≤ − 𝜙2𝑉2 +

1
4

2
∑

𝑖=1
𝜇−1
𝑖 𝑟

2
𝑖 + 𝜇̃2 (75)

Taken from the general solution for state-space representation, we can say:

𝑉̇ = 𝜙𝑉 + 𝜇𝑟 ⇐⇒ 𝑉 = 𝑒𝜙𝑡𝑉 (0) +

𝑡

∫
0

𝑒𝜙(𝑡−𝜏)𝜇𝑟(𝜏)𝑑𝜏 (76)

Thus, we can solve (75), as follows:

𝑉2 ≤𝑉2
(

𝑡0
)

𝑒−{𝜙2(𝑡−𝑡0)} + 1
4

2
∑

𝑖=1
𝜇−1
𝑖

𝑡

∫
𝑡0

𝑒{−𝜙2(𝑡−𝑇 )}𝑟2𝑖 𝑑𝑇 + 𝜇̃2

𝑡

∫
𝑡0

𝑒{−𝜙2(𝑡−𝑇 )} 𝑑𝑇 (77)

Regarding (61), we can interpret (77) as follows:

‖𝑃2‖
2 ≤2𝑉2

(

𝑡0
)

𝑒−{𝜙2(𝑡−𝑡0)} + 1
2

2
∑

𝑖=1
𝜇−1
𝑖

𝑡

∫
𝑡0

𝑒{−𝜙2(𝑡−𝑇 )}𝑟2𝑖 𝑑𝑇 + 2 𝜇̃2 𝜙2
−1 (78)

Because 𝜇𝑖 is a positive constant, we can express that:
1
2

2
∑

𝑖=1

1
𝜇𝑖𝜙2

< 1 (79)
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Hence, a continuous function can be assumed as follows:

𝑍(𝜄) = 1
2

2
∑

𝑖=1

𝜇−1
𝑖

𝜙2 − 𝜄
> 0 ⇐⇒ 𝜄 ∈ [0, 𝜙2) (80)

Notice that the initial amount in (80) equals (79). Now, it is obvious to say that there is a positive amount 𝜄 ∈ 𝜄, such that:
0 ≤ 𝑍̄ = 𝑍(𝜄) < 1 (81)

By multiplying 𝑒𝜄(𝑡−𝑡0) by (78), we reach:

‖𝑃2‖
2𝑒𝜄(𝑡−𝑡0) ≤2𝑉2(𝑡0)𝑒−(𝜙2−𝜄)(𝑡−𝑡0) + 1

2

2
∑

𝑖=1
𝜇−1
𝑖

𝑡

∫
𝑡0

𝑒−𝜙2(𝑡−𝑇 )+𝜄(𝑡−𝑡0)𝑟2𝑖 𝑑𝑇 + 2𝜇̃2𝜙−1
2 𝑒

𝜄(𝑡−𝑡0) (82)

Because 0 ≤ 𝜄 < 𝜙2, we can eliminate the decreasing element 𝑒−(𝜙2−𝜄)(𝑡−𝑡0) from the right side of the inequality in (82):

‖𝑃2‖
2𝑒𝜄(𝑡−𝑡0) ≤2𝑉2(𝑡0) +

1
2

2
∑

𝑖=1
𝜇−1
𝑖

𝑡

∫
𝑡0

𝑒−(𝜙2−𝜄)(𝑡−𝑇 )𝑟2𝑖 𝑒
𝜄(𝑡−𝑡0) 𝑑𝑇 + 2𝜇̃2𝜙−1

2 𝑒
𝜄(𝑡−𝑡0) (83)

In this way, we can express the continuous and non-decreasing functions 𝐸0 and 𝐸𝑖:
𝐸0 = sup

𝑒∈(𝑡−𝑡0)
[‖𝑃2‖2𝑒𝜄(𝑒−𝑡0))]

𝐸𝑖 = sup
𝑒∈(𝑡−𝑡0)

[(𝑟2𝑖 )𝑒
𝜄(𝑒−𝑡0)]

(84)

Then, by considering (84) and performing some simple mathematical works, as well as eliminating the negative section, we have:

‖𝑃2‖
2𝑒𝜄(𝑡−𝑡0) ≤2𝑉2(𝑡0) +

1
2

2
∑

𝑖=1

𝜇−1
𝑖

𝜙2 − 𝜄
𝐸𝑖 + 2𝜇̃2𝜙−1

2 𝑒
𝜄(𝑡−𝑡0) (85)

Because 𝐸𝑖 is not decreasing, the left side of (85) will not decrease. Therefore, regarding the definition of 𝐸0 in (84), we can say

𝐸0 ≤2𝑉2(𝑡0) +
1
2

2
∑

𝑖=1

𝜇−1
𝑖

𝜙2 − 𝜄
𝐸𝑖 + 2𝜇̃2𝜙−1

2 𝑒
𝜄(𝑡−𝑡0) (86)

By defining
𝐸 = max

𝑖
(𝐸𝑖) ⇐⇒ 𝑖 = 0, 1, 2 (87)

we can have:
𝐸0 ≤ 2𝑉2

(

𝑡0
)

+ 𝑍̄𝐸 + 2𝜇̃2𝜙−1
2 𝑒

𝜄(𝑡−𝑡0) (88)
that 0 < 𝐸0 ≤ 𝐸 and both 𝐸0 and 𝐸 are not decreasing, allowing to define ∗

𝑍 as follows:
∗
𝑍 > 𝑍̄ , 0 <

∗
𝑍 < 1 ⇐⇒ 𝑍̄𝐸 ≤

∗
𝑍𝐸0

(89)
(89) makes sense because 𝜇𝑖 can be an option to make 𝑍̄ small enough. Adding (89) into (88), we reach:

𝐸0 ≤ 2𝑉2(𝑡0) +
∗
𝑍𝐸0(𝑡) + 2𝜇̄2𝜙−1

2 𝑒
𝜄(𝑡−𝑡0) (90)

Afterward, we obtain:
𝐸0 ≤

2𝑉2
(

𝑡0
)

+ 2𝜇̃2𝜙−1
2 𝑒

𝜄(𝑡−𝑡0)

1 −
∗
𝑍

(91)
Concerning the definition (84), we obtain:

‖𝑃2‖
2 ≤

2𝑉2
(

𝑡0
)

𝑒−𝜄(𝑡−𝑡0) + 2𝜇̃2𝜙−1
2

1 −
∗
𝑍

(92)

It is significant that:
sup

𝑡∈[𝑡0,∞]
(
2𝑉2(𝑡0)𝑒−𝜄(𝑡−𝑡0)

1 −
∗
𝑍

) ≤
2𝑉2(𝑡0)

1 −
∗
𝑍

(93)
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Thus, based on Definition (2), it is obvious from (92) that ‖𝑃2‖ is uniformly exponentially bounded by using 𝑖∗𝑞 control in (40).
Therefore, ‖𝑃2‖ will have uniform exponential stability inside to a specific ball  (𝜏0

), where:


(

𝜏0
)

∶=

⎧

⎪

⎨

⎪

⎩

𝑃2 ∣ ‖𝑃2‖ ≤ 𝜏0 =

√

√

√

√

2𝜇̃2𝜙−1
2

1 −
∗
𝑍

⎫

⎪

⎬

⎪

⎭

(94)

By knowing that 𝑃2 is uniformly exponential stable, we can return to (60) to continue the stability proof for the first sub-
subsystem. Hence, we can introduce a finite positive value, as follows:

𝜇̃1 =
1
2
𝜆𝑚𝑖𝑛𝑃

2
2 + 1

2
𝜆𝑚𝑖𝑛𝜎1𝜃

∗
1
2 + 1

4
𝜈−11 (95)

(95) makes sense because 𝑃2 is uniformly exponential stable. Thus:
𝑉̇1 ≤ − 𝜙1𝑉1 +

1
4
𝜇−1
1 𝑟

2
1 + 𝜇̃1 (96)

Taken from the general solution for state-space representation, we can say:

𝑉̇ = 𝜙𝑉 + 𝜇𝑟 ⇐⇒ 𝑉 = 𝑒𝜙𝑡𝑉 (0) +

𝑡

∫
0

𝑒𝜙(𝑡−𝑇 )𝜇𝑟(𝑇 )𝑑𝑇 (97)

Thus, we can solve (60) using (97) as follows:

𝑉1 ≤𝑉1
(

𝑡0
)

𝑒−{𝜙1(𝑡−𝑡0)} + 1
4
𝜇−1
1

𝑡

∫
𝑡0

𝑒{−𝜙1(𝑡−𝑇 )}𝑟21 𝑑𝑇 + 𝜇̃1

𝑡

∫
𝑡0

𝑒{−𝜙1(𝑡−𝑇 )} 𝑑𝑇 (98)

regarding (48), and knowing 𝜆𝑚𝑖𝑛 ≤ 1, we can interpret (98) as follows:

‖𝑃1‖
2 ≤2𝑉1

(

𝑡0
)

𝑒−{𝜙1(𝑡−𝑡0)} + 1
2
𝜇−1
1

𝑡

∫
𝑡0

𝑒{−𝜙1(𝑡−𝑇 )}𝑟21 𝑑𝑇 + 2 𝜇̃1 𝜙1
−1 (99)

Because 𝜇1 is a positive constant, we assume that there is a 𝜇1 expressing:
1
2
( 1
𝜇1𝜙1

) < 1 (100)
Hence, a continuous function can be defined as follows:

𝑍(𝜄) = 1
2
(
𝜇−1
1

𝜙1 − 𝜄
) > 0 ⇐⇒ 𝜄 ∈ [0, 𝜙1) (101)

Notice that the initial amount in (101) is equal to (100). Now, it is obvious to say that there is a positive amount 𝜄 ∈ 𝜄, such that:
0 ≤ 𝑍̄ = 𝑍(𝜄) < 1 (102)

By multiplying 𝑒𝜄(𝑡−𝑡0) by (99), we reach:

‖𝑃1‖
2𝑒𝜄(𝑡−𝑡0) ≤2𝑉1(𝑡0)𝑒−(𝜙1−𝜄)(𝑡−𝑡0) + 1

2
𝜇−1
1

𝑡

∫
𝑡0

𝑒−𝜙1(𝑡−𝑇 )+𝜄(𝑡−𝑡0)𝑟21 𝑑𝑇 + 2𝜇̃1𝜙−1
1 𝑒

𝜄(𝑡−𝑡0) (103)

Because 0 ≤ 𝜄 < 𝜙1 an 𝑡 ≥ 𝑡0, we can eliminate the decreasing element 𝑒−(𝜙1−𝜄)(𝑡−𝑡0) as the factor of 𝑉1(𝑡0) from the right side of
the inequality in (103):

‖𝑃1‖
2𝑒𝜄(𝑡−𝑡0) ≤2𝑉1(𝑡0) +

1
2
𝜇−1
1

𝑡

∫
𝑡0

𝑒−(𝜙1−𝜄)(𝑡−𝑇 )𝑟21𝑒
𝜄(𝑡−𝑡0) 𝑑𝑇 +2𝜇̃1𝜙−1

1 𝑒
𝜄(𝑡−𝑡0) (104)

In this way, we can express the continuous and non-decreasing functions 𝐸0 and 𝐸𝑖:
𝐸0 = sup

𝑒∈(𝑡−𝑡0)
[‖𝑃1‖2𝑒𝜄(𝑒−𝑡0))]

𝐸1 = sup
𝑒∈(𝑡−𝑡0)

[(𝑟21)𝑒
𝜄(𝑒−𝑡0)]

(105)
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Then, by considering (105) and performing some simple mathematical works, we have:

‖𝑃1‖
2𝑒𝜄(𝑡−𝑡0) ≤2𝑉1(𝑡0) +

1
2
𝜇−1
1

𝜙1 − 𝜄
𝐸1 + 2𝜇̃2𝜙−1

2 𝑒
𝜄(𝑡−𝑡0) (106)

Because 𝐸1 is not decreasing, the left side of (106) will not decrease. Therefore, regarding the definition of 𝐸0 in (105), we can
say:

𝐸0 ≤2𝑉1(𝑡0) +
1
2
𝜇−1
1

𝜙1 − 𝜄
𝐸1 + 2𝜇̃1𝜙−1

1 𝑒
𝜄(𝑡−𝑡0) (107)

defining
𝐸 = max

𝑖
(𝐸𝑖) ⇐⇒ 𝑖 = 0, 1 (108)

After considering (101) and (102), we can have:
𝐸0 ≤ 2𝑉1

(

𝑡0
)

+ 𝑍̄𝐸 + 2𝜇̃1𝜙−1
1 𝑒

𝜄(𝑡−𝑡0) (109)
As with (108), we know that 0 < 𝐸0 ≤ 𝐸 and both 𝐸0 and 𝐸 are not decreasing, allowing us to define ∗

𝑍 as follows:
∗
𝑍 > 𝑍̄ , 0 <

∗
𝑍 < 1

such that
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑍̄𝐸 ≤

∗
𝑍𝐸0

(110)
(110) makes sense because 𝜇1 can be an option to make 𝑍̄ small enough. Adding (110) to (109), we reach:

𝐸0 ≤ 2𝑉1(𝑡0) +
∗
𝑍𝐸0(𝑡) + 2𝜇̄1𝜙−1

1 𝑒
𝜄(𝑡−𝑡0) (111)

Afterward, we obtain:
𝐸0 ≤

2𝑉1
(

𝑡0
)

+ 2𝜇̃1𝜙−1
1 𝑒

𝜄(𝑡−𝑡0)

1 −
∗
𝑍

(112)
Concerning the definition (105), we obtain:

‖𝑃1‖
2 ≤

2𝑉1
(

𝑡0
)

𝑒−𝜄(𝑡−𝑡0) + 2𝜇̃1𝜙−1
1

1 −
∗
𝑍

(113)

It is significant that:
sup

𝑡∈[𝑡0,∞]
(
2𝑉1(𝑡0)𝑒−𝜄(𝑡−𝑡0)

1 −
∗
𝑍

) ≤
2𝑉1(𝑡0)

1 −
∗
𝑍

(114)
Thus, based on Definition (2), it is obvious from (113) and (114) that ‖𝑃1‖ is uniformly exponentially bounded by use of the
virtual control 𝑎1 in (39). Therefore, ‖𝑃1‖ will have uniform exponential stability inside to a specific ball  (𝜏0

), where:


(

𝜏0
)

∶=

⎧

⎪

⎨

⎪

⎩

𝑃1 ∣ ‖𝑃1‖ ≤ 𝜏0 =

√

√

√

√

2𝜇̃1𝜙−1
1

1 −
∗
𝑍

⎫

⎪

⎬

⎪

⎭

(115)

Finally, uniform exponential stability is fulfilled for the first sub-subsystem following Theorem (1).

4.2 Voltage-d control stability (subsystem 2)
Similar to the first subsystem, the stability analysis of the second subsystem is as follows. Likewise, the second subsystem is
introduced, according to (22), as follows:

𝑥̇3 = 𝑥4 + 𝐹3(𝑥1, 𝑥2, 𝑥3) + 𝑑3
𝑥̇4 = 𝑔4𝑆(𝑢𝑑) + 𝐹4(𝑥1, 𝑥2, 𝑥3, 𝑥4) + 𝑑4

(116)

where 𝑥3 = 𝑖𝑑 , 𝑥4 = 𝑖̇𝑑 is the current-d and its derivative, 𝐹3 = 𝑓3, 𝑔4 = 1
𝐿𝑑

, 𝐹4 =
−𝑅𝑠
𝐿𝑑
𝑥3 + 𝑃𝑐𝑅𝐿

𝐿𝑞
𝐿𝑑
𝑖∗𝑞𝑥2 + 𝑓4 are uncertainties,

𝑑3 and 𝑑4 are external disturbances, and 𝑢𝑑 is the voltage-d control in the second subsystem. According to (35), we have:

𝑆(𝑢𝑑) =

⎧

⎪

⎨

⎪

⎩

𝑢𝑑1, if 𝑢𝑑 ≥ 𝑢𝑑1
𝑢𝑑 if 𝑢𝑑2 ≤ 𝑢𝑑 ≤ 𝑢𝑑1
𝑢𝑑2 if 𝑢𝑑 ≤ 𝑢𝑑2

(117)
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Similar to the previous subsystem, the two sub-subsystems should be controlled and analyzed as in (44). In this way, by defining
the error of tracking as:

𝑥3 = 𝑥3 − 0
𝑥4 = 𝑥4 − 0

(118)
in this subsystem, we consider that the reference values of both states are zero. We alter the form of the system to the tracking
form, as shown45:

𝑃3 = 𝑥3
𝑃4 = 𝑥4 − 𝑎3

(119)
where 𝑎3 is the virtual control for the second subsystem (sub-subsystem 1). To avoid the "explosion of the complexity" derived
from Wang, et al.,28 the time derivative of the virtual control input is treated as an uncertainty term in the system according to
(39). By differentiating (119), we have:

𝑃̇3 = 𝑃4 + 𝐹 3 + 𝑎3 + 𝑑3
𝑃̇4 = 𝑔4𝑆(𝑢𝑑) + 𝐹 4 + 𝑑4

(120)
The Lyapunov functions using the virtual control 𝑎3 and the voltage-d control in (39) and (40) for the second subsystem are
suggested as follows:

𝑉3 = 𝑉2 +
1
2
𝜆𝑚𝑖𝑛 [𝑃32 + 𝛿−13 𝜃23]

𝑉4 = 𝑉3 +
1
2
[𝑃 2

4 + 𝛿−1𝜆𝑚𝑖𝑛𝜃24]
(121)

All proof steps are the same as the previous subsystem provided in section 4.1, except that we consider the reference of states
𝑖∗𝑑 and 𝑖̇∗𝑑 , which are also zero. In this way, we have:

𝜆𝑚𝑖𝑛𝑃3𝐹 3 ≤ 𝜇3𝜆
2
𝑚𝑖𝑛 ∣ 𝑃3 ∣

2 Λ2
3 +

1
4
𝜇−1
3 𝑟

2
3

𝜆𝑚𝑖𝑛𝑃3𝑑3 ≤ 𝜈5𝜆
2
𝑚𝑖𝑛 ∣ 𝑃3 ∣

2 𝑑2𝑚𝑎𝑥(3) +
1
4
𝜈−15

𝑃4𝐹 4 ≤ 𝜇4Λ2
4𝑃

2
4 + 1

4
𝜇−1
4 𝑟

2
4

𝑃4𝑑4 ≤ 𝜈6𝑑
2
𝑚𝑎𝑥(4)𝑃

2
4 + 1

4
𝜈−16

𝑃4𝑔4𝜆̄2 ≤ 𝜈7𝑔
2
4 𝜆̄

2
𝑚𝑎𝑥𝑃

2
4 + 1

4
𝜈−17

(122)

Similar to the way (113) was obtained, we can achieve:

‖𝑃3‖
2 ≤

2𝑉3
(

𝑡0
)

𝑒−𝜄(𝑡−𝑡0) + 2𝜇̃3𝜙−1
3

1 −
∗
𝑍

⇐⇒ 𝜙3 = min[𝜙2, 𝛽3, 𝛿3𝜎3] (123)

According to (75), we can say:
𝜇̃3 =

1
2
𝜆𝑚𝑖𝑛𝑃

2
4 + 1

2

3
∑

𝑖=1
𝜆𝑚𝑖𝑛𝜎𝑖𝜃

∗
𝑖
2 + 1

4

5
∑

𝑖=1
𝜈−1𝑖 (124)

Thus, based on Definition (2), it is obvious from (123) that ‖𝑃3‖ is uniformly exponentially bounded by use of the virtual control
𝑎3 introduced in (39), ‖𝑃3‖ will have uniform exponential stability inside to a specific ball  (𝜏0

), where:

𝑍(𝜄) = 1
2

3
∑

𝑖=1

𝜇−1
𝑖

𝜙3 − 𝜄
> 0 ⇐⇒ 𝜄 ∈ [0, 𝜙3)

like (89)
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 

(

𝜏0
)

∶=

⎧

⎪

⎨

⎪

⎩

𝑃3 ∣ ‖𝑃3‖ ≤ 𝜏0 =

√

√

√

√

2𝜇̃3𝜙−1
3

1 −
∗
𝑍

⎫

⎪

⎬

⎪

⎭

(125)

Also, similar to the way (92) was obtained, we can achieve:

‖𝑃4‖
2 ≤

2𝑉4
(

𝑡0
)

𝑒−𝜄(𝑡−𝑡0) + 2𝜇̃4𝜙−1
4

1 −
∗
𝑍

⇐⇒ 𝜙4 = min[𝜙3, 𝛽4, 𝛿4𝜎4] (126)

where:
𝜇̃4 =

1
2

4
∑

𝑖=1
𝜆𝑚𝑖𝑛𝜎𝑖𝜃

∗
𝑖
2 + 1

4

7
∑

𝑖=1
𝜈−1𝑖 (127)
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Thus, based on Definition (2), it is obvious from (126) that ‖𝑃4‖ is uniformly exponentially bounded by use of the voltage-d
control defined in (40). Therefore, ‖𝑃4‖ will have uniform exponential stability inside to a specific ball  (𝜏0

), where:

𝑍(𝜄) = 1
2

4
∑

𝑖=1

𝜇−1
𝑖

𝜙4 − 𝜄
> 0 ⇐⇒ 𝜄 ∈ [0, 𝜙4)

like (89)
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 

(

𝜏0
)

∶=

⎧

⎪

⎨

⎪

⎩

𝑃4 ∣ ‖𝑃4‖ ≤ 𝜏0 =

√

√

√

√

2𝜇̃4𝜙−1
4

1 −
∗
𝑍

⎫

⎪

⎬

⎪

⎭

(128)

Finally, the uniform exponential stability is fulfilled for the second subsystem following the Theorem (1).

4.3 Voltage-q control stability (subsystem 3)
In the third subsystem, the control input is the voltage-q (𝑢𝑞). That is, after receiving 𝑥3, and 𝑥2 from the two initial subsystems
and considering the current control 𝑖∗𝑞 obtained in subsystem 1 as the desired state for subsystem 3, according to (22), we can
define the third subsystem as follows:

𝑥̇5 = 𝑥5 + 𝐹5(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) + 𝑑5
𝑥̇6 = 𝑔6𝑆(𝑢𝑞) + 𝐹6(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) + 𝑑6

(129)

where 𝑥5 = 𝑖𝑞; 𝑥6 = 𝑖̇𝑞; the states of current-q and its derivative should be tracked to 𝑖∗𝑞 and 𝑖̇∗𝑞 received from subsystem 1 as
a reference; 𝑔6 = 1

𝐿𝑞
, 𝐹5 = 𝑓5 and 𝐹6 = −𝑅𝑠

𝐿𝑞
𝑥5 − 𝑃𝑐𝑅𝐿

𝐿𝑑
𝐿𝑞
𝑥3𝑥2 − 𝑃𝑐𝑅𝐿

𝜓𝑃𝑀
𝐿𝑞
𝑥2 + 𝑓6 are uncertainties; 𝑑5 and 𝑑6 are external

disturbances; 𝑢𝑞 is the voltage-q control in the third subsystem; and according to (35):

𝑆(𝑢𝑞) =

⎧

⎪

⎨

⎪

⎩

𝑢𝑞1, if 𝑢𝑞 ≥ 𝑢𝑞1
𝑢𝑞 if 𝑢𝑞2 ≤ 𝑢𝑞 ≤ 𝑢𝑞1
𝑢𝑞2 if 𝑢𝑞 ≤ 𝑢𝑞2

(130)

Likewise, we have two sub-subsystems are meant to be controlled and analyzed as in (44). In this way by defining the error of
tracking as:

𝑥5 = 𝑥5 − 𝑖∗𝑞
𝑥6 = 𝑥6 − 𝑖̇∗𝑞

(131)

we alter the form of the system to the tracking form, as shown:45

𝑃5 = 𝑥5
𝑃6 = 𝑥6 − 𝑎5

(132)

where 𝑎5 is the virtual control for the third subsystem. To avoid the "explosion of the complexity" derived from Wang, et al.,28
the time derivative of the virtual control input is treated as an uncertain term in the system, according to (39). By differentiating
(132), we have:

𝑃̇5 = 𝑃6 + 𝐹 5 + 𝑎5 + 𝑑5
𝑃̇6 = 𝑔6𝑆(𝑢𝑞) + 𝐹 6 − 𝑖∗𝑞 + 𝑑6

(133)

The Lyapunov functions for the virtual control and the voltage-q control, related to the third subsystem, are defined in (39) and
(40) as follows:

𝑉5 = 𝑉4 +
1
2
𝜆𝑚𝑖𝑛 [𝑃52 + 𝛿−15 𝜃25]

𝑉6 = 𝑉5 +
1
2
[𝑃 2

6 + 𝛿−1𝜆𝑚𝑖𝑛𝜃26]
(134)
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All proof steps are the same as the first subsystem expressed in section 4.1. In this way, we have:
𝜆𝑚𝑖𝑛𝑃5𝐹 5 ≤ 𝜇5𝜆

2
𝑚𝑖𝑛 ∣ 𝑃5 ∣

2 Λ2
5 +

1
4
𝜇−1
5 𝑟

2
5

𝜆𝑚𝑖𝑛𝑃5𝑑5 ≤ 𝜈8𝜆
2
𝑚𝑖𝑛 ∣ 𝑃5 ∣

2 𝑑2𝑚𝑎𝑥(5) +
1
4
𝜈−18

𝑃6𝐹 6 ≤ 𝜇6Λ2
6𝑃

2
6 + 1

4
𝜇−1
6 𝑟

2
6

𝑃6𝑑6 ≤ 𝜈9𝑑
2
𝑚𝑎𝑥(6)𝑃

2
6 + 1

4
𝜈−19

−𝑃6𝑖∗𝑞 ≤ 𝜈10Ω2𝑃 2
6 + 1

4
𝜈−110

𝑃6𝑔6𝜆̄3 ≤ 𝜈11𝑔
2
6 𝜆̄

2
𝑚𝑎𝑥𝑃

2
6 + 1

4
𝜈−111

(135)

where ∣ 𝑖∗𝑞 ∣≤ Ω. Similar to how (113) was obtained, we can achieve:

‖𝑃5‖
2 ≤

2𝑉5
(

𝑡0
)

𝑒−𝜄(𝑡−𝑡0) + 2𝜇̃5𝜙−1
5

1 −
∗
𝑍

⇐⇒ 𝜙5 = min[𝜙4, 𝛽5, 𝛿5𝜎5] (136)

where:
𝜇̃5 =

1
2
𝜆𝑚𝑖𝑛𝑃

2
6 + 1

2

5
∑

𝑖=1
𝜆𝑚𝑖𝑛𝜎𝑖𝜃

∗
𝑖
2 + 1

4

8
∑

𝑖=1
𝜈−1𝑖 (137)

Thus, based on Definition (2), it is obvious from (139) that ‖𝑃5‖ is uniformly exponentially bounded by use of the virtual control
𝑎5. Therefore, ‖𝑃5‖ will have uniform exponential stability inside to a specific ball  (𝜏0

), where:

𝑍(𝜄) = 1
2

5
∑

𝑖=1

𝜇−1
𝑖

𝜙5 − 𝜄
> 0 ⇐⇒ 𝜄 ∈ [0, 𝜙5)

like (89)
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Similar to how (92) was obtained, we can achieve:

‖𝑃6‖
2 ≤

2𝑉6
(

𝑡0
)

𝑒−𝜄(𝑡−𝑡0) + 2𝜇̃6𝜙−1
6

1 −
∗
𝑍

⇐⇒ 𝜙6 = min[𝜙5, 𝛽6, 𝛿6𝜎6] (139)

where:
𝜇̃6 =

1
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Thus, based on Definition (2), it is obvious from (140) that ‖𝑃6‖ is uniformly exponentially bounded. Therefore, ‖𝑃6‖ will have
uniform exponential stability inside to a specific ball  (𝜏0

), where:

𝑍(𝜄) = 1
2

6
∑

𝑖=1

𝜇−1
𝑖

𝜙6 − 𝜄
> 0 ⇐⇒ 𝜄 ∈ [0, 𝜙6)

like (89)
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 

(

𝜏0
)

∶=

⎧

⎪

⎨

⎪

⎩

𝑃6 ∣ ‖𝑃6‖ ≤ 𝜏0 =

√

√

√

√

2𝜇̃6𝜙−1
6

1 −
∗
𝑍

⎫

⎪

⎬

⎪

⎭

(141)

Finally, the uniform exponential bound is fulfilled for the third subsystem of the EMLA following Theorem (1).
In the following section, an investigation into the performance of the RDSC will be conducted. This investigation will encompass
two distinct cycle duties, each of which will involve various load tasks for the EMLA.

5 NUMERICAL VALIDITY

To validate the effectiveness of the RDSC, we conducted a comprehensive performance analysis using three subsystems as
described in equations (30), to simulate the behavior of the EMLA, modeled in section 2. The analysis was carried out through
two duties with different loads, where the EMLA tracked the same reference trajectories. During this analysis, uncertainties,
which are assumed unknown, were considered in the first subsystem, according to the EMLA specifications provided in Table
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1 and (24), as follows:
𝐹1 = 𝑓1, 𝐹2 = −𝐼−1𝑒𝑞 (𝑏𝑒𝑞𝑥2 + 𝑘𝑒𝑞𝑥1) + 𝑓2
⇐⇒ 𝑓1 = 0, 𝑓2 = 2 (5 + 0.1 cos(0.5𝜋𝑡)) Arctan(900𝑡) (142)

in the second subsystem:
𝐹3 = 𝑓3, 𝐹4 =

−𝑅𝑠
𝐿𝑑

𝑥3 + 𝑃𝑐𝑅𝐿
𝐿𝑞
𝐿𝑑
𝑖∗𝑞𝑥2 + 𝑓4

⇐⇒ 𝑓3 = 0, 𝑓4 = −0.1 sin(0.5𝜋𝑡)
(143)

and in the third subsystem:
𝐹5 = 𝑓5, 𝐹6 =

−𝑅𝑠
𝐿𝑞

𝑥5 − 𝑃𝑐𝑅𝐿
𝐿𝑑
𝐿𝑞
𝑥3𝑥2 − 𝑃𝑐𝑅𝐿

𝜓𝑃𝑀
𝐿𝑞

𝑥2 + 𝑓6

⇐⇒ 𝑓5 = 0, 𝑓6 = 0.3 cos(0.5𝜋𝑡)
(144)

In addition, we considered the external disturbances affected by integrating loads into all three subsystems, as follows:
𝑑1 = 𝑑3 = 𝑑5 = 0
𝑑2 = 𝑓𝑒𝑞𝐹𝐿
𝑑4 = 2 sin

(

3𝜋𝑡 + 𝜋
7

)

𝑑6 = rand(2) − 0.3

(145)

The load force, denoted by 𝐹𝐿, refers to the force required by the actuator to move the load in the desired direction, taking into
account the load’s weight and friction. The weight and distribution of the load are critical factors in determining the load force
required, where a heavier load with an uneven distribution will require a higher load force compared to a lighter, more evenly
distributed load. To evaluate the effectiveness of our RDSC design for EMLAs, we conducted two different duties involving
loading and unloading procedures with various nonlinear load forces, which are supposed to be unknown. These duties included
forward and backward motions to represent different movements, which tested the RDSC’s capability to control the EMLA. Our
analysis focused on assessing the performance of the RDSC under different load conditions, motion types, and undesired forces,
the results of which will provide valuable insights into the EMLA’s effectiveness for practical applications.
Figure 4 illustrates the goal trajectories of the EMLA modeled during both duty phases. The actuator is designed to move linearly
forward from its initial position, as indicated by the blue line, until it reaches a point 100 cm away from the starting point in the
first step. In the second step, the actuator returns halfway to its previous position, stopping at a point 50 cm from the starting
point, as shown by the green line. The actuator then moves forward again in the third step, following the red line, until it reaches
a point 100 cm away from the starting point. In the final and fourth step, the actuator returns to its original starting position,
following the orange line.

0cm 25cm 50cm 75cm 100cm
FIGURE 4 EMLA trajectories for both duty cycles (blue line: step 1, green line: step 2, red line: step 3, orange line: step 4).

Using the EMLA’s specification provided in Table 1, the control performance is also investigated. Further, Table 2 presents
information on the parameters used in the control design and saturation levels applied to both the current and voltage control
inputs, which were kept constant across both duties. As per equation (47) and Table 1, the upper and lower limits for the motor
current, 𝑖∗𝑞1 and 𝑖∗𝑞2, respectively, are set to 7.9 A and -7.9 A. In addition, based on (117) and (130), and in accordance with the
motor’s specifications, the acceptable maximum and minimum voltage limits are set to 380 V for 𝑢𝑞1 and 𝑢𝑑1, and -380 V for
𝑢𝑞2 and 𝑢𝑑2. It should be emphasized that the design control parameters for the RDSC of the EMLA are limited to only four,
namely, 𝛽, 𝜁 , 𝛿, and 𝜎. These few parameters contribute to the simplicity of the control process for the entire EMLA system,
and the equations are essential to design of the RSDC situated within boxes for convenient reference, including (30), (36), (39),
(40), and (41). During duty cycles 1 and 2, we introduced a variety of loads to evaluate the performance of the RDSC in the
presence of heavy and nonlinear loads, as well as to assess its robustness against unknown forces acting as uncertainties and
disturbances, as defined in (142) to (145).
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TABLE 2 Control parameters
Gain Value

𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 60
𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5, 𝜁6 0.01
𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5, 𝛿6 100
𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6 0.01

𝑖∗𝑞1 7.9
𝑖∗𝑞2 -7.9

𝑢𝑑1, 𝑢𝑞1 380
𝑢𝑑2, 𝑢𝑞2 -380

5.1 Duty cycle 1
In this duty, we considered two distinct load types (load 11 and load 12), as illustrated in Figure 5 and 6(a) and the equations in
(145) and (146):

Load 11: 𝐹𝐿 = 1000 [0.1𝑠𝑖𝑛(5𝑡) + 80]
Load 12: 𝐹𝐿 = 500 [0.1𝑠𝑖𝑛(5𝑡) + 80]

(146)

In this duty, we considered significantly heavy and constant loads (80kN and 40kN), accompanied by a nonlinear component
represented by a sine function to enable a hard distribution of the load. Notably, the amplitude of Load 11 is twice that of Load
12. Based on the information provided by Figure 5, 6a, and 8, it can be observed that the loading and unloading times for duty
1, as well as the time spent tracking the trajectory, are as follows: at 145 s into the duty, Load 11 is applied to the EMLA at a
position of 100 cm. The load is then unloaded at 320 s, when the EMLA has moved to a position of 50 cm (green line step). After
this, at 420 s, Load 12 is picked up by the EMLA at a position of 100 cm. The load is then transported to its origin, arriving at
600 s, where it is subsequently unloaded (orange line step).

0cm 25cm 50cm 75cm 100cm

Load 11

Loading

Load 11

Unloading

Load 12

Loading

Load 12

Unloading

FIGURE 5 EMLA duty 1.

5.2 Duty cycle 2
In this duty, we introduced a wider range of loads, while keeping the same tracking process, control parameters, and unknown
uncertainties as in the previous duty. As illustrated in (147) and Figure 6b, it is apparent that the amplitude of the constant
component and frequency of the sine function of the loads are lower than the previous duty, while the number of loading and
unloading operations is higher. In addition, the constant load component for the present duty is comparatively lighter than that
of the previous duty, with magnitudes of 72 kN, 24 kN, and 36 kN as the dominant parts:
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Load 21: 𝐹𝐿 = 1000 [0.1𝑠𝑖𝑛(3𝑡) + 72]
Load 22: 𝐹𝐿 = 333.33 [0.1𝑠𝑖𝑛(3𝑡) + 72]
Load 23: 𝐹𝐿 = 500 [0.1𝑠𝑖𝑛(3𝑡) + 72]
Load 24: 𝐹𝐿 = 1000 [0.1𝑠𝑖𝑛(3𝑡) + 72]

(147)

FIGURE 6 Loads: Load 1: Duty 1, Load 2: Duty 2.
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FIGURE 7 EMLA duty 2.
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FIGURE 8 Duty 1: Position tracking performance: (a) loading 11, (b) unloading 11, (c) loading 12, (d) unloading 12.

The loading and unloading positions can be observed in Figure 6(b) and 7. In contrast to duty 1, where the EMLA only
carried loads during its backward movement, this duty includes additional loading tasks for transporting Load 21 and Load 23
forwardly. Moreover, the EMLA carries Load 22 and Load 24 during its return movement. It is noteworthy that Load 21 and
Load 24 are the heaviest among those considered in this duty, while Load 22 has a third of their amplitude and Load 23 has half
of their amplitude. Therefore, in this duty and according to Figure 6(b) and, 7, the EMLA is responsible for carrying four loads,
namely Load 21, Load 22, Load 23, and Load 24. The EMLA carries Load 21 from the origin position, 50 s after starting the
duty. It then disposes of Load 21 at a position 100 cm away from the starting point, at 150 s into the duty. After unloading Load
21, the EMLA carries Load 22 to the same position and disposes of it at a distance of 50 cm from the origin, at 310 s into the
duty. Subsequently, at 350 s into the duty, the EMLA carries Load 23 to the same position and disposes of it 100 cm away from
the initial point using a forward motion approach, at 450 s into the duty. Finally, the EMLA carries Load 24 at 510 s into the duty
and disposes of it at the original point using a feedback motion approach. It is noteworthy that the duration of rest during duty
2 is slightly longer than that during duty 1 at the 50-cm position, due to the increased loading and unloading responsibilities.
Similarly, the final step of loading and unloading in duty 2 takes longer than in duty 1, also due to the increased responsibilities.
Therefore, it can be observed that for duty 2, the maximum load considered is 10 percent lighter that for duty 1, even though the
number of loading and unloading duties doubled. Furthermore, the loading and unloading process is faster than in the previous
duty, as depicted in Figure 6. All these variations have been examined to assess the performance of RDSC for the EMLA under
different conditions.

5.3 RDSC results for both duties
Figure 8 illustrates the performance of the RDSC in tracking the reference position of the EMLA in duty 1. It is evident from the
results that the tracking performance is exceptional, even in the presence of load effects and uncertainties. Specifically, the true
position state 𝑥1 exhibits accurate and fast tracking of the reference value 𝑥1ref, and the figure indicates that the tracking error
accuracy is approximately 4𝑥10−2 cm when the EMLA is unloaded, while the error increases to 8𝑥10−2 cm when the EMLA
is loaded. Notably, when the EMLA is not loaded and there is a consistency in position, as shown in part (d) after 600 s of
Figure 8, the tracking error is 2𝑥10−8, even in the presence of unknown uncertainties. Thus, the error of 4𝑥10−2 occurs only at
the moment of stopping in a new position. Similar to duty 1, Figure 9 demonstrates the tracking performance of the RDSC for
EMLA in duty 2. It is evident from the results that the tracking performance is also exceptional in duty 2, even in the presence
of more variable load effects and the same uncertainties. The figure indicates that the tracking error accuracy is approximately
4𝑥10−2 cm when the EMLA is not loaded, while the error increases to 6𝑥10−2 cm when the EMLA is loaded.
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FIGURE 9 Duty 2: Position tracking performance: (a) loading 21, (b) unloading 21 and loading 22, (c) unloading 22 and
loading 23, (d) unloading 23 and loading 24, (e) unloading 24.

Notably, when the EMLA is not loaded and there is no change in position, as shown in parts (a), before 45 s and (d) after 625
s of Figure 9, the tracking error is similarly 2𝑥10−8, even in the presence of uncertainties. Likewise, the error of 4𝑥10−2 occurs
only during the stopping moment. As shown in Figures 8 and 9, the accuracy of position tracking using the RDSC with loads is
better in duty 2 than in duty 1. This result is sensible because, in duty 2, although the number of loads is greater, the magnitudes
of the loads are lower than those in duty 1.

FIGURE 10 Duty 1: Velocity tracking performance.

Figure 10 displays the performance of linear velocity tracking using the RDSC in duty 1. The figure illustrates that there are
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pulses in the real velocity when the load status changes. The duration for which the loads are carried by the EMLA in duty 1 has
been delineated by yellow boxes in Figure 10. The figure illustrates that most of the pulses correspond to the changing status of
load tasks. The error in the reference velocity tracking is approximately 3𝑥10−5 m/s, and the tracking speed in this duty is about
0.1 s. Similar to duty 1, Figure 11 demonstrates the performance of linear velocity tracking using the RDSC in duty 2. The figure
also shows that the pulses remain in real velocity when the load status changes. The duration for which the loads are carried by
the EMLA in duty 2 has been delineated by yellow boxes in Figure 11. The figure illustrates that most of the pulses correspond
to the changing status of load tasks, as in the previous duty. The error in reference velocity tracking is approximately 2.5𝑥10−5

m/s, and the tracking speed in this duty is about 0.07 s.

FIGURE 11 Duty 2: Velocity tracking performance.

It is worth noting that the number of velocity pulses in duty 2 is greater than that in duty 1, and this can be attributed to
the higher number of loading tasks in duty 2. In Figure 12, which pertains to duty 1, the real and saturated values of 𝑖𝑞 and 𝑢𝑞
are shown with blue and red lines, respectively, confirming the capability of the RDSC under input constraints. Furthermore,
according to the second subsystem, 𝑖𝑑 is expected to track zero, which is achieved with an accuracy of 0.03 A. The highest pulse
in 𝑖𝑑 is observed during the loading of Load 11 at 145 s. In addition, the value of 𝑢𝑑 is maintained below 30 V to force 𝑖𝑑 to
track zero. Similar to duty 1, Figure 13, pertaining to duty 2, depicts the actual and saturated values for 𝑖𝑞 and 𝑢𝑞 respectively,
represented by blue and red lines. This serves as a confirmation of the RDSC’s capability under input constraints. Moreover, as
per the second subsystem’s requirement, 𝑖𝑑 is expected to track zero, which is achieved with an accuracy of 0.025 A. The highest
pulse in 𝑖𝑑 is attributed to Load 24 at the time of loading, which occurs at 510 s. In addition, the value of 𝑢𝑑 is maintained below
20 V to force 𝑖𝑑 to track zero. Due to the higher frequency of load changes in duty 2, there are more variations and spikes in
currents and voltages. Figure 14 presents a comparison of the produced torques in both duties. According to (6), because the
model-based EMLA’s produced torque is dependent on the 𝑖𝑞 value and because 𝑖𝑞 is constrained to a range of -7.9 A to 7.9 A,
the maximum torque value for both duties is consistent and identical, i.e., 12.7 N.m. However, due to the longer duration required
by the EMLA to carry the loads in duty 1, the torque associated with this duty remains the maximum value, greater than duty
2. Furthermore, the starting and finishing times of the produced torque in duty 2 are earlier and later, respectively, compared to
duty 1 because of the more extended loading and unloading tasks. The length of the boxes situated in Figure 14 represents the
duration for which the EMLA carries the loads, facilitating an easy comprehension of the torque patterns produced. Specifically,
the yellow boxes correspond to duty 1, whereas the red boxes pertain to duty 2. To summarize, Tables 3 and 4 provide an
overview of the accuracy and speed control performance of the RSDC system in controlling the modeled EMLA to follow the
desired trajectories in both duties.
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FIGURE 12 Duty 1: Currents and voltages.

FIGURE 13 Duty 2: Currents and voltages.

As previously mentioned, the control position accuracy in duty 2 is superior to that in duty 1 due to the lighter loads involved.
Furthermore, the speed of position convergence in both duties is relatively similar and fast. This also holds true for the error
convergence when tracking reference velocity using the RDSC, although the control velocity in duty 2 exhibits a slightly better
performance when compared to the first duty. In essence, these findings indicate that the RSDC system effectively controls the
EMLA in both duties with good accuracy and speed control performance.
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FIGURE 14 Duty 1,2: Torques.

TABLE 3 Position tracking 𝑥1
Convergence quality

Scenarios Error (cm) Speed (sec)
Duty 1 8𝑥10−2 0.07 sec
Duty 2 6𝑥10−2 0.07 sec

TABLE 4 Velocity tracking 𝑥2
Convergence quality

Scenarios Error (m/s) Speed (sec)
Duty 1 3𝑥10−5 0.1 sec
Duty 2 2.5𝑥10−5 0.07 sec

6 CONCLUSION

The research findings demonstrated the studied EMLA system’s capability to generate all necessary state variables, including
torques acting on the motor and load side, to achieve the prescribed dynamics. It also included a thorough analysis and control
of the EMLA, demonstrating how it can be structured and understood through the use of a robust adaptive backstepping control
in a six-order NSFF, which has rarely been utilized before for EMLAs facing input constraints, external disturbance, and uncer-
tainties. In other words, we presented and developed a robust control approach called the RDSC for a complex EMLA system
with multi-stage gearing driven by a PMSM in three subsystems, which was capable of tracking reference linear trajectories
with uniformly exponential stability, without requiring knowledge of uncertain parameters and functional load conditions. In
addition, to enable analytic computations and prevent the "complexity explosion" associated with the backstepping concept, the
RDSC treated the time derivative of the virtual control input as an uncertainty term. Our findings demonstrated the potential of
the RDSC for the EMLA in NSFFs and provided a straightforward form control for future research in this area. One potential
avenue for future research is to explore the extension of the proposed RDSC approach to other types of actuators, such as pneu-
matic cylinders or hydraulic systems. By expanding the applicability of the RDSC approach to various fields and industries,
new avenues for its implementation can be opened up. Another interesting direction for future research is the integration of the
RDSC approach into machine learning techniques to enhance the performance of EMLAs in NSFFs. By integrating machine
learning using the RDSC approach, it may be possible to achieve an even better control performance and extend the applicability
of this approach to various dynamic systems.
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