References

Aebischer A, Scherler P (2021) Der Rotmilan - Ein Greifvogel im Aufwind. Haupt, Bern
Ajie BC, Pintor LM, Watters J, Kerby JL, Hammond JI, Sih A (2007) A framework for determining the fitness consequences of antipredator behavior. Behav Ecol 18:267–270. https://doi.org/10.1093/beheco/arl064
Andereggen M (2020) Prey delivery rate and diet composition of red kites (Milvus milvus ) in Switzerland. MSc thesis, University of Basel
Andersson M, Wiklund CG, Rundgren H (1980) Parental defence of offspring: A model and an example. Anim Behav 28:536–542. https://doi.org/10.1016/S0003-3472(80)80062-5
Apolloni N, Grüebler MU, Arlettaz R, Gottschalk TK, Naef-Daenzer B (2018) Habitat selection and range use of little owls in relation to habitat patterns at three spatial scales. Anim Conserv 21:65–75. https://doi.org/10.1111/acv.12361
Arroyo BE, Mougeot F, Bretagnolle V (2001) Colonial breeding and nest defence in Montagu’s harrier (Circus pygargus). Behav Ecol Sociobiol 50:109–115. https://doi.org/10.1007/s002650100342
Baucks C (2018) The effect of food supplementation on range use of breeding red kites (Milvus milvus ) in Switzerland. MSc thesis, BOKU Vienna
Behrens C, Ruff ZJ, Harms TM, Dinsmore SJ (2019) Predator density influences nest attendance of Yellow-headed Blackbirds Xanthocephalus xanthocephalus. Ibis 161:679–685. https://doi.org/10.1111/ibi.12705
Bloom PH, Henckel JL, Henckel EH, Schmutz JK, Woodbridge B, Bryan JR, Anderson RL, Detrich PJ, Maechtle TL, McKinlea JO, McCrary MD, Titus K, Schempf PF (1992) The Dho-Gaza with Great Horned Owl lure: an analysis of its effectiveness in capturing raptors. J Raptor Res 26:167–178
Bloom PH, Clark WS, Kidd JW (2007) Capture techniques. In: Bird DM, Bildstein KL (eds) Raptor research and management techniques. Hancock House Publishers, Surrey, pp 193–220
Boutin S (1990) Food supplementation experiments with terrestrial vertebrates: patterns, problems, and the future. Can J Zool 68:203–220
Carlson NV, Healy SD, Templeton CN (2017) Hoo are you? Tits do not respond to novel predators as threats. Anim Behav 128:79–84. https://doi.org/10.1016/j.anbehav.2017.04.006
Caro TM (2005) Antipredator defenses in birds and mammals. Interspecific interactions. University of Chicago Press, Chicago, Ill.
Catitti B, Grüebler MU, Kormann UG, Scherler P, Witczak S, van Bergen VS, Jenni-Eiermann S (2022) Hungry or angry? Experimental evidence for the effects of food availability on two measures of stress in developing wild raptor nestlings. J Exp Biol 225. https://doi.org/10.1242/jeb.244102
Catitti B, Kormann UG, Grüebler MU (2023) Turning tables: food availability shapes dynamic aggression behaviour among asynchronously hatching siblings. R Soc Open Sci, in press
Catry P, Phillips RA, Forcada J, Croxall JP (2006) Factors affecting the solution of a parental dilemma in albatrosses: At what age should chicks be left unattended? Anim Behav 72:383–391. https://doi.org/10.1016/j.anbehav.2005.10.030
Catry I, Franco AMA, Rocha P, Alcazar R, Reis S, Cordeiro A, Ventim R, Teodosio J, Moreira F (2013) Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in a colonial cavity nester. PLoS ONE 8 (3):e58320
Cereghetti E, Scherler P, Fattebert J, Grüebler MU (2019) Quantification of anthropogenic food subsidies to an avian facultative scavenger in urban and rural habitats. Landscape Urban Plan 190:103606
Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, Princeton, New Jersey
Crisologo TL, Bonter DN, Koenig W (2017) Defending the weak: Parental defense peaks when chick vulnerability is greatest in the herring gull (Larus argentatus ). Ethology 123:113–122. https://doi.org/10.1111/eth.12578
Curio E (1978) The adaptive significance of avian mobbing: I. Teleonomic hypotheses and predictions. Ethology 48:175–183
Curio E (1983) Why do young birds reproduce less well? Ibis 125:400–404
Dale S, Gustavsen, Roar, Slagsvold T (1996) Risk taking during parental care: A test of three hypotheses applied to the pied flycatcher. Behav Ecol Sociobiol 39:31–42. https://doi.org/10.1007/s002650050264
Dassow JA, Eichholz MW, Stafford JD, Weatherhead PJ (2012) Increased nest defence of upland-nesting ducks in response to experimentally reduced risk of nest predation. J Avian Biol 43:61–67. https://doi.org/10.1111/j.1600-048X.2011.05385.x
Davis PE, Davis JE (1981) The food of the Red Kite in Wales. Bird Study 28:33–40. https://doi.org/10.1080/00063658109476696
Dewey SR, Kennedy PL (2001) Effects of Supplemental Food on Parental-Care Strategies and Juvenile Survival of Northern Goshawks. Auk 118:352–365. https://doi.org/10.2307/4089797
Dugatkin LA, Godin J-G (1992) Prey approaching predators: a cost-benefit perspective. Ann Zool Fenn 29:233–252
Duncan Rastogi A, Zanette L, Clinchy M (2006) Food availability affects diurnal nest predation and adult antipredator behaviour in song sparrows, Melospiza melodia. Anim Behav 72:933–940. https://doi.org/10.1016/j.anbehav.2006.03.006
Fernandez GJ, Llambías PE (2013) Parental Risk-Taking Behaviour and Nest Defence During the Nestling Rearing Stage in Northern House Wrens Troglodytes aedon. Acta Ornithol 48:55–63. https://doi.org/10.3161/000164513X670016
Fisher RJ, Poulin RG, Todd LD, Brigham RM (2004) Nest stage, wind speed, and air temperature affect the nest defence behaviours of burrowing owls. Can J Zool 82:707–713. https://doi.org/10.1139/z04-035
Fuller RJ (ed) (2012) Birds and habitat - relationships in changing landscapes. Cambridge University Press, Cambridge
Ghalambor CK, Peluc SI, Martin TE (2013) Plasticity of parental care under the risk of predation: How much should parents reduce care? Biol Lett 9:20130154. https://doi.org/10.1098/rsbl.2013.0154
Greig-Smith PW (1980) Parental investment in nest defence by stonechats (Saxicola torquata). Anim Behav 28:604–619. https://doi.org/10.1016/S0003-3472(80)80069-8
Grüebler MU, Müller M, Michel VT, Perrig M, Keil H, Naef-Daenzer B, Korner-Nievergelt F (2018) Brood provisioning and reproductive benefits in relation to habitat quality: A food supplementation experiment. Anim Behav 141:45–55. https://doi.org/10.1016/j.anbehav.2018.05.009
Hakkarainen H, Korpimäki E (1994) Nest defence of Tengmalm’s owls reflects offspring survival prospects under fluctuating food conditions. Anim Behav 48:843–849. https://doi.org/10.1006/anbe.1994.1308
Hu Y-B, Zhao Q-S, Lou Y-Q, Chen L-J, González MA, Sun Y-H (2017) Parental attendance of Chestnut Thrush reduces nest predation during the incubation period: Compensation for low nest concealment? J Ornithol 158:1111–1117. https://doi.org/10.1007/s10336-017-1476-1
Ibáñez-Álamo JD, Magrath RD, Oteyza JC, Chalfoun AD, Haff TM, Schmidt KA, Thomson RL, Martin TE (2015) Nest predation research: Recent findings and future perspectives. J Ornithol 156:247–262. https://doi.org/10.1007/s10336-015-1207-4
King DI (1999) Mortality of an adulkt veery incurred during the defense of nestlings. Wilson Bull 111:576–577
Knaus P, Antoniazza S, Wechsler S, Guélat J, Kéry M, Strebel N, Sattler T (2018) Schweizer Brutvogelatlas 2013-2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein. Schweizerische Vogelwarte, Sempach
Komdeur J (1999) Predation risk affects trade-off between nest guarding and foraging in Seychelles warblers. Behav Ecol 10:648–658. https://doi.org/10.1093/beheco/10.6.648
Lameris TK, Brown JS, Kleyheeg E, Jansen PA, van Langevelde F (2018) Nest defensibility decreases home-range size in central place foragers. Behav Ecol 29:1038–1045. https://doi.org/10.1093/beheco/ary077
Lazarus J, Inglis IR (1986) Shared and unshared parental investment, parent-offspring conflict and brood size. Anim Behav 34:1791–1804
Lind J, Cresswell W (2005) Determining the fitness consequences of antipredation behavior. Behav Ecol 16:945–956. https://doi.org/10.1093/beheco/ari075
Listoen C (2000) Risk taking during parental care: A test of the harm-to-offspring hypothesis. Behav Ecol 11:40–43. https://doi.org/10.1093/beheco/11.1.40
Mahr K, Riegler G, Hoi H (2015) Parental risk management in relation to offspring defence: Bad news for kids. Proc Biol Sci 282:20141670. https://doi.org/10.1098/rspb.2014.1670
Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annu Rev Ecol Syst 18:453–487
Martin TE, Briskie JV (2009) Predation on dependent offspring: A review of the consequences for mean expression and phenotypic plasticity in avian life history traits. Ann N Y Acad Sci 1168:201–217. https://doi.org/10.1111/j.1749-6632.2009.04577.x
Michel VT, Tschumi M, Naef‐Daenzer B, Keil H, Grüebler MU (2022) Reduced habitat quality increases intrinsic but not ecological costs of reproduction. Ecol Evol 12:121. https://doi.org/10.1002/ece3.8859
Mo M (2017) Killing of a mobbing Crested Pigeon Ocyphaps lophotes by an Australian Raven Corvus coronoides. Aust Field Ornithol 34:35–36. https://doi.org/10.20938/af034035036
Montgomerie RD, Weatherhead PJ (1988) Risks and rewards of nest defence by parent birds. Q Rev Biol 63:167–187
Mutzel A, Blom MPK, Spagopoulou F, Wright J, Dingemanse NJ, Kempenaers B (2013) Temporal trade-offs between nestling provisioning and defence against nest predators in blue tits. Anim Behav 85:1459–1469. https://doi.org/10.1016/j.anbehav.2013.03.043
Naef-Daenzer B, Grüebler MU (2016) Post-fledging survival of altricial birds: Ecological determinants and adaptation. J Field Ornithol 87:227–250. https://doi.org/10.1111/jofo.12157
Nägeli M, Scherler P, Witczak S, Catitti B, Aebischer A, van Bergen V, Kormann U, Grüebler MU (2022) Weather and food availability additively affect reproductive output in an expanding raptor population. Oecologia:125–138. https://doi.org/10.1007/s00442-021-05076-6
Orros MR, Fellowes MDE (2015) Widespread supplementary feeding in domestic gardens explains the return of reintroduced Red Kites Milvus milvus to an urban area. Ibis 157:230–238. https://doi.org/10.1111/ibi.12237
Patterson TL, Petrinovich L, James DK (1980) Reproductive value and appropriateness of response to predators by White-Crowned Sparrows. Behav Ecol Sociobiol 7:227–231. https://doi.org/10.1007/BF00299368
Perrig M, Grüebler MU, Keil H, Naef-Daenzer B (2014) Experimental food supplementation affects the physical development, behaviou and survival of Little Owl Athene noctua nestlings. Ibis 156:755–767
Pfeiffer T, Meyburg B-U (2015) GPS tracking of Red Kites (Milvus milvus ) reveals fledgling number is negatively correlated with home range size. J Ornithol 156:963–975
R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rothenbach CA, Kelly JP (2012) The Parental Dilemma under Variable Predation Pressure: Adaptive Variation in Nest Attendance by Great Egrets. Condor 114:90–99. https://doi.org/10.1525/cond.2012.110071
Royle NJ, Smiseth PT, Kölliker M (2012) The evolution of parental care. Oxford University Press
Ruffino L, Salo P, Koivisto PB, Korpimäki E (2014) Reproductive responses of birds to experimental food supplementation: a meta-analysis. Front Zool 11:80
Samelius G, Alisauskas RT (2001) Deterring arctic fox predation: The role of parental nest attendance by lesser snow geese. Can J Zool 79:861–866. https://doi.org/10.1139/z01-048
Sapir N, Wikelski M, McCue MD, Pinshow B, Nathan R (2010) Flight modes in migrating European bee-eaters: Heart rate may indicate low metabolic rate during soaring and gliding. PLoS ONE 5:e13956. https://doi.org/10.1371/journal.pone.0013956
Scherler P, van Bergen VS, Catitti B, Kormann UG, Witczak S, Andereggen M, Herzog JS, Aebischer A, Roth N, Grüebler MU (2023a) Brutbiologie des Rotmilans Milvus milvus in den Westschweizer Voralpen. Ornithol Beob, in press.
Scherler P, Witczak S, Aebischer A, van Bergen V, Catitti B, Grüebler MU (2023b) Determinants of departure to natal dispersal across an elevational gradient in a long‐lived raptor species. Ecol Evol 13:409. https://doi.org/10.1002/ece3.9603
Schmidt KA (1999) Foraging Theory as a Conceptual Framework for Studying Nest Predation. Oikos 85:151. https://doi.org/10.2307/3546801
Schmidt KA, Whelan CJ (2005) Quantifying Male Wood Thrush Nest-Attendance and its Relationship to Nest Success. Condor 107:138–144. https://doi.org/10.1093/condor/107.1.138
Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013) Energy Landscapes Shape Animal Movement Ecology. Am Nat 182:298–312. https://doi.org/10.1086/671257
Shepard ELC, Williamson C, Windsor SP (2016) Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living. Phil Trans R Soc B 371:20150394. https://doi.org/10.1098/rstb.2015.0394
Shepard ELC, Cole E-L, Neate A, Lempidakis E, Ross A (2019) Wind prevents cliff-breeding birds from accessing nests through loss of flight control. Elife 8. https://doi.org/10.7554/elife.43842
Sordahl TA (1990) The risks of avian mobbing and distraction behaviour: an anecdotal review. Willson Bull 102:349–352
Staggenborg J, Schaefer HM, Stange C, Naef-Daenzer B, Grüebler MU (2017) Time and travelling costs during chick-rearing in relation to habitat quality in Little Owls Athene noctua. Ibis 159:519–531. https://doi.org/10.1111/ibi.12465
Stearns SC (1992) The evolution of Life Histories. Oxford University Press, Oxford, New York
Sternalski A, Bretagnolle V (2010) Experimental evidence of specialised phenotypic roles in a mobbing raptor. Behav Ecol and Sociobiol 64:1351–1361. https://doi.org/10.1007/s00265-010-0950-z
Swaisgood RR, Rowe MP, Owings DH (2003) Antipredator responses of California ground squirrels to rattlesnakes and rattling sounds: The roles of sex, reproductive parity, and offspring age in assessment and decision-making rules. Behav Ecol Sociobiol 55:22–31. https://doi.org/10.1007/s00265-003-0684-2
Therneau TM (2018) coxme: mixed effects cox models. R package version 2.2-10. https://CRAN.R-project.org/package=coxme
Tolonen P, Korpimaki E (1995) Parental effort of kestrels (Falco tinnunculus ) in nest defense: Effects of laying time, brood size, and varying survival prospects of offspring. Behav Ecol 6:435–441. https://doi.org/10.1093/beheco/6.4.435
Tryjanowski P, Golawski A (2004) Sex differences in nest defence by the red-backed shrike Lanius collurio: Effects of offspring age, brood size, and stage of breeding season. J Ethol 22:13–16. https://doi.org/10.1007/s10164-003-0096-9
Wellicome TI, Danielle Todd L, Poulin RG, Holroyd GL, Fisher RJ (2013) Comparing food limitation among three stages of nesting: Supplementation experiments with the burrowing owl. Ecol Evol 3:2684–2695. https://doi.org/10.1002/ece3.616
Welti N, Scherler P, Grüebler MU (2020) Carcass predictability but not domestic pet introduction affects functional response of scavenger assemblage in urbanized habitats. Funct Ecol 34:265–275. https://doi.org/10.1111/1365-2435.13469
Zuberogoitia I, MartÍnez JE, MartÍnez JA, Zabala J, Calvo JF, Azkona A, Pagán I (2008) The Dho-gaza and mist net with Eurasian Eagle-Owl (Bubo bubo) lure:effectiveness in capturing thirteen species of European raptors. J Raptor Res 42:48–51. https://doi.org/10.3356/JRR-05-31.1