References
Aebischer
A, Scherler P (2021) Der Rotmilan - Ein Greifvogel im Aufwind. Haupt,
Bern
Ajie
BC, Pintor LM, Watters J, Kerby JL, Hammond JI, Sih A (2007) A framework
for determining the fitness consequences of antipredator behavior. Behav
Ecol 18:267–270. https://doi.org/10.1093/beheco/arl064
Andereggen
M (2020) Prey delivery rate and diet composition of red kites
(Milvus milvus ) in Switzerland. MSc thesis, University of Basel
Andersson
M, Wiklund CG, Rundgren H (1980) Parental defence of offspring: A model
and an example. Anim Behav 28:536–542.
https://doi.org/10.1016/S0003-3472(80)80062-5
Apolloni
N, Grüebler MU, Arlettaz R, Gottschalk TK, Naef-Daenzer B (2018) Habitat
selection and range use of little owls in relation to habitat patterns
at three spatial scales. Anim Conserv 21:65–75.
https://doi.org/10.1111/acv.12361
Arroyo
BE, Mougeot F, Bretagnolle V (2001) Colonial breeding and nest defence
in Montagu’s harrier (Circus pygargus). Behav Ecol Sociobiol
50:109–115. https://doi.org/10.1007/s002650100342
Baucks
C (2018) The effect of food supplementation on range use of breeding red
kites (Milvus milvus ) in Switzerland. MSc thesis, BOKU Vienna
Behrens
C, Ruff ZJ, Harms TM, Dinsmore SJ (2019) Predator density influences
nest attendance of Yellow-headed Blackbirds Xanthocephalus
xanthocephalus. Ibis 161:679–685. https://doi.org/10.1111/ibi.12705
Bloom
PH, Henckel JL, Henckel EH, Schmutz JK, Woodbridge B, Bryan JR, Anderson
RL, Detrich PJ, Maechtle TL, McKinlea JO, McCrary MD, Titus K, Schempf
PF (1992) The Dho-Gaza with Great Horned Owl lure: an analysis of its
effectiveness in capturing raptors. J Raptor Res 26:167–178
Bloom
PH, Clark WS, Kidd JW (2007) Capture techniques. In: Bird DM, Bildstein
KL (eds) Raptor research and management techniques. Hancock House
Publishers, Surrey, pp 193–220
Boutin
S (1990) Food supplementation experiments with terrestrial vertebrates:
patterns, problems, and the future. Can J Zool 68:203–220
Carlson
NV, Healy SD, Templeton CN (2017) Hoo are you? Tits do not respond to
novel predators as threats. Anim Behav 128:79–84.
https://doi.org/10.1016/j.anbehav.2017.04.006
Caro
TM (2005) Antipredator defenses in birds and mammals. Interspecific
interactions. University of Chicago Press, Chicago, Ill.
Catitti
B, Grüebler MU, Kormann UG, Scherler P, Witczak S, van Bergen VS,
Jenni-Eiermann S (2022) Hungry or angry? Experimental evidence for the
effects of food availability on two measures of stress in developing
wild raptor nestlings. J Exp Biol 225.
https://doi.org/10.1242/jeb.244102
Catitti
B, Kormann UG, Grüebler MU (2023) Turning tables: food availability
shapes dynamic aggression behaviour among asynchronously hatching
siblings. R Soc Open Sci, in press
Catry
P, Phillips RA, Forcada J, Croxall JP (2006) Factors affecting the
solution of a parental dilemma in albatrosses: At what age should chicks
be left unattended? Anim Behav 72:383–391.
https://doi.org/10.1016/j.anbehav.2005.10.030
Catry
I, Franco AMA, Rocha P, Alcazar R, Reis S, Cordeiro A, Ventim R,
Teodosio J, Moreira F (2013) Foraging habitat quality constrains
effectiveness of artificial nest-site provisioning in reversing
population declines in a colonial cavity nester. PLoS ONE 8 (3):e58320
Cereghetti
E, Scherler P, Fattebert J, Grüebler MU (2019) Quantification of
anthropogenic food subsidies to an avian facultative scavenger in urban
and rural habitats. Landscape Urban Plan 190:103606
Clutton-Brock
TH (1991) The evolution of parental care. Princeton University Press,
Princeton, New Jersey
Crisologo
TL, Bonter DN, Koenig W (2017) Defending the weak: Parental defense
peaks when chick vulnerability is greatest in the herring gull (Larus
argentatus ). Ethology 123:113–122. https://doi.org/10.1111/eth.12578
Curio
E (1978) The adaptive significance of avian mobbing: I. Teleonomic
hypotheses and predictions. Ethology 48:175–183
Curio
E (1983) Why do young birds reproduce less well? Ibis 125:400–404
Dale
S, Gustavsen, Roar, Slagsvold T (1996) Risk taking during parental care:
A test of three hypotheses applied to the pied flycatcher. Behav Ecol
Sociobiol 39:31–42. https://doi.org/10.1007/s002650050264
Dassow
JA, Eichholz MW, Stafford JD, Weatherhead PJ (2012) Increased nest
defence of upland-nesting ducks in response to experimentally reduced
risk of nest predation. J Avian Biol 43:61–67.
https://doi.org/10.1111/j.1600-048X.2011.05385.x
Davis
PE, Davis JE (1981) The food of the Red Kite in Wales. Bird Study
28:33–40. https://doi.org/10.1080/00063658109476696
Dewey
SR, Kennedy PL (2001) Effects of Supplemental Food on Parental-Care
Strategies and Juvenile Survival of Northern Goshawks. Auk 118:352–365.
https://doi.org/10.2307/4089797
Dugatkin
LA, Godin J-G (1992) Prey approaching predators: a cost-benefit
perspective. Ann Zool Fenn 29:233–252
Duncan
Rastogi A, Zanette L, Clinchy M (2006) Food availability affects diurnal
nest predation and adult antipredator behaviour in song sparrows,
Melospiza melodia. Anim Behav 72:933–940.
https://doi.org/10.1016/j.anbehav.2006.03.006
Fernandez
GJ, Llambías PE (2013) Parental Risk-Taking Behaviour and Nest Defence
During the Nestling Rearing Stage in Northern House Wrens Troglodytes
aedon. Acta Ornithol 48:55–63. https://doi.org/10.3161/000164513X670016
Fisher
RJ, Poulin RG, Todd LD, Brigham RM (2004) Nest stage, wind speed, and
air temperature affect the nest defence behaviours of burrowing owls.
Can J Zool 82:707–713. https://doi.org/10.1139/z04-035
Fuller
RJ (ed) (2012) Birds and habitat - relationships in changing landscapes.
Cambridge University Press, Cambridge
Ghalambor
CK, Peluc SI, Martin TE (2013) Plasticity of parental care under the
risk of predation: How much should parents reduce care? Biol Lett
9:20130154. https://doi.org/10.1098/rsbl.2013.0154
Greig-Smith
PW (1980) Parental investment in nest defence by stonechats (Saxicola
torquata). Anim Behav 28:604–619.
https://doi.org/10.1016/S0003-3472(80)80069-8
Grüebler
MU, Müller M, Michel VT, Perrig M, Keil H, Naef-Daenzer B,
Korner-Nievergelt F (2018) Brood provisioning and reproductive benefits
in relation to habitat quality: A food supplementation experiment. Anim
Behav 141:45–55. https://doi.org/10.1016/j.anbehav.2018.05.009
Hakkarainen
H, Korpimäki E (1994) Nest defence of Tengmalm’s owls reflects offspring
survival prospects under fluctuating food conditions. Anim Behav
48:843–849. https://doi.org/10.1006/anbe.1994.1308
Hu
Y-B, Zhao Q-S, Lou Y-Q, Chen L-J, González MA, Sun Y-H (2017) Parental
attendance of Chestnut Thrush reduces nest predation during the
incubation period: Compensation for low nest concealment? J Ornithol
158:1111–1117. https://doi.org/10.1007/s10336-017-1476-1
Ibáñez-Álamo
JD, Magrath RD, Oteyza JC, Chalfoun AD, Haff TM, Schmidt KA, Thomson RL,
Martin TE (2015) Nest predation research: Recent findings and future
perspectives. J Ornithol 156:247–262.
https://doi.org/10.1007/s10336-015-1207-4
King
DI (1999) Mortality of an adulkt veery incurred during the defense of
nestlings. Wilson Bull 111:576–577
Knaus
P, Antoniazza S, Wechsler S, Guélat J, Kéry M, Strebel N, Sattler T
(2018) Schweizer Brutvogelatlas 2013-2016. Verbreitung und
Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum
Liechtenstein. Schweizerische Vogelwarte, Sempach
Komdeur
J (1999) Predation risk affects trade-off between nest guarding and
foraging in Seychelles warblers. Behav Ecol 10:648–658.
https://doi.org/10.1093/beheco/10.6.648
Lameris
TK, Brown JS, Kleyheeg E, Jansen PA, van Langevelde F (2018) Nest
defensibility decreases home-range size in central place foragers. Behav
Ecol 29:1038–1045. https://doi.org/10.1093/beheco/ary077
Lazarus
J, Inglis IR (1986) Shared and unshared parental investment,
parent-offspring conflict and brood size. Anim Behav 34:1791–1804
Lind
J, Cresswell W (2005) Determining the fitness consequences of
antipredation behavior. Behav Ecol 16:945–956.
https://doi.org/10.1093/beheco/ari075
Listoen
C (2000) Risk taking during parental care: A test of the
harm-to-offspring hypothesis. Behav Ecol 11:40–43.
https://doi.org/10.1093/beheco/11.1.40
Mahr
K, Riegler G, Hoi H (2015) Parental risk management in relation to
offspring defence: Bad news for kids. Proc Biol Sci 282:20141670.
https://doi.org/10.1098/rspb.2014.1670
Martin
TE (1987) Food as a limit on breeding birds: a life-history perspective.
Annu Rev Ecol Syst 18:453–487
Martin
TE, Briskie JV (2009) Predation on dependent offspring: A review of the
consequences for mean expression and phenotypic plasticity in avian life
history traits. Ann N Y Acad Sci 1168:201–217.
https://doi.org/10.1111/j.1749-6632.2009.04577.x
Michel
VT, Tschumi M, Naef‐Daenzer B, Keil H, Grüebler MU (2022) Reduced
habitat quality increases intrinsic but not ecological costs of
reproduction. Ecol Evol 12:121. https://doi.org/10.1002/ece3.8859
Mo M
(2017) Killing of a mobbing Crested Pigeon Ocyphaps lophotes by an
Australian Raven Corvus coronoides. Aust Field Ornithol 34:35–36.
https://doi.org/10.20938/af034035036
Montgomerie
RD, Weatherhead PJ (1988) Risks and rewards of nest defence by parent
birds. Q Rev Biol 63:167–187
Mutzel
A, Blom MPK, Spagopoulou F, Wright J, Dingemanse NJ, Kempenaers B (2013)
Temporal trade-offs between nestling provisioning and defence against
nest predators in blue tits. Anim Behav 85:1459–1469.
https://doi.org/10.1016/j.anbehav.2013.03.043
Naef-Daenzer
B, Grüebler MU (2016) Post-fledging survival of altricial birds:
Ecological determinants and adaptation. J Field Ornithol 87:227–250.
https://doi.org/10.1111/jofo.12157
Nägeli
M, Scherler P, Witczak S, Catitti B, Aebischer A, van Bergen V, Kormann
U, Grüebler MU (2022) Weather and food availability additively affect
reproductive output in an expanding raptor population.
Oecologia:125–138. https://doi.org/10.1007/s00442-021-05076-6
Orros
MR, Fellowes MDE (2015) Widespread supplementary feeding in domestic
gardens explains the return of reintroduced Red Kites Milvus milvus to
an urban area. Ibis 157:230–238. https://doi.org/10.1111/ibi.12237
Patterson
TL, Petrinovich L, James DK (1980) Reproductive value and
appropriateness of response to predators by White-Crowned Sparrows.
Behav Ecol Sociobiol 7:227–231. https://doi.org/10.1007/BF00299368
Perrig
M, Grüebler MU, Keil H, Naef-Daenzer B (2014) Experimental food
supplementation affects the physical development, behaviou and survival
of Little Owl Athene noctua nestlings. Ibis 156:755–767
Pfeiffer
T, Meyburg B-U (2015) GPS tracking of Red Kites (Milvus milvus )
reveals fledgling number is negatively correlated with home range size.
J Ornithol 156:963–975
R Core
Team (2017) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/
Rothenbach
CA, Kelly JP (2012) The Parental Dilemma under Variable Predation
Pressure: Adaptive Variation in Nest Attendance by Great Egrets. Condor
114:90–99. https://doi.org/10.1525/cond.2012.110071
Royle
NJ, Smiseth PT, Kölliker M (2012) The evolution of parental care. Oxford
University Press
Ruffino
L, Salo P, Koivisto PB, Korpimäki E (2014) Reproductive responses of
birds to experimental food supplementation: a meta-analysis. Front Zool
11:80
Samelius
G, Alisauskas RT (2001) Deterring arctic fox predation: The role of
parental nest attendance by lesser snow geese. Can J Zool 79:861–866.
https://doi.org/10.1139/z01-048
Sapir
N, Wikelski M, McCue MD, Pinshow B, Nathan R (2010) Flight modes in
migrating European bee-eaters: Heart rate may indicate low metabolic
rate during soaring and gliding. PLoS ONE 5:e13956.
https://doi.org/10.1371/journal.pone.0013956
Scherler
P, van Bergen VS, Catitti B, Kormann UG, Witczak S, Andereggen M, Herzog
JS, Aebischer A, Roth N, Grüebler MU (2023a) Brutbiologie des Rotmilans
Milvus milvus in den Westschweizer Voralpen. Ornithol Beob, in press.
Scherler
P, Witczak S, Aebischer A, van Bergen V, Catitti B, Grüebler MU (2023b)
Determinants of departure to natal dispersal across an elevational
gradient in a long‐lived raptor species. Ecol Evol 13:409.
https://doi.org/10.1002/ece3.9603
Schmidt
KA (1999) Foraging Theory as a Conceptual Framework for Studying Nest
Predation. Oikos 85:151. https://doi.org/10.2307/3546801
Schmidt
KA, Whelan CJ (2005) Quantifying Male Wood Thrush Nest-Attendance and
its Relationship to Nest Success. Condor 107:138–144.
https://doi.org/10.1093/condor/107.1.138
Shepard
ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013)
Energy Landscapes Shape Animal Movement Ecology. Am Nat 182:298–312.
https://doi.org/10.1086/671257
Shepard
ELC, Williamson C, Windsor SP (2016) Fine-scale flight strategies of
gulls in urban airflows indicate risk and reward in city living. Phil
Trans R Soc B 371:20150394. https://doi.org/10.1098/rstb.2015.0394
Shepard
ELC, Cole E-L, Neate A, Lempidakis E, Ross A (2019) Wind prevents
cliff-breeding birds from accessing nests through loss of flight
control. Elife 8. https://doi.org/10.7554/elife.43842
Sordahl
TA (1990) The risks of avian mobbing and distraction behaviour: an
anecdotal review. Willson Bull 102:349–352
Staggenborg
J, Schaefer HM, Stange C, Naef-Daenzer B, Grüebler MU (2017) Time and
travelling costs during chick-rearing in relation to habitat quality in
Little Owls Athene noctua. Ibis 159:519–531.
https://doi.org/10.1111/ibi.12465
Stearns
SC (1992) The evolution of Life Histories. Oxford University Press,
Oxford, New York
Sternalski
A, Bretagnolle V (2010) Experimental evidence of specialised phenotypic
roles in a mobbing raptor. Behav Ecol and Sociobiol 64:1351–1361.
https://doi.org/10.1007/s00265-010-0950-z
Swaisgood
RR, Rowe MP, Owings DH (2003) Antipredator responses of California
ground squirrels to rattlesnakes and rattling sounds: The roles of sex,
reproductive parity, and offspring age in assessment and decision-making
rules. Behav Ecol Sociobiol 55:22–31.
https://doi.org/10.1007/s00265-003-0684-2
Therneau
TM (2018) coxme: mixed effects cox models. R package version 2.2-10.
https://CRAN.R-project.org/package=coxme
Tolonen
P, Korpimaki E (1995) Parental effort of kestrels (Falco tinnunculus )
in nest defense: Effects of laying time, brood size, and varying
survival prospects of offspring. Behav Ecol 6:435–441.
https://doi.org/10.1093/beheco/6.4.435
Tryjanowski
P, Golawski A (2004) Sex differences in nest defence by the red-backed
shrike Lanius collurio: Effects of offspring age, brood size, and stage
of breeding season. J Ethol 22:13–16.
https://doi.org/10.1007/s10164-003-0096-9
Wellicome
TI, Danielle Todd L, Poulin RG, Holroyd GL, Fisher RJ (2013) Comparing
food limitation among three stages of nesting: Supplementation
experiments with the burrowing owl. Ecol Evol 3:2684–2695.
https://doi.org/10.1002/ece3.616
Welti
N, Scherler P, Grüebler MU (2020) Carcass predictability but not
domestic pet introduction affects functional response of scavenger
assemblage in urbanized habitats. Funct Ecol 34:265–275.
https://doi.org/10.1111/1365-2435.13469
Zuberogoitia
I, MartÍnez JE, MartÍnez JA, Zabala J, Calvo JF, Azkona A, Pagán I
(2008) The Dho-gaza and mist net with Eurasian Eagle-Owl (Bubo bubo)
lure:effectiveness in capturing thirteen species of European raptors. J
Raptor Res 42:48–51. https://doi.org/10.3356/JRR-05-31.1