References
  1. Saxena, RK., Saran, S., Isar, J., Kaushik, R. (2017). Production and applications of succinic acid. Developments in Biotechnology and Bioengineering. Production, Isolation and Purification of Industrial products.Http://dx.doi.org/10.1016/B978-0-444-63662-1.00027-0.
  2. Kim, DY., Yim, SC., Lee, PC., Lee, WG., Lee, SY., Chang, HN. (2004). Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme and Microbial Technology 35, 648-653.https://doi.org/10.1016/j/enzmictec.2004.08.018.
  3. Gao, C., Yang, X., Wang, H., Rivero, CP., Li, C., Cui, Z., Qi, Q., Lin, CSK. (2016). Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica . Biotechnology for Biofuels 9, 179. DOI:10.1186/s13068-016-0597-8.
  4. Guarnieri, MT., Chou, YC., Salvachua, D., Mohagheghi, A., John, PCS., Peterson, DJ., Bomble, YJ., Beckham, GT. (2017). Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis. Applied and Environmental Microbiology 83, 1-14.https://doi.org/10.1128/AEM.00996-17.
  5. Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., Yukawa, H. (2008). An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Applied Microbiology and Biotechnology 81, 459-464. Doi:10.1007/s00253-008-1668-y.
  6. Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertes, AA., Yukawa, H. (2004). Metabolic analysis of Corynebacterium glutamicumduring lactate and succinate production under oxygen deprivation condition. Journal of Molecular Microbiology and Biotechnology 7, 182-196. DOI:10.1159/000079827.
  7. Huhn, S., Jolkver, E., Kramer, R., Marin, K. (2011). Identification of the membrane protein SucE and its role in succinate transport inCorynebacterium glutamicum . Applied Microbiology and Biotechnology 89, 327-335. Doi:10.1007/s00253-010-2855-1.
  8. Zhu, N., Xia, H., Yang, J., Zhao, X., Chen, T. (2014). Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Biotechnology Letters 36, 553-560.https://doi.org/10.1007/s10529-013-1376-2.
  9. Hu, J., Tan, Y., Li, Y., Hu, X., Xu, D., Wang, X. (2013). Construction and application of an efficient multiple-gene-deletion system inCorynebacterium glutamicum . Plasmid 70, 303-313. DOI:10.1016/j.plasmid.2013.07.001.
  10. Xu, H., Zhou, Z., Wang, C., Chen, Z., Cai, H. (2016). Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H+-ATPase activity. Biotechnology Letters 38, 1181-1186. Doi:10.1007/s10529-016-2093-4.
  11. Wang, Q., Zhang, J., Makishah, NHA., Sun, X., Wen, Z., Jiang, Y., Yang, S. (2021). Advances and perspectives for genome editing tools ofCorynebacterium glutamicum . Frontiers in Microbiology. doi:10.3389/fmicb.2021.654058.
  12. Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T., Zhao, H. (2015). Homology-integrated CRISPR-Cas (HI-CRISPR) system for one step multigene disruption in Saccharomyces cerevisiae . ACS Synthetic Biolology 4, 585-94.https://doi.org/10.1021/sb500255k.
  13. Peng, F., Wang, X., Sun, Y., Dong, G., Yang, Y., Liu, X., Bai, Z. (2017). Efficient gene editing in Corynebacterium glutamicumusing the CRISPR/Cas9 system. Microbial Cell Factories 16, 201. Doi:10.1168/s12934-017-0814-6.
  14. Lacey, SF., Fraietta, JA. (2020). First trial of CRISPR-edited T cells in lung cancer. Trends in Molecular Medicine 26, 713-715.https://doi.org/10.1016/j.molmed.2020.06.001.
  15. Jiang, Y., Qian, F., Yang, J., Liu, Y., Dong, F., Xu, C., Sun, B., Chen, B., Xu, X., Li, Y., Wang, R., Yang, S. (2017). CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum . Nature communications 8, 15179. DOI:10.1038/ncomms15179.
  16. Zhu, JY., Pan, XY. (2010). Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology. 101, 4992-5002.https://doi:10.1016/j.biortech.2009.11.007.
  17. Kamm, B., Gruber, PR., Kamm, M. (2008). Biorefineries-industrial processes and products. Wiley-VCH Verlag GmbH & Co. KGaA. Doi:10.1002/9783527619849.
  18. Isikgor, FH., Becer, CR. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry Journal 6, 4497.https://doi.org/10.1039/C5PY00263J.
  19. Takkellapati, S., Li, T., Gonzlez, MA. (2018). An overview of biorefinery derived platform chemicals from a cellulose and hemicellulase biorefinery. Clean Technology and Environmental Policy 20, 1615-1630.
  20. Park, SJ., Lee, WY., Le, WH. (1987). Wood anatomy and classification. Hyangmun, Seoul. (Text in Korean). p. 94-119.
  21. Lee, DS., Wi, SG., Lee, SJ., Lee, YG., Kim, YS., Bae, HJ. (2014). Rapid saccharification for production of cellulosic biofuels. Bioresource Technology 158, 239-247.http://dx.doi.org/10.1016/j.biortech.2014.02.039.
  22. Lee, DS., Lee, YG., Song, Y., Cho, EJ., Bae, HJ. (2020). Hydrolysis patterns of xylem tissues of hardwood pretreated with acetic acid and hydrogen peroxide. Frontiers in Energy Research 8. doi:10.3389/fenrg.2020.00034.
  23. Wi, SG., Chung, BY., Lee, YG., Yang, DJ., Bae, HJ. (2011). Enhanced enzymatic hydrolysis of rapeseed straw by popping pretreatment for bioethanol production. Bioresource Technology 102, 5788-5793. Doi:10.1016/j.biortech.2011.02.031.
  24. Wi, SG., Choi, IS., Kim, KH., Kim, HM., Bae, HJ. (2013). Bioethanol production from rice straw by popping pretreatment. Biotechnology for Biofuels 6, 166.http://www.biotechnologyforbiofuels.com/content/6/1/166.
  25. Hu, J., Arante, V., Pribowo, A., Gourlay, K., Saddler, JN. (2014). Substrate factors that influence the synergistic interaction of AA9 and cellulase during the enzymatic hydrolysis of biomass. Energy and Environmental Science Journal 7, 2308-2315. Doi:10.1039/c4ee00891j.
  26. Wang, GS., Pan, XJ., Zhu, JY., Gleisner, R., Rockwood, D. (2009). Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnology Progress 25, 1086-1093. Doi:10.1021/bp.206.
  27. Zhu, JY., Pan, XJ., Wang, GS., Gleisner, R. (2009). Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology 100, 2411-2418. Doi:10.1016/j.biortech.2008.10.057.
  28. Lee, DS., Lee, YG., Cho, EJ., Song, Y., Bae, HJ. (2021). Hydrolysis pattern analysis of xylem tissues of woody plants pretreated with hydrogen peroxide and acetic acid: rapid saccharification of softwood for economical bioconversion. Biotechnology for Biofuels 14, 37.https://doi.org/10.1186/s13068-021-01889-y.
  29. Wang, C., Zhang, HL., Cai, H., Zhou, ZH., Chen, YL., Ouyang, PK. (2013). Succinic acid production from corn cobs hydrolysates by genetically engineered Corynebacterium glutamicum . Applied Biochemistry and Biotechnology 172, 340-350. DOI:10.1007/s12010-013-0539-x.
  30. Kumar, V., Yadav, SK., Kumar, J., Ahluwalia, V. (2020). A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresource Technology 299, 122633.http://doi.org/10.1016/j.biortech.2019.122633.
  31. Looke, M., Kristjuhan, K., kristjuhan, A. (2011). Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques 50, 325-328. DOI 10.2144/000113672.
  32. Ruan, Y., Zhu, L., Li, Q. (2015). Improving the electro-transformation efficiency of Corynebacterium glutamicum by weakening its cell wall and increasing the cytoplasmic membrane fluidity. Biotechnology Letters 37, 2445-2452. Doi:10.1007/s10529-015-1934-x.
  33. Wi, SG., Cho, EJ., Lee, DS., Lee, SJ., Lee, YJ., Bae, HJ. (2015). Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnology for Biofuels. 8, 228.http://www.biotechnologyforbiofuels.com/content/6/1/166.
  34. Zetsche, B., Gootenberg, JS., Abudayyeh, OO., Slaymaker, IM., Makarova, KS., Essletzbichler, P., Volz, SE., Joung, J., Oos,t JVD., Regev, A., Koonin, EV., Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.http://dx.doi.org/10.1016/j.cell.2015.09.038.
  35. Baumann, MJ., Borch, K., Westh, P. (2011). Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnology for Biofuels 4, 45. http://www.biotechnologyforbiofuels.com/centent/4/1/45.
  36. Kahar, P. (2013). Synergistic effects of pretreatment process on enzymatic digestion of rice straw for efficient ethanol fermentation. Environmental and Biotechnology New Approaches and prospective applications.http://dx.doi.org/10.5772/54949.
  37. Kumar, R., Wyman, CE. (2009). Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnology Progress 25, 807-819. DOI:10.1002/btpr.153.
  38. Moser, C., Henriksson, G., Lindstrom, ME. (2019). Structural aspects on the manufacturing of cellulose nanofibers from wood pulp fibers. BioResources 149, 2269-2276. DOI:10.15376/biores.14.1.2269-2276.
  39. Murphy, L., Bohlin, C., Baumann, MJ., Olsen, SN., Sorensen, TH., Anderson, L., Borch, K., Westh, P. (2013). Production inhibition of five Hypocrea jecorina cellulases. Enzyme and Microbial Technology 52,163-169.http://dx.doi.org/10.1016/j.enzmictec.2013.01.002.
  40. Vermaas, JV., Petridis, L., Xianghong, Q., Schulz, R., Lindner, B., Smith, JC. (2015). Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnology for Biofuels 8, 217. Doi:10.1186/s13068-015-0379-8.
  41. Kumar, D., Murthy, GS. (2013). Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnology for Biofuels 6, 63.
  42. Zhang, N., Li, S., Xiong, L., Hong, Y., Chen, Y. (2015). Cellulose-hemicellulose interaction in wood secondary cell-wall. Modelling and Simulation in Materials Science and Engineering 23, 085010. DOI 10.1088/0965-0393/23/085010.
  43. Rahmini, R., Yoon, SG., Yeon, IJ., Sung, YJ., Shin, SJ. (2019). Kraft pulping using red pine (Pinus densiflora ) root biomass. Journal of Korea TAPPI 51, 91-96.http://dx.doi.org/10.7584/JKTAPPI.2019.10.51.5.91.
  44. Maki-Arvela, P., Salmi, T., Holmbom, B., Willfor, S., Murzin, DY. (2011). Synthesis of sugars by hydrolysis of hemicellulose- A review Chemistry Review 111, 5638-5666.https://doi.org/10.1021/cr2000042.
  45. Varnai, A., Huikko, L., Pere, J., Siika-aho, M., Viikari, L. (2011). Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresource Technology 102, 9096-9104. Doi:10.1016/j.biortech.2011.06.059.
  46. Herpoel-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Molle, D., Lignon, S., Mathis, H., Sigoillot, JC., Monot, F., Asther, M. (2008). Comparative secretome analysis of two Trichoderma reesei RUT-30 and CL847 hypersecretory strains. Biotechnology for Biofuels 1,18. DOI:10.1186/1754-6834-1-18.
  47. Song, Y., Cho, EJ., Park, CS., Oh, CH., Park, BJ., Ba,e HJ. (2019). A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipites in bioethanol production from hardwoods. Renewable Energy 139, 1281-1289.
  48. Briki, A., Kabore, K., Olmos, E., Bosselaar, S., Blanchard, F., Fick, M., Guedon, E., Fournier, F., Delaunay, S. (2020).Corynebacterium glutamicum , a natural overproducer of succinic acid? Engineering and Life Science 20, 205-215. Doi:10.1002/elsc.201900141.
  49. Zhou, Z., Wang, C., Kai, Y., Zhang, K., Xu, H., Cai, H. (2014). Increasing available NADH supply during succinic acid production byCorynebacterium glutamicum . Biotechnology Progress 31, 12-19.
  50. Litsanove, B., Brocker, M., Bott, M. (2012). Toward homosuccinate fermentation: Metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate form glucose and formate. Applied and Environmental Microbiology 79, 3325-3337.http://doi.org/10.1186/s13068-018-1094-z.
  51. Chung, SC., Park, JS., Yun, J., Park, JH. (2017). Improvement of succinate production by release of end-product inhibition inCorynebacterium glutamicum . Metabolic Engineering 40, 157-164. Doi:10.1016/j.ymben.2017.02.004.
  52. Olajuyin, AM., Yang, M., Thygesen, A., Tian, J., Mu, T., Xing, J. (2019). Effective production of succinic acid from coconut water (Cocos nucifera ) by metabolically engineered Escherichia coli with overexpression of Bacillus subtilis pyruvate carboxylase. Biotechnology Reports 24, e00378.https://doi.org/10.1016/j.btre.2019.e00378.
  53. Zhang, X., Jantama, K., Moore, JC., Jarboe, L., Shanmugam, KT., Ingram, LO. (2009). Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli . PNAS 106, 20180-20185. doi/10.1073/pnas.0905396106.
  54. Hodge, DB., Andersson, C., Berglund, KA., Rova, U. (2009). Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme and Microbial Technology 44, 309-316.https://doi.org/10.1016/j.enzmictec.2008.11.007.
  55. Salvachua, D., Mohagheghi, A., Smith, H., Bradfield, MFA., Nicol, W., Black, BA., Biddy, MJ., Dowe, N., Beckham, GT. (2016). Succinic acid production on xylose-enriched biorefinery streams byActinobacillus succinogenes in batch fermentation. Biotechnology for Biofuels 9, 28. Doi:10.1186/s13068-016-0425-1.
  56. Zheng, P., Dong, JJ., Sun, ZH., Ni, Y., Fang, L. (2009). Fermentative production of succinic acid from straw hydrolysate byActinobacillus succinogenes . Bioresource Technology 100, 2425-2429. Doi:10.1016/j.biortech.2008.11.043.
  57. Lee, JS., Lin, CJ., Lee, WC., Teng, HY., Chuang, MH. (2022). Production of succinic acid through the fermentation ofActinobacillus succinogenes on the hydrolysate of Napier grass. Biotechnology for Biofuels and Bioproducts 15, 9. http://doi.org/10.1186/s13068-022-02106-0.