References

  1. Barton, P. S. et al. (2013) ‘The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems’,Oecologia . Springer Verlag, pp. 761–772. doi: 10.1007/s00442-012-2460-3.
  2. Benninger, L. A., Carter, D. O. and Forbes, S. L. (2008) ‘The biochemical alteration of soil beneath a decomposing carcass’,Forensic Science International . Forensic Sci Int, 180(2–3), pp. 70–75. doi: 10.1016/j.forsciint.2008.07.001.
  3. Brown, J. H. and Gillooly, J. F. (2003) ‘Ecological food webs: High-quality data facilitate theoretical unification’,Proceedings of the National Academy of Sciences , 100(4). Available at: www.pnas.orgcgidoi10.1073pnas.0630310100 (Accessed: 21 January 2022).
  4. Cardinale, B. J. et al. (2012) ‘Biodiversity loss and its impact on humanity’, Nature 2012 486:7401 . Nature Publishing Group, 486(7401), pp. 59–67. doi: 10.1038/nature11148.
  5. Cederholm, C. J. et al. (1999) ‘Pacific Salmon Carcasses: Essential Contributions of Nutrients and Energy for Aquatic and Terrestrial Ecosystems’, Fisheries , 24(10), pp. 6–15. doi: 10.1577/1548-8446(1999)024<0006:psc>2.0.co;2.
  6. Coleman, D. . and Hendrix, P. . (2000) Invertebrates as Webmasters in Ecosystems . CABI Publishing. Available at: http://sherekashmir.informaticspublishing.com/353/1/9780851993942.pdf (Accessed: 21 January 2022).
  7. Cunningham, C. X. et al. (2018) ‘Top carnivore decline has cascading effects on scavengers and carrion persistence’,Proceedings of the Royal Society B . The Royal Society, 285(1892). doi: 10.1098/RSPB.2018.1582.
  8. Danell, K., Berteaux, D. and Bråthen, K. A. (2002) ‘Effect of muskox carcasses on nitrogen concentration in tundra vegetation’,Arctic , 55(4), pp. 389–392. doi: 10.14430/arctic723.
  9. Devault, T. L. et al. (2003) ‘Scavenging by Vertebrates : Behavioral , Ecological , and Evolutionary Perspectives on an Important Energy Transfer Pathway in Terrestrial Ecosystems’,Oikos , 102(2), pp. 225–234.
  10. Devault, T. L., Brisbin, I. L. and Rhodes, O. E. (2004) ‘Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers’, Canadian Journal of Zoology , 509, pp. 502–509. doi: 10.1139/Z04-022.
  11. Graves, G. R. (2017) ‘Field Measurements of Gastrointestinal pH of New World Vultures in Guyana’, Source: Journal of Raptor Research , 51(4), pp. 465–469. doi: 10.3356/JRR-16-62.1.
  12. Hill, J. E. et al. (2018) ‘Effects of vulture exclusion on carrion consumption by facultative scavengers’, Ecology and Evolution . John Wiley & Sons, Ltd, 8(5), pp. 2518–2526. doi: 10.1002/ECE3.3840.
  13. Houston, D. C. and Cooper, J. E. (1975) ‘The Digestive Tract of the Whiteback Griffon Vulture and its Role in Disease Transmission Among Wild Ungulates’, Journal of Wildlife Diseases . Allen Press, 11(3), pp. 306–313. doi: 10.7589/0090-3558-11.3.306.
  14. Huijbers, C. M. et al. (2016) ‘Functional replacement across species pools of vertebrate scavengers separated at a continental scale maintains an ecosystem function’, Functional Ecology , 30m(6), pp. 998–1005. doi: 10.1111/1365-2435.12577.
  15. Kaczensky, P., Hayes, R. D. and Promberger, C. (2005) ‘Effect of raven Corvus corax scavenging on the kill rates of wolf Canis lupus packs’,Widllife Biology , 11(2), pp. 101–108.
  16. Kneidel, K. A. (1984) ‘Influence of carcass taxon and size on species composition of carrion-breeding Diptera.’, American Midland Naturalist , 111(1), pp. 57–63. doi: 10.2307/2425542.
  17. Lenth, R. V. (2021) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.4. https://CRAN.R-project.org/package=emmeans . Available at: https://cran.r-project.org/web/packages/emmeans/index.html (Accessed: 21 January 2022).
  18. Lindeman, R. L. (1942) ‘The Trophic-Dynamic Aspect of Ecology’,Ecology , 23(4), pp. 399–417.
  19. Macdonald, B. C. T. et al. (2014) ‘Carrion decomposition causes large and lasting effects on soil amino acid and peptide flux’,Soil Biology and Biochemistry . Elsevier Ltd, 69, pp. 132–140. doi: 10.1016/j.soilbio.2013.10.042.
  20. Markandya, A. et al. (2008) ‘Counting the cost of vulture decline — An appraisal of the human health and other benefits of vultures in India’, 7. doi: 10.1016/j.ecolecon.2008.04.020.
  21. Materassi, M. et al. (2017) ‘Kleptoparasitism and complexity in a multi-trophic web’, Ecological Complexity . Elsevier B.V., 29, pp. 49–60. doi: 10.1016/J.ECOCOM.2016.12.004.
  22. Morales-Reyes, Z. et al. (2017) ‘Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures’,Acta Oecologica , 79(February), pp. 81–88. doi: 10.1016/j.actao.2016.12.012.
  23. Naves-Alegre, L. et al. (2021) ‘Uncovering the vertebrate scavenger guild composition and functioning in the Cerrado biodiversity hotspot’, Biotropica . John Wiley & Sons, Ltd, 00, pp. 1–12. doi: 10.1111/BTP.13006.
  24. Ogada, D. L. et al. (2012) ‘Effects of Vulture Declines on Facultative Scavengers and Potential Implications for Mammalian Disease’, Conservation Biology , 26(3), pp. 453–460. doi: 10.1111/j.1523-1739.2012.01827.x.
  25. Olson, Z. H. et al. (2012) ‘Scavenger community response to the removal of a dominant Scavenger community response to the removal of a dominant scavenger scavenger’. doi: 10.1111/j.1600-0706.2011.19771.x.
  26. Parmenter, R. R. and Macmahon, J. A. (2009) ‘Carrion Decomposition and Nutrient Cycling in a Semiarid Shrub — Steppe Ecosystem’,Ecological Monographs , 79(4), pp. 637–661.
  27. Pechal, J. L. et al. (2013) ‘Microbial community functional change during vertebrate carrion decomposition’, PLoS ONE , 8(11), pp. 1–11. doi: 10.1371/journal.pone.0079035.
  28. Putman, R. J. (1978) ‘Patterns of Carbon dioxide Evolution from Decaying Carrion Decomposition of Small Mammal Carrion in Temperate Systems 1’, Oikos , 31(1), pp. 47–57.
  29. Roggenbuck, M. et al. (2014) ‘The microbiome of New World vultures’, Nature Communications 2014 5:1 . Nature Publishing Group, 5(1), pp. 1–8. doi: 10.1038/ncomms6498.
  30. Team, R. C. (2021) ‘R: A language and environment for statistical computing.’ R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/.
  31. Tobajas, J. et al. (2021) ‘Scavenging patterns of generalist predators in forested areas: The potential implications of increase in carrion availability on a threatened capercaillie population’,Animal Conservation . John Wiley & Sons, Ltd. doi: 10.1111/ACV.12735.
  32. Tomberlin, J. K. et al. (2017) ‘Mass mortality events and the role of necrophagous invertebrates’, Current Opinion in Insect Science . Elsevier Inc., 23, pp. 7–12. doi: 10.1016/j.cois.2017.06.006.
  33. Towne, E. G. (2000) ‘Prairie vegetation and soil nutrient responses to ungulate carcasses’, (September 1999), pp. 232–239.
  34. Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis ,Springer . Springer-Verlag New York. doi: 10.1007/978-0-387-98141-3.
  35. Zepeda Mendoza, M. L. et al. (2018) ‘Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging’,Acta Veterinaria Scandinavica . BioMed Central, 60(1). doi: 10.1186/S13028-018-0415-3.
Table 1. Parameter estimates of the best model showing individual effects of treatments on logit-transformed proportional loss of carrion biomass.