REFERENCES
Ajala, E. O., Olonade, Y. O., Ajala, M. A. & Akinpelu, G. S. (2020).
Lactic Acid Production from Lignocellulose - A Review of Major
Challenges and Selected Solutions. ChemBioEng Reviews , 2 ,
1–13. https://doi.org/10.1002/cben.201900018
Baek, S.-H., Kwon, E. Y., Bae, S., Cho, B., Kim, S. & Hahn, J. (2017).
Improvement of D‐Lactic Acid Production in Saccharomyces
cerevisiae Under Acidic Conditions by Evolutionary and Rational
Metabolic Engineering. Biotechnology Journal , 12 (10),
1700015. https://doi.org/10.1002/biot.201700015
Baek, S.-H., Kwon, E. Y., Kim, Y. H. & Hahn, J.-S. (2016). Metabolic
engineering and adaptive evolution for efficient production of D-lactic
acid in Saccharomyces cerevisiae . Applied Microbiology and
Biotechnology , 100 (6), 2737–2748.
https://doi.org/10.1007/s00253-015-7174-0
Balbas, P. & Lorence, A. (2004). Recombinant Gene Expression(2nd ed., Vol. 267). Humana Press. https://doi.org/10.1385/1592597742
Baral, P., Pundir, A., Kumar, V., Kurmi, A. K. & Agrawal, D. (2020).
Expeditious production of concentrated glucose-rich hydrolysate from
sugarcane bagasse and its fermentation to lactic acid with high
productivity. Food and Bioproducts Processing , 124 ,
72–81. https://doi.org/10.1016/j.fbp.2020.08.005
Becker, J., Lange, A., Fabarius, J. & Wittmann, C. (2015). Top value
platform chemicals: bio-based production of organic acids. Current
Opinion in Biotechnology , 36 , 168–175.
https://doi.org/10.1016/j.copbio.2015.08.022
Chen, H., Chen, B., Su, Z., Wang, K., Wang, B., Wang, Y., Si, Z., Wu,
Y., Cai, D. & Qin, P. (2020). Efficient lactic acid production from
cassava bagasse by mixed culture of Bacillus coagulans andLactobacillus rhamnosus using stepwise pH controlled simultaneous
saccharification and co-fermentation. Industrial Crops and
Products , 146 (15), 112175.
https://doi.org/10.1016/j.indcrop.2020.112175
Choi, S., Song, C. W., Shin, J. H. & Lee, S. Y. (2015). Biorefineries
for the production of top building block chemicals and their
derivatives. Metabolic Engineering , 28 , 223–239.
https://doi.org/10.1016/j.ymben.2014.12.007
Cortez, L. A. B., Baldassin, R. & De Almeida, E. (2020). Energy from
sugarcane. Sugarcane Biorefinery, Technology and Perspectives ,
117–139. https://doi.org/10.1016/B978-0-12-814236-3.00007-X
Cunha, J. T., Costa, C. E., Ferraz, L., Romaní, A., Johansson, B.,
Sá-Correia, I. & Domingues, L. (2018). HAA1 and PRS3overexpression boosts yeast tolerance towards acetic acid improving
xylose or glucose consumption: unravelling the underlying mechanisms.Applied Microbiology and Biotechnology , 102 (10),
4589–4600. https://doi.org/10.1007/s00253-018-8955-z
Daful, A. G. & Görgens, J. F. (2017). Techno-economic analysis and
environmental impact assessment of lignocellulosic lactic acid
production. Chemical Engineering Science , 162 , 53–65.
https://doi.org/10.1016/j.ces.2016.12.054
de Matos, M., Santos, F. & Eichler, P. (2020). Sugarcane world
scenario. In Sugarcane Biorefinery, Technology and Perspectives(pp. 1–19). Elsevier.
https://doi.org/10.1016/B978-0-12-814236-3.00001-9
de Oliveira, R. A., Schneider, R., Vaz Rossell, C. E., Maciel Filho, R.
& Venus, J. (2019). Polymer grade L-lactic acid production from
sugarcane bagasse hemicellulosic hydrolysate using Bacillus
coagulans . Bioresource Technology Reports , 6 (October
2018), 26–31. https://doi.org/10.1016/j.biteb.2019.02.003
Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E. & Sels, B. F.
(2013). Lactic acid as a platform chemical in the biobased economy: the
role of chemocatalysis. Energy & Environmental Science ,6 (5), 1415. https://doi.org/10.1039/c3ee00069a
Gietz, R. . & Woods, R. A. (2002). Transformation of yeast by lithium
acetate/single-stranded carrier DNA/polyethylene glycol method. InMethods in Enzymology (Vol. 350, Issue 2001, pp. 87–96).
https://doi.org/10.1016/S0076-6879(02)50957-5
Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. &
Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting
yeast strains. Applied Microbiology and Biotechnology ,74 (5), 937–953. https://doi.org/10.1007/s00253-006-0827-2
Hasunuma, T., Ismail, K. S. K., Nambu, Y. & Kondo, A. (2014).
Co-expression of TAL1 and ADH1 in recombinant
xylose-fermenting Saccharomyces cerevisiae improves ethanol
production from lignocellulosic hydrolysates in the presence of
furfural. Journal of Bioscience and Bioengineering ,117 (2), 165–169. https://doi.org/10.1016/j.jbiosc.2013.07.007
Hohmann, S. (1991). PDC6 , a weakly expressed pyruvate
decarboxylase gene from yeast, is activated when fused spontaneously
under the control of the PDC1 promoter. Current Genetics ,20 (5), 373–378. https://doi.org/10.1007/BF00317064
Ilmén, M., Koivuranta, K., Ruohonen, L., Rajgarhia, V., Suominen, P. &
Penttilä, M. (2013). Production of L-lactic acid by the yeastCandida sonorensis expressing heterologous bacterial and fungal
lactate dehydrogenases. Microbial Cell Factories , 12 (1),
53. https://doi.org/10.1186/1475-2859-12-53
Ishida, N., Saitoh, S., Tokuhiro, K., Nagamori, E., Matsuyama, T.,
Kitamoto, K. & Takahashi, H. (2005). Efficient production of L-lactic
acid by metabolically engineered Saccharomyces cerevisiae with a
genome-integrated L-lactate dehydrogenase gene. Applied and
Environmental Microbiology , 71 (4), 1964–1970.
https://doi.org/10.1128/AEM.71.4.1964-1970.2005
Kato, M. & Lin, S.-J. (2014). Regulation of NAD+metabolism, signaling and compartmentalization in the yeastSaccharomyces cerevisiae . DNA Repair , 23 , 49–58.
https://doi.org/10.1016/j.dnarep.2014.07.009
Kim, J., Jang, J. H., Yeo, H. J., Seol, J., Kim, S. R. & Jung, Y. H.
(2019). Lactic acid production from a whole slurry of acid-pretreated
spent coffee grounds by engineered Saccharomyces cerevisiae .Applied Biochemistry and Biotechnology , 189 (1), 206–216.
https://doi.org/10.1007/s12010-019-03000-6
Komesu, A., Oliveira, J. A. R. de, Martins, L. H. da S., Maciel, M. R.
W. & Filho, R. M. (2017). Lactic acid production to purification: A
review. BioResources , 12 (2), 4364–4383.
Ling, H., Teo, W., Chen, B., Leong, S. S. J. & Chang, M. W. (2014).
Microbial tolerance engineering toward biochemical production: from
lignocellulose to products. Current Opinion in Biotechnology ,29 (1), 99–106. https://doi.org/10.1016/j.copbio.2014.03.005
Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., Domínguez
González, J. M., Converti, A. & Oliveira, R. P. de S. (2013). Lactic
acid properties, applications and production: A review. Trends in
Food Science & Technology , 30 (1), 70–83.
https://doi.org/10.1016/j.tifs.2012.11.007
Massudi, H., Grant, R., Guillemin, G. J. & Braidy, N. (2012).
NAD+ metabolism and oxidative stress: The golden
nucleotide on a crown of thorns. In Redox Report .
https://doi.org/10.1179/1351000212Y.0000000001
Mitsui, R., Yamada, R., Matsumoto, T., Yoshihara, S., Tokumoto, H. &
Ogino, H. (2020). Construction of lactic acid-tolerantSaccharomyces cerevisiae by using CRISPR-Cas-mediated genome
evolution for efficient D-lactic acid production. Applied
Microbiology and Biotechnology , 104 (21), 9147–9158.
https://doi.org/10.1007/s00253-020-10906-3
Nduko, J. M. & Taguchi, S. (2019). Microbial production and properties
of LA-based polymers and oligomers from renewable feedstock. In Z. Fang,
R. L. Smith & X.-F. Tian (Eds.), Production of materials from
sustainable biomass resources (pp. 361–390). Springer Singapore.
https://doi.org/10.1007/978-981-13-3768-0_12
Palmqvist, E. & Hahn-Hägerdal, B. (2000). Fermentation of
lignocellulosic hydrolysates. I: inhibition and detoxification.Bioresource Technology , 74 (1), 17–24.
https://doi.org/10.1016/S0960-8524(99)00160-1
Park, H. J., Bae, J. H., Ko, H. J., Lee, S.-H. H. S., Sung, B. H., Han,
J. I., Sohn, J. H., Ko, J. B., Ko, H. J., Lee, S.-H. H. S., Sung, B. H.,
Han, J. I. & Sohn, J. H. (2018). Low-pH production of D‐lactic acid
using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.Biotechnology and Bioengineering , 115 (9), 2232–2242.
https://doi.org/10.1002/bit.26745
Peng, B., Williams, T. C., Henry, M., Nielsen, L. K. & Vickers, C. E.
(2015). Controlling heterologous gene expression in yeast cell factories
on different carbon substrates and across the diauxic shift: a
comparison of yeast promoter activities. Microbial Cell
Factories , 14 (1), 91. https://doi.org/10.1186/s12934-015-0278-5
Saitoh, S., Ishida, N., Onishi, T., Tokuhiro, K., Nagamori, E.,
Kitamoto, K. & Takahashi, H. (2005). Genetically engineered wine yeast
produces a high concentration of L-lactic acid of extremely high optical
purity. Applied and Environmental Microbiology , 71 (5),
2789–2792. https://doi.org/10.1128/AEM.71.5.2789-2792.2005
Tian, X., Hu, W., Chen, J., Zhang, W. & Li, W. (2020). The supplement
of vitamin C facilitates L-lactic acid biosynthesis inLactobacillus thermophilus A69 from sweet sorghum juice coupled
with soybean hydrolysate as feedstocks. Industrial Crops and
Products , 146 , 112159.
https://doi.org/10.1016/j.indcrop.2020.112159
Tokuhiro, K., Ishida, N., Nagamori, E., Saitoh, S., Onishi, T., Kondo,
A. & Takahashi, H. (2009). Double mutation of the PDC1 andADH1 genes improves lactate production in the yeastSaccharomyces cerevisiae expressing the bovine lactate
dehydrogenase gene. Applied Microbiology and Biotechnology ,82 (5), 883–890. https://doi.org/10.1007/s00253-008-1831-5
Tsuge, Y., Kato, N., Yamamoto, S., Suda, M., Jojima, T. & Inui, M.
(2019). Metabolic engineering of Corynebacterium glutamicum for
hyperproduction of polymer-grade L- and D-lactic acid. Applied
Microbiology and Biotechnology .
https://doi.org/10.1007/s00253-019-09737-8
Unrean, P. (2018). Optimized feeding schemes of simultaneous
saccharification and fermentation process for high lactic acid titer
from sugarcane bagasse. Industrial Crops and Products ,111 , 660–666. https://doi.org/10.1016/j.indcrop.2017.11.043
van der Pol, E. C., Eggink, G. & Weusthuis, R. A. (2016). Production of
L(+)-lactic acid from acid pretreated sugarcane bagasse usingBacillus coagulans DSM2314 in a simultaneous saccharification and
fermentation strategy. Biotechnology for Biofuels , 9 (1),
248. https://doi.org/10.1186/s13068-016-0646-3
van Maris, A. J. A., Geertman, J. A., Vermeulen, A., Groothuizen, M. K.,
Winkler, A. A., Piper, M. D. W., van Dijken, J. P. & Pronk, J. T.
(2004). Directed evolution of pyruvate decarboxylase-negativeSaccharomyces cerevisiae , yielding a C2-independent,
glucose-tolerant, and pyruvate-hyperproducing Yeast. Applied and
Environmental Microbiology , 70 (1), 159–166.
https://doi.org/10.1128/AEM.70.1.159-166.2004
Yang, P.-B., Tian, Y., Wang, Q. & Cong, W. (2015). Effect of different
types of calcium carbonate on the lactic acid fermentation performance
of Lactobacillus lactis . Biochemical Engineering Journal ,98 , 38–46. https://doi.org/10.1016/j.bej.2015.02.023
Zhang, J. G., Liu, X. Y., He, X. P., Guo, X. N., Lu, Y. & Zhang, B.
run. (2011). Improvement of acetic acid tolerance and fermentation
performance of Saccharomyces cerevisiae by disruption of theFPS1 aquaglyceroporin gene. Biotechnology Letters .
https://doi.org/10.1007/s10529-010-0433-3
Zhao, E. M., Zhang, Y., Mehl, J., Park, H., Lalwani, M. A., Toettcher,
J. E. & Avalos, J. L. (2018). Optogenetic regulation of engineered
cellular metabolism for microbial chemical production. Nature ,555 (7698), 683–687. https://doi.org/10.1038/nature26141
Zhong, W., Yang, M., Hao, X., Sharshar, M. M., Wang, Q. & Xing, J.
(2020). Improvement of D‐lactic acid production at low pH through
expressing acid‐resistant gene IoGAS1 in engineeredSaccharomyces cerevisiae . Journal of Chemical Technology &
Biotechnology , August . https://doi.org/10.1002/jctb.6587
Zhong, W., Yang, M., Mu, T., Wu, F., Hao, X., Chen, R., Sharshara, M.
M., Thygesene, A., Wang, Q. & Xing, J. (2019). Systematically
redesigning and optimizing the expression of D-lactate dehydrogenase
efficiently produces high-optical-purity D-lactic acid inSaccharomyces cerevisiae . Biochemical Engineering Journal ,144 , 217–226. https://doi.org/10.1016/j.bej.2018.09.013