REFERENCES
1. Metcalf, C.J.E. and Pavard, S. (2007) Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212
2. Stearns, S.C. (1977) The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8, 145-171
3. Gaillard, J.-M. et al. (1989) An analysis of demographic tactics in birds and mammals. Oikos 56, 59-76
4. Oli, M.K. and Dobson, F.S. (2003) The relative importance of life-history variables to population growth rate in mammals: Cole’s prediction revisited. Am. Nat. 161, 422–440
5. Stearns, S.C. (1983) The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos41, 173-187
6. Blackburn, T.M. (1991) Evidence for a ‘fast-slow’ continuum of life-history traits among parasitoid Hymenoptera. Funct. Ecol. 5, 65-74
7. Bakewell, A.T. et al. (2020) Comparing Life Histories across Taxonomic Groups in Multiple Dimensions: How Mammal-Like Are Insects?Am. Nat. 195, 70–81
8. Rochet, M.-J. et al. (2000) Comparative analysis of phylogenetic and fishing effects in life history patterns of teleost fishes. Oikos 91, 255–270
9. Salguero-Gómez, R. et al. (2016) Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A. 113, 230–235
10. Salguero-Gómez, R. et al. (2015) The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218
11. Salguero-Gómez, R. et al. (2016) COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384
12. Conde, D.A. et al. (2019) Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. U. S. A. 116, 9658–9664
13. Kattge, J. et al. (2020) TRY plant trait database–enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188
14. Enquist, B.J. et al. (2016) Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Preprints 4:e2615v2
15. Hintze, C. et al. (2013) D3: The Dispersal and Diaspore Database – Baseline data and statistics on seed dispersal.Perspect. Plant Ecol. Evol. Syst. 15, 180–192
16. Myhrvold, N.P. et al. (2015) An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles.Ecology 96, 3109–3000
17. Jones, K.E. et al. (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648
18. Levin, S.C. et al. (2022) Rpadrino: An R package to access and use PADRINO , an open access database of Integral Projection Models.Methods Ecol. Evol. 13, 1923–1929
19. Pistón, N. et al. (2019) Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328
20. Roper, M. et al. (2021) Senescence: why and where selection gradients might not decline with age. Proc. Biol. Sci. 288, 20210851
21. Gaillard, J.-M. et al. (2005) Generation time: a reliable metric to measure life-history variation among mammalian populations.The American naturalist , 166, 119–123
22. Tuljapurkar, S. et al. (2009) From stochastic environments to life histories and back. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1499–1509
23. Kiørboe, T. and Thomas, M.K. (2020) Heterotrophic eukaryotes show a slow-fast continuum, not a gleaner–exploiter trade-off.Proceedings of the National Academy of Sciences 117, 24893–24899
24. Valenzuela-Sánchez, A. et al. (2021) Why disease ecology needs life-history theory: a host perspective. Ecol. Lett. 24, 876–890
25. Wang, H.-Y. et al. (2020) Life histories determine divergent population trends for fishes under climate warming. Nat. Commun.11, 4088
26. Cooke, R.S.C. et al. (2019) Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279
27. Suraci, J.P. et al. (2021) Disturbance type and species life history predict mammal responses to humans. Glob. Chang. Biol.27, 3718–3731
28. Lebreton, J.-D. (2006) Dynamical and statistical models of vertebrate population dynamics. C. R. Biol. 329, 804–812
29. Paniw, M. et al. (2018) Interactive life‐history traits predict sensitivity of plants and animals to temporal autocorrelation.Ecol. Lett. 21, 275–286
30. Ducatez, S. and Shine, R. (2019) Life-history traits and the fate of translocated populations. Conserv. Biol. 33, 853–860
31. Gaillard, J.-M. et al. (2021) Applying comparative methods to different databases: lessons from demographic analyses across mammal species. In Demographic Methods across the Tree of Life , pp. 299–312, Oxford University Press
32. Wright, J. et al. (2020) Contrasting patterns of density-dependent selection at different life stages can create more than one fast-slow axis of life-history variation. Ecol. Evol.10, 3068–3078
33. Rüger, N. et al. (2018) Beyond the fast-slow continuum: demographic dimensions structuring a tropical tree community.Ecol. Lett. 21, 1075–1084
34. Healy, K. et al. (2019) Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224
35. Colchero, F. et al. (2012) BaSTA: an R package for Bayesian estimation of age-specific survival from incomplete mark-recapture/recovery data with covariates. Methods Ecol. Evol.3, 466–470
36. Römer, G. et al. (2021) Plant demographic knowledge is biased towards short-term studies of temperate-region herbaceous perennials.bioRxiv , 2021.04.25.441327
37. Bernard, C. et al. (2023) MOSAIC - A unified trait database to complement structured population models. Sci. Data 10, 335
38. Lebreton, J.-D. et al. (2012) Towards a vertebrate demographic data bank. J. Ornithol. 152, 617–624
39. Caswell, H. (2001) Matrix Population Models: Construction, Analysis, and Interpretation. 2nd edn Sinauer Associates. Inc. , Sunderland, MA
40. Stott, I. et al. (2011) A framework for studying transient dynamics of population projection matrix models. Ecol. Lett. 14, 959–970
41. Silvertown, J. et al. (1993) Comparative plant demography–relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J. Ecol. 81, 465
42. Ellner, S.P. (2018) Generation Time in structured populations.Am. Nat. 192, 105–110
43. Descamps, S. et al. (2016) When relative allocation depends on total resource acquisition: implication for the analysis of trade-offs. J. Evol. Biol. 29, 1860–1866
44. Preston, B.T. et al. (2011) Sexually extravagant males age more rapidly. Ecol. Lett. 14, 1017–1024
45. Pélabon, C. et al. (2014) Evolution of morphological allometry. Ann. N. Y. Acad. Sci. 1320, 58–75
46. Voje, K.L. (2016) Scaling of morphological characters across trait type, sex, and environment: a meta-analysis of static allometries.Am. Nat. 187, 89–98
47. Bielby, J. et al. (2007) The fast-slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757
48. Peres-Neto, P.R. et al. (2005) How many principal components? stopping rules for determining the number of non-trivial axes revisited.Comput. Stat. Data Anal. 49, 974–997
49. Ellner, S.P. and Rees, M. (2006) Integral projection models for species with complex demography. Am. Nat. 167, 410–428
50. Shi, J. and Song, W. (2016) Sparse principal component analysis with measurement errors. J. Stat. Plan. Inference 175, 87–99
51. Gaillard, J.-M. et al. (2016) Life Histories, Axes of Variation in. In Encyclopedia of Evolutionary Biology , pp. 312–323, Elsevier
52. McDonald, J.L. et al. (2017) Divergent demographic strategies of plants in variable environments. Nat. Ecol. Evol. 1, 0029
53. Van de Walle, J. et al. (2023) Individual life histories: neither slow nor fast, just diverse. Proc. Biol. Sci. 290, 20230511
54. Fenchel, T. (1974) Intrinsic rate of natural increase: The relationship with body size. Oecologia 14, 317–326
55. Blueweiss, L. et al. (1978) Relationships between body size and some life history parameters. Oecologia 37, 257–272
56. Salguero-Gómez, R. and Jones, O.R. (2017) Life history trade-offs modulate the speed of senescence. In The Evolution of Senescence in the Tree of Life (Shefferson, R. P. et al., eds), pp. 403–421, Cambridge University Press
57. Hatton, I.A. et al. (2019) Linking scaling laws across eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 116, 21616–21622
58. Bininda-Emonds, O.R.P. (2004) The evolution of supertrees.Trends Ecol. Evol. 19, 315–322
59. Hinchliff, C.E. et al. (2015) Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. U. S. A. 112, 12764–12769
60. Rosindell, J. and Harmon, L.J. (2012) OneZoom: a fractal explorer for the tree of life. PLoS Biol. 10, e1001406
61. Uyeda, J.C. and Harmon, L.J. (2014) A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63, 902–918
62. McMahon, T.A. and Bonner, J.T. (1984) On Size and Life , Scientific American Library
63. Barbieri, M. et al. (2015) Data Resource Profile: The Human Mortality Database (HMD). Int. J. Epidemiol. 44, 1549–1556
64. Haley, D. (1986) Marine mammals of eastern North Pacific and Arctic waters , Seattle, Wash.: Pacific Search Press
65. McMurray, S.E. et al. (2008) Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Mar. Biol. 155, 159–171
66. Crowther, M.S. and Blacket, M.J. (2003) Biogeography and speciation in the dasyuridae: why are there so many kinds of dasyurids. InPredators with pouches: the biology of carnivorous marsupials (M. Jones, C. Dickman, M. Archer, eds), CSIRO publishing
67. Krajewski, C. et al. (2008) The evolution of reproductive strategies in dasyurid marsupials: implications of molecular phylogeny.Biol. J. Linn. Soc. Lond. 71, 417–435
68. Duncan, W.H. and Duncan, M.B. (2000) Trees of the Southeastern United States , University of Georgia Press
69. Brown, P.M. (1996) OLDLIST: A database of maximum tree ages.Tree rings, environment, and humanity. Radiocarbon 1996, 727–731
70. Flanary, B.E. and Kletetschka, G. (2005) Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva . Biogerontology6, 101–111
71. Violle, C. et al. (2007) Let the concept of trait be functional! Oikos 116, 882-892.
72. Stearns, S.C. (1992) The evolution of life histories, Oxford University Press.
73. Wright, J. et al. (2018) Life-history evolution under fluctuating density-dependent selection and the adaptive alignment of pace-of-life syndromes. Biol. Rev. Camb. Philos. Soc. 94, 230–247
74. Capdevila, P. et al. (2020) Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial life‐history strategies. Funct. Ecol. 34, 1613–1625
75. Revell, L.J. (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268
76. Joliffe, I.T. and Morgan, B.J. (1992) Principal component analysis and exploratory factor analysis. Stat. Methods Med. Res. 1, 69–95
77. Winemiller, K.O. (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81, 225–241
78. D’Andrea, R. et al. (2020) Counting niches: Abundance‐by‐trait patterns reveal niche partitioning in a Neotropical forest. Ecology 101, e03019
79. Kessel, S.T. et al. (2018) Divergent migration within lake sturgeon (Acipenser fulvescens ) populations: Multiple distinct patterns exist across an unrestricted migration corridor. J. Anim. Ecol. 87, 259–273
80. Perry, K.D. et al. (2020) Genome-wide analysis of diamondback moth, Plutella xylostella L., from Brassica crops and wild host plants reveals no genetic structure in Australia. Sci. Rep. 10, 12047
81. Frelat, R. et al. (2018) Correction: Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities. PLoS One 13, e0196353
82. Costanza, J.K. et al. (2017) An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios. PLoS One 12, e0184062
83. O’Meara, B.C. (2012) Evolutionary inferences from phylogenies: A review of methods. Annu. Rev. Ecol. Evol. Syst. 43, 267–285
84. Freckleton, R.P. (2009) The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375