REFERENCES
1. Metcalf, C.J.E. and Pavard, S. (2007) Why evolutionary biologists
should be demographers. Trends Ecol. Evol. 22, 205–212
2. Stearns, S.C. (1977) The evolution of life history traits: a critique
of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8,
145-171
3. Gaillard, J.-M. et al. (1989) An analysis of demographic
tactics in birds and mammals. Oikos 56, 59-76
4. Oli, M.K. and Dobson, F.S. (2003) The relative importance of
life-history variables to population growth rate in mammals: Cole’s
prediction revisited. Am. Nat. 161, 422–440
5. Stearns, S.C. (1983) The influence of size and phylogeny on patterns
of covariation among life-history traits in the mammals. Oikos41, 173-187
6. Blackburn, T.M. (1991) Evidence for a ‘fast-slow’ continuum of
life-history traits among parasitoid Hymenoptera. Funct. Ecol. 5,
65-74
7. Bakewell, A.T. et al. (2020) Comparing Life Histories across
Taxonomic Groups in Multiple Dimensions: How Mammal-Like Are Insects?Am. Nat. 195, 70–81
8. Rochet, M.-J. et al. (2000) Comparative analysis of
phylogenetic and fishing effects in life history patterns of teleost
fishes. Oikos 91, 255–270
9. Salguero-Gómez, R. et al. (2016) Fast-slow continuum and
reproductive strategies structure plant life-history variation
worldwide. Proc. Natl. Acad. Sci. U. S. A. 113, 230–235
10. Salguero-Gómez, R. et al. (2015) The COMPADRE Plant Matrix
Database: an open online repository for plant demography. J.
Ecol. 103, 202–218
11. Salguero-Gómez, R. et al. (2016) COMADRE: a global data base
of animal demography. J. Anim. Ecol. 85, 371–384
12. Conde, D.A. et al. (2019) Data gaps and opportunities for
comparative and conservation biology. Proc. Natl. Acad. Sci. U. S.
A. 116, 9658–9664
13. Kattge, J. et al. (2020) TRY plant trait database–enhanced
coverage and open access. Glob. Chang. Biol. 26, 119–188
14. Enquist, B.J. et al. (2016) Cyberinfrastructure for an
integrated botanical information network to investigate the ecological
impacts of global climate change on plant biodiversity. PeerJ
Preprints 4:e2615v2
15. Hintze, C. et al. (2013) D3: The Dispersal and Diaspore
Database – Baseline data and statistics on seed dispersal.Perspect. Plant Ecol. Evol. Syst. 15, 180–192
16. Myhrvold, N.P. et al. (2015) An amniote life-history database
to perform comparative analyses with birds, mammals, and reptiles.Ecology 96, 3109–3000
17. Jones, K.E. et al. (2009) PanTHERIA: a species-level database
of life history, ecology, and geography of extant and recently extinct
mammals. Ecology 90, 2648–2648
18. Levin, S.C. et al. (2022) Rpadrino: An R package to access
and use PADRINO , an open access database of Integral Projection Models.Methods Ecol. Evol. 13, 1923–1929
19. Pistón, N. et al. (2019) Multidimensional ecological analyses
demonstrate how interactions between functional traits shape fitness and
life history strategies. J. Ecol. 107, 2317–2328
20. Roper, M. et al. (2021) Senescence: why and where selection
gradients might not decline with age. Proc. Biol. Sci. 288,
20210851
21. Gaillard, J.-M. et al. (2005) Generation time: a reliable
metric to measure life-history variation among mammalian populations.The American naturalist , 166, 119–123
22. Tuljapurkar, S. et al. (2009) From stochastic environments to
life histories and back. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 364, 1499–1509
23. Kiørboe, T. and Thomas, M.K. (2020) Heterotrophic eukaryotes show a
slow-fast continuum, not a gleaner–exploiter trade-off.Proceedings of the National Academy of Sciences 117, 24893–24899
24. Valenzuela-Sánchez, A. et al. (2021) Why disease ecology
needs life-history theory: a host perspective. Ecol. Lett. 24,
876–890
25. Wang, H.-Y. et al. (2020) Life histories determine divergent
population trends for fishes under climate warming. Nat. Commun.11, 4088
26. Cooke, R.S.C. et al. (2019) Projected losses of global mammal
and bird ecological strategies. Nat. Commun. 10, 2279
27. Suraci, J.P. et al. (2021) Disturbance type and species life
history predict mammal responses to humans. Glob. Chang. Biol.27, 3718–3731
28. Lebreton, J.-D. (2006) Dynamical and statistical models of
vertebrate population dynamics. C. R. Biol. 329, 804–812
29. Paniw, M. et al. (2018) Interactive life‐history traits
predict sensitivity of plants and animals to temporal autocorrelation.Ecol. Lett. 21, 275–286
30. Ducatez, S. and Shine, R. (2019) Life-history traits and the fate of
translocated populations. Conserv. Biol. 33, 853–860
31. Gaillard, J.-M. et al. (2021) Applying comparative methods to
different databases: lessons from demographic analyses across mammal
species. In Demographic Methods across the Tree of Life , pp.
299–312, Oxford University Press
32. Wright, J. et al. (2020) Contrasting patterns of
density-dependent selection at different life stages can create more
than one fast-slow axis of life-history variation. Ecol. Evol.10, 3068–3078
33. Rüger, N. et al. (2018) Beyond the fast-slow continuum:
demographic dimensions structuring a tropical tree community.Ecol. Lett. 21, 1075–1084
34. Healy, K. et al. (2019) Animal life history is shaped by the
pace of life and the distribution of age-specific mortality and
reproduction. Nat. Ecol. Evol. 3, 1217–1224
35. Colchero, F. et al. (2012) BaSTA: an R package for Bayesian
estimation of age-specific survival from incomplete
mark-recapture/recovery data with covariates. Methods Ecol. Evol.3, 466–470
36. Römer, G. et al. (2021) Plant demographic knowledge is biased
towards short-term studies of temperate-region herbaceous perennials.bioRxiv , 2021.04.25.441327
37. Bernard, C. et al. (2023) MOSAIC - A unified trait database
to complement structured population models. Sci. Data 10, 335
38. Lebreton, J.-D. et al. (2012) Towards a vertebrate
demographic data bank. J. Ornithol. 152, 617–624
39. Caswell, H. (2001) Matrix Population Models: Construction, Analysis,
and Interpretation. 2nd edn Sinauer Associates. Inc. , Sunderland,
MA
40. Stott, I. et al. (2011) A framework for studying transient
dynamics of population projection matrix models. Ecol. Lett. 14,
959–970
41. Silvertown, J. et al. (1993) Comparative plant
demography–relative importance of life-cycle components to the finite
rate of increase in woody and herbaceous perennials. J. Ecol. 81,
465
42. Ellner, S.P. (2018) Generation Time in structured populations.Am. Nat. 192, 105–110
43. Descamps, S. et al. (2016) When relative allocation depends
on total resource acquisition: implication for the analysis of
trade-offs. J. Evol. Biol. 29, 1860–1866
44. Preston, B.T. et al. (2011) Sexually extravagant males age
more rapidly. Ecol. Lett. 14, 1017–1024
45. Pélabon, C. et al. (2014) Evolution of morphological
allometry. Ann. N. Y. Acad. Sci. 1320, 58–75
46. Voje, K.L. (2016) Scaling of morphological characters across trait
type, sex, and environment: a meta-analysis of static allometries.Am. Nat. 187, 89–98
47. Bielby, J. et al. (2007) The fast-slow continuum in mammalian
life history: an empirical reevaluation. Am. Nat. 169, 748–757
48. Peres-Neto, P.R. et al. (2005) How many principal components?
stopping rules for determining the number of non-trivial axes revisited.Comput. Stat. Data Anal. 49, 974–997
49. Ellner, S.P. and Rees, M. (2006) Integral projection models for
species with complex demography. Am. Nat. 167, 410–428
50. Shi, J. and Song, W. (2016) Sparse principal component analysis with
measurement errors. J. Stat. Plan. Inference 175, 87–99
51. Gaillard, J.-M. et al. (2016) Life Histories, Axes of
Variation in. In Encyclopedia of Evolutionary Biology , pp.
312–323, Elsevier
52. McDonald, J.L. et al. (2017) Divergent demographic strategies
of plants in variable environments. Nat. Ecol. Evol. 1, 0029
53. Van de Walle, J. et al. (2023) Individual life histories:
neither slow nor fast, just diverse. Proc. Biol. Sci. 290,
20230511
54. Fenchel, T. (1974) Intrinsic rate of natural increase: The
relationship with body size. Oecologia 14, 317–326
55. Blueweiss, L. et al. (1978) Relationships between body size
and some life history parameters. Oecologia 37, 257–272
56. Salguero-Gómez, R. and Jones, O.R. (2017) Life history trade-offs
modulate the speed of senescence. In The Evolution of Senescence
in the Tree of Life (Shefferson, R. P. et al., eds), pp. 403–421,
Cambridge University Press
57. Hatton, I.A. et al. (2019) Linking scaling laws across
eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 116, 21616–21622
58. Bininda-Emonds, O.R.P. (2004) The evolution of supertrees.Trends Ecol. Evol. 19, 315–322
59. Hinchliff, C.E. et al. (2015) Synthesis of phylogeny and
taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci.
U. S. A. 112, 12764–12769
60. Rosindell, J. and Harmon, L.J. (2012) OneZoom: a fractal explorer
for the tree of life. PLoS Biol. 10, e1001406
61. Uyeda, J.C. and Harmon, L.J. (2014) A novel Bayesian method for
inferring and interpreting the dynamics of adaptive landscapes from
phylogenetic comparative data. Syst. Biol. 63, 902–918
62. McMahon, T.A. and Bonner, J.T. (1984) On Size and Life ,
Scientific American Library
63. Barbieri, M. et al. (2015) Data Resource Profile: The Human
Mortality Database (HMD). Int. J. Epidemiol. 44, 1549–1556
64. Haley, D. (1986) Marine mammals of eastern North Pacific and
Arctic waters , Seattle, Wash.: Pacific Search Press
65. McMurray, S.E. et al. (2008) Redwood of the reef: growth and
age of the giant barrel sponge Xestospongia muta in the Florida
Keys. Mar. Biol. 155, 159–171
66. Crowther, M.S. and Blacket, M.J. (2003) Biogeography and speciation
in the dasyuridae: why are there so many kinds of dasyurids. InPredators with pouches: the biology of carnivorous marsupials (M.
Jones, C. Dickman, M. Archer, eds), CSIRO publishing
67. Krajewski, C. et al. (2008) The evolution of reproductive
strategies in dasyurid marsupials: implications of molecular phylogeny.Biol. J. Linn. Soc. Lond. 71, 417–435
68. Duncan, W.H. and Duncan, M.B. (2000) Trees of the Southeastern
United States , University of Georgia Press
69. Brown, P.M. (1996) OLDLIST: A database of maximum tree ages.Tree rings, environment, and humanity. Radiocarbon 1996, 727–731
70. Flanary, B.E. and Kletetschka, G. (2005) Analysis of telomere length
and telomerase activity in tree species of various life-spans, and with
age in the bristlecone pine Pinus longaeva . Biogerontology6, 101–111
71. Violle, C. et al. (2007) Let the concept of trait be
functional! Oikos 116, 882-892.
72. Stearns, S.C. (1992) The evolution of life histories, Oxford
University Press.
73. Wright, J. et al. (2018) Life-history evolution under
fluctuating density-dependent selection and the adaptive alignment of
pace-of-life syndromes. Biol. Rev. Camb. Philos. Soc. 94,
230–247
74. Capdevila, P. et al. (2020) Longevity, body dimension and
reproductive mode drive differences in aquatic versus terrestrial
life‐history strategies. Funct. Ecol. 34, 1613–1625
75. Revell, L.J. (2009) Size-correction and principal components for
interspecific comparative studies. Evolution 63, 3258–3268
76. Joliffe, I.T. and Morgan, B.J. (1992) Principal component analysis
and exploratory factor analysis. Stat. Methods Med. Res. 1,
69–95
77. Winemiller, K.O. (1989) Patterns of variation in life history among
South American fishes in seasonal environments. Oecologia 81,
225–241
78. D’Andrea, R. et al. (2020) Counting niches:
Abundance‐by‐trait patterns reveal niche partitioning in a Neotropical
forest. Ecology 101, e03019
79. Kessel, S.T. et al. (2018) Divergent migration within lake
sturgeon (Acipenser fulvescens ) populations: Multiple distinct
patterns exist across an unrestricted migration corridor. J. Anim.
Ecol. 87, 259–273
80. Perry, K.D. et al. (2020) Genome-wide analysis of diamondback
moth, Plutella xylostella L., from Brassica crops and wild host
plants reveals no genetic structure in Australia. Sci. Rep. 10,
12047
81. Frelat, R. et al. (2018) Correction: Community ecology in 3D:
Tensor decomposition reveals spatio-temporal dynamics of large
ecological communities. PLoS One 13, e0196353
82. Costanza, J.K. et al. (2017) An empirical, hierarchical
typology of tree species assemblages for assessing forest dynamics under
global change scenarios. PLoS One 12, e0184062
83. O’Meara, B.C. (2012) Evolutionary inferences from phylogenies: A
review of methods. Annu. Rev. Ecol. Evol. Syst. 43, 267–285
84. Freckleton, R.P. (2009) The seven deadly sins of comparative
analysis. J. Evol. Biol. 22, 1367–1375