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Abstract

In this paper, global h-stability of nonlinear positive Cohen-Grossberg neural network (PCGNN) system with time-
varying delays is studied by means of a direct analysis method. By selecting the appropriate h function and deter-
mining its differential expression, global h-stability is converted into two types of known stability, that is Lagrangian
exponential stability and global exponential stability. For the sake of improving the accuracy of the stability results,
we spare no effort to optimize the fitting effect of the system state trajectory by changing the differential expression
of the h function. In addition, two examples are given to verify the feasibility and effectiveness of this method in
PCGNN.
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1. Introduction

The Cohen-Grossberg neural network (CGNN) is an
artificial neural network model used to simulate neuron
interaction in biology. It was proposed by Grossberg
and Cohen in 1982 and is mainly used for processing
control, optimization, clustering and nonlinear issues.
The CGNN model has strong scalability and fault toler-
ance, thus it has been widely applied in pattern recog-
nition, signal processing, control system, etc[1–5]. Lu
and Chen [6] studied the dynamic behavior of delayed
CGNN and obtained the unique sufficient condition for
non-negative balance based on the nonlinear comple-
mentary theory. They proved that the non-negative bal-
ance is globally asymptotically stable. This class of
CGNN models with positive dynamic systems is called
positive Cohen-Grossberg neural networks (PCGNN).
In the mathematical model, the initial state of a posi-
tive dynamic system is non-negative and any trajecto-
ry generated from the non-negative initial state (such as
initial position, speed, etc.) must also be non-negative
[7–11]. In other words, there will be no negative or non-
physically reasonable conditions in this system. Non-
negativity is essential to many practical problems such
as mass, energy and probability. In the ecological mod-
el, the positive dynamic system can ensure that the num-

ber of various species is always non-negative, so as
to avoid the disruption of ecological balance. Hence,
many scholars are attracted to studying positive dynam-
ic systems. Zhu, Sun and Liu studied the boundary
problem of homogeneous positive systems and derived
the sufficient condition for the existence of a sphere in
[12]. Using the new comparison technology, Hien de-
rived the feasible conditions where all state trajectories
of the system converge to the unique positive equilib-
rium at an exponential rate in [13]. Rami [14] solved
the stability problem of linear positive systems using a
direct approach and proved that positive linear systems
are less susceptible to time-varying delays than ordinary
linear systems, which was also explained and elaborat-
ed in [11–16]. Compared with the traditional percep-
tron models, PCGNN uses a nonlinear activation func-
tion with a hidden layer to handle more complex classi-
fication problems. It also introduces an anti-program
algorithm to optimize weights and better process da-
ta. These advantages make it possible to solve image
segmentation, cluster analysis, sound recognition, and
robot trajectory planning. Therefore, it is of great sig-
nificance to add a positive dynamic system to the CGNN
model, and it has attracted the attention of many schol-
ars in recent years.
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It is well known that time delays exist in many CGN-
N models, which may cause system oscillations or di-
vergence, thus affecting the performance and response
speed of the network. Therefore, the study of the dy-
namic behavior of CGNNs with time-varying delays
is the primary problem that researchers need to solve.
Some previous work has proposed various solutions
[17–20]. Liu, He, and Wu [21] established a vector non-
autonomous Halanay inequality using the Ito’s formula
and derived sufficient conditions to ensure the stability
of the system in the face of non-autonomous delayed
CGNN stability problems. Xiao, Zeng and Wu [22] de-
signed two different sliding mode controllers to solve
the problem of the known delayed CGNN fixed-time
synchronization. In order to solve the stability prob-
lem of mixed delay CGNN, Wang and Qi [23] used Ha-
lanay delay differential inequality and Jensen inequality
to handle the integral items in the Lyaponov-Krassovsky
function (LKF) to avoid the impact of delay on the sys-
tem and obtained new sufficient conditions for ensuring
the global Lagrangian exponential stability of CGNN.
However, in a nonlinear PCGNN system with multiple
time-varying delays, multiple state variables at different
times will interact with each other. And this influence is
complex and nonlinear, making it impossible to directly
describe the relationship between them in vector matrix
form. This poses a challenge for modeling and control-
ling of neural networks with time-varying delays. Based
on this, Pinto first introduced the concept of h-stability
and obtained the stability result of weakly stable sys-
tems under certain perturbations [24]. The h-system,
also known as h-stability, is a special type of differen-
tial equation system, which is mainly used to study the
weak stability of the system [25–28]. h-stability takes
into account the sensitivity of system response to time
step length and space step length, and allows stability
constraints to be relaxed. Specifically, we first need to
define a suitable h function and set its differential ex-
pression, which depends on both time and space steps.
Next we incorporate it into the differential equation, and
require that the truncation error of the differential equa-
tion’s part related to the h function does not increase too
rapidly. The h function indicates the growth rate or de-
cay rate of the system solution, and also indicates the
stability of the system; the smaller the value of the h
function, the slower the growth rate of the solution, the
more stable the system. In this way, the h-stability con-
dition is more relaxed than the traditional exponential
stability. Using the concept of t∞ similarity, Coo and
Yang studied the h-stability of nonlinear perturbation d-
ifferential systems and expanded the h-stability results
[29], solving the stability problem of high-order iner-

tial neural networks with proportional delays. Wang,
Wang and Wang proposed a new method for construct-
ing LKF and obtained the global h-stability criterion.
This method does not need to solve new approximation-
s, but more accurately describes the stability character-
istics of the system based on dependency and correla-
tion [30]. Therefore, in practical applications, through
the estimation and analysis of the h function, accurate
results and conclusions about system stability can be
further derived.

Inspired by the above, this paper adopts direct anal-
ysis method, carries on the Laplace transform to the
differential equation, takes the derivative of the trans-
form form, and obtains the analytic solution of the dif-
ferential equation with time-varying delays and nonlin-
ear terms. The obtained analytical solution is reverted
back to the time domain, and the sufficient condition-
s for global h-stability of the system are derived. The
global h-stability of nonlinear positive CGNN system-
s with time-varying delays is studied. And solved the
problem of not being able to use the vector matrix to
represent the relationship between states. Furthermore,
due to the strong superiority in the auxiliary stability
analysis of the h function, the effect of controller re-
placement can be achieved by changing the differential
expression of the h function, and the global h-stability
can be transformed into special conditions such as La-
grangian exponential stability and global exponential
stability, highlighting the generality and flexibility of
global h-stability.

Notations: N∗ is a set of positive integers, a set of real
numbers denoted by R, R+ is a collection of positive
real numbers, Rm

+ represents the set of positive vectors,
the superscript T represents the transpose of the vector,
and ‖ ‖ represents the two norm.

2. Prepare Knowledge and Assumptions

The CGNN with time-varying delays can be de-
scribed:

ṙı(t) =cı(rı(t))
[
−dı(rı(t)) +

m∑
s=1

wıszıs(rı(t))

+

m∑
s=1

lısZıs(rı(t − %ıs(t))) + µı

]
rı(t) =κı(t), ı = 1, 2, ...,m. t ∈ [t0 − %, t0], (1)

where rı(t) is the ıth state variable, the sth neuron is ac-
tivated by the zıs(rı(t)) function at the t moment, zıs :
[to,+∞) ×< → <, and Zıs : [to,+∞) ×< → <+ is the
activation functions, and zıs and Zıs only change with
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the change of s. Zıs(rı(t − %ıs(t))) indicates that the sth
neuron is activated at t−%ıs(t) time. And %ıs(t) is the de-
lay generated during signal transmission, and assumes
that %ıs(t) is bounded. 0 < %ıs(t) < %́ıs, t0 ≤ t, %́ıs is a re-
al number not less than zero. κı(t) is the initial function
of [t0 − %, t0] mapping to <+, and %́ = max

ı,s=1,2,...,m
%́ıs(t).

cı(rı(t)) is a kind of amplification function. dı(rı(t)) is a
kind of function with appropriate behavior and bound-
ed. W = (wıs)m×m shows us how the ıth neuron and the
sth neuron are connected and the strength of the con-
nection at time t. L = (lıs)m×m indicates the intensity of
the interconnection between neurons ı and neurons s at
time t − %ıs(t). µı is the external constant input.

Definition 1: For any t ≥ t0, ı ∈ [1,m], when the
initial value of the state variable κı : [t0 − %, t0] is more
than zero and rı(t) ≥ 0, then the system (1) is positive.

Definition 2: If the system (1) global h-stability,
there is a continuous bounded positive function h :
[t0,+∞) → < and a constant value k ≥ 1, so that each
solution r(t) of the system (1) (including the initial func-
tion κ(t) ) is satisfied with:

‖r(t)‖ ≤ k ‖κ‖% h(t)h−1(t0), t ≥ t0

where r(t) = [r1(t), r2(t), ..., rm(t)]T , κ(t) =

[κ1(t), κ2(t), ..., κm(t)]T , and ‖κ‖% = supt∈[t0−%,t0] ‖κ(t)‖.
The assumptions needed in this article are:
Assumption Q1: The magnification function cı(rı(t))

is bounded and positive. There are two real scalars εı
and εı that are greater than zero, making εı ≤ cı(rı(t)) ≤
εı < +∞, ı ∈ [1,m].

Assumption Q2: For any ı ∈ [1,m] , there is ϕı > 0,
so that

rı(t)dı(rı(t)) ≥ ϕır2
ı (t)

Assumption Q3: Two functions ∂ıs(t) and δıs(t) fol-
low: {

∂ıs(t) > 0, δıs(t) > 0, s , ı
∂ıs(t) < 0, δıs(t) < 0, s = ı

and ∂ıs(t)y ≥ zıs(t, y) ≥ δıs(t)y for y ∈ <+, ı, s ∈ [1,m],
t ≥ t0.

Assumption Q4: For any y ∈ <+, t ≥ t0, there are
two positive functions ~́ıs(t) and ~̀ıs(t) such that ~́ıs(t)y ≥
Zıs(t, y) ≥ ~̀ıs(t)y, ı, s ∈ [1,m].

Assumption Q5: All elements in W = (wıs)m×m and
L = (lıs)m×m are non-negative real numbers.

3. Main Results

The activation function in CGNN is bounded, which
ensures the existence and uniqueness of the CGNN e-
quilibrium point. Through translation transformation,

the equilibrium point can be panned to the origin, and
rı(0) = 0.

ṙı(t) =cı(rı(t))
[
−dı(rı(t)) +

m∑
s=1

wıszıs(rı(t))

+

m∑
s=1

lısZıs(rı(t − %ıs(t)))
]
, (2)

3. 1 Positivity of system (2)
In the following, we propose a proposition about the

positive nature of the system (2).
Proposition 1: For any t ∈ <, t ≥ 0, ı, s ∈ [1,m] ⊂

N+, ı , s, if the system (2) is positive, it will satify
zıı(t, 0) ≥ 0, zıs(t, y) ≥ 0 and Zıs′ (t, y) ≥ 0, s′ ∈ [1,m].

Proof : Take any period of time interval [t0 −%, t0], at
this time the initial function κ : [t0 − %, t0]→<m

+ , let

ℵ = {t : rs(t) < 0 f or some s ∈ [1,m] and t ≥ t0}

from Definition 1: ℵ is an empty set. Assuming that ℵ
is not an empty set, then make t̂ = inf ℵ, at this time
t̂ ≥ t0. For any ı ∈ [1,m], when it is t̂ ≥ t, rı ≥ 0. Take
 ∈ [1,m], due to the continuity of r (t), r (t̂) = 0.

According to assumption Q1 and Q5, we have:

ṙ (t̂) =c (r (t̂))
[
−d (r (t̂)) +

m∑
s=1

w sz s(r (t̂))

+

m∑
s=1

l sZ s(r (t̂ − % s(t̂)))
]

=c (r (t̂))
[
−d (r (t̂)) + w  z  (r (t̂)) +

m∑
,s

w sz s(r (t̂))

+

m∑
s=1

l sZ s(r (t̂ − % s(t̂)))
]

≥c (r (t̂))
[
−ϕır (t̂) + w  z  (0) +

m∑
,s

w sz s(r (t̂))

+

m∑
s=1

l sZ s(r (t̂ − % s(t̂)))
]

≥c (r (t̂))
[
−0 + 0 +

m∑
,s

w sδ s(t̂)r (t̂)

+

m∑
s=1

l s~̀ s(t̂)r (t̂ − % s(t̂))
]

≥0

then ṙ (t̂) ≥ 0, which contradicts r (t̂) = 0, so ℵ is an
empty set. It can be seen that it is assumed that Q1 −

Q5 ensures the positivity of system (2). Therefore, the
system (1) is also positive.
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3. 2 An h-dependent property of system solutions
If h is a monotonically decreasing differentiable func-

tion, and it is positive, then h−1 is a monotonically de-
creasing positive and differentiable function. h : [t0 −
%,+∞) → <, ordering Q(t) =

dh−1(t)
dt again, then Q(t) is

also positive. Let’s take any solution r(t) of system (1):

d
dt

(e−
∫ t

t0
∂ıı(θ)dθrı(t)h−1(t))

=e−
∫ t

t0
∂ıı(θ)dθ[ṙı(t) − ∂ıı(t)rı(t)]h−1(t) + e−

∫ t
t0
∂ıı(θ)dθrı(t)Q(t)

=e−
∫ t

t0
∂ıı(θ)dθ

{
cı(rı(t))[−dı(rı(t)) + wıızıı(rı(t))

+

m∑
ı,s

wıszıs(rs(t)) +

m∑
s=1

lısZıs(rs(t − %ıs(t)))]

− ∂ıı(t)rı(t)
}
h−1(t) + e−

∫ t
t0
∂ıı(θ)dθrı(t)Q(t)

=e−
∫ t

t0
∂ıı(θ)dθ[−cı(rı(t))dı(rı(t)) + wııcı(rı(t))zıı(rı(t))

− ∂ıı(t)rı(t)]h−1(t) + e−
∫ t

t0
∂ıı(θ)dθ

m∑
ı,s

wıszıs(rs(t))h−1(t)

+ e−
∫ t

t0
∂ıı(θ)dθ

m∑
s=1

lısZıs(rs(t − %ıs(t)))h−1(t)

+ e−
∫ t

t0
∂ıı(θ)dθrı(t)Q(t), t ≥ t0.

find the points on the left and right sides of the above
formula together, and for any ε ∈ [t0, t], ı ∈ [1,m], we
get:

rı(t) =e
∫ t

t0
∂ıı(θ)dθrı(t0)h(t)h−1(t0)

+ h(t)
∫ t

t0
e
∫ t
ε
∂ıı(θ)dθ[−cı(rı(ε))dı(rı(ε))

+ wııcı(rı(ε))zıı(rı(ε)) − ∂ıı(ε)rı(ε)]h−1(t)dε

+ h(t)
∫ t

t0
e
∫ t
ε
∂ıı(θ)dθ

m∑
ı,s

wıszıs(rs(ε))h−1(ε)dε

+ h(t)
∫ t

t0
e
∫ t
ε
∂ıı(θ)dθ

m∑
s=1

lısZıs(rs(ε − %ıs(ε)))h−1(ε)dε

+ h(t)
∫ t

t0
e
∫ t
ε
∂ıı(θ)dθrı(ε)Q(ε)dε, t ≥ t0. (3)

For the above-mentioned h function, we need to use
the following assumptions:

A1: There is a scalar χ > 0, for any ı ∈ [1,m], t ≥ t0
to meet:∫ t

t0
e
∫ t
ε
∂ıı(θ)dθh(ε)Q(ε)dε ≤ −

χ

∂̃ıı
e
∫ t

t0
∂ıı(θ)dθ

where ∂̂ıı = supε≥t0 ∂ıı(ε).

A2: There are scalars η ≥ 1, ρ ≥ 0 and ι > 0, so that:

h(t − ε)
h(t)

≤ (η + ρε)eιε, t ≥ t0.

3. 3 Global h-stability conditions
We continue to study an essential condition to ensure

the global h-stability of the system (1).
Theorem 1: On the basis of assuming Q1 − Q5, let

h : [t0 − %,+∞) → < is a non-monotonic incremental
differentiable function, and it is positive. If there is a
vector ð̄ = (ð̄ı) ∈ <m

+ , ı ∈ [1,m] make:

χð̄ı +

m∑
s=1

wısð̄s∂̂ıs +

m∑
s=1

lısð̄s
ˆ́~ıs(η + ρ%̂ıs)eι%̂ıs < 0, (4)

where ∂̂ıs = supt≥t0 ∂ıs(t) and ˆ́~ıs = supt≥t0 ~́ıs(t), then
(i) There is a set of real numbers k ≥ 1, ı ∈ [1,m], so

that when t ≥ t0 − %, there are:

rı(t) ≤ kı ‖κ‖% h(t)h−1(t0), (5)

(ii) System (1) is global h-stability.
Proof : (i) Suppose there is a vector ð̄ = (ð̄ı) ∈ <m

+ ,
ı ∈ [1,m] then

χð̄ı +

m∑
ı,s

wısð̄s∂̂ıs +

m∑
s=1

lısð̄s
ˆ́~(η + ρ%̂ıs)eι%̂ıs < −ð̄ı∂̂ıı

it can be regarded as

−
χ

∂̂ıı
−

m∑
ı,s

wıs
ð̄s

ð̄ı
∂̂ıs

∂̂ıı
−

m∑
s=1

lıs
ð̄s

ð̄ı

ˆ́~ıs
∂̂ıı

(η + ρ%̂ıs)eι%̂ıs < 1

therefore, there is at least a constant k ≥ 1, ı ∈ [1,m], so
that:

Ξ :
1
kı
−

m∑
ı,s

wıs
∂̂ıs

∂̂ıı

ks

kı
−

m∑
s=1

lıs
ˆ́~ıs(η + ρ%̂ıs)eι%̂ıs

∂̂ıı

ks

kı
−
χ

∂̂ıı
< 1,

(6)

for any known initial function κ : [t0 − %, t0] → <m
+ ,

there will be:

rı = κı(t) ≤ ‖κ‖% , t0 − % ≤ t ≤ t0.

because h is positive, k ≥ 1, and then

rı(t) = kı ‖κ‖% h(t)h−1(t0)

It is shown below that: in t ∈ (t0,+∞), ı ∈ [1,m], (5) is
true.

4



Proof by contradiction: assume that (5) is not true,
and there are t∗ > t0 and s′ ∈ [1,m], ı ∈ [1,m], t ∈
[t0 − %, t∗] at this time

rı(t) ≤ kı ‖κ‖% h(t)h−1(t0), (7)

rs′ (t∗) ≤ ks′ ‖κ‖% h(t∗)h−1(t0), (8)

based on (3), we can get:

rs′ (t∗) =e
∫ t∗

t0
∂s′ s′ (θ)dθrs′ (t0)h(t∗)h−1(t0)

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ[−cs′ (rs′ (ε))ds′ (rs′ (ε))

+ ws′ s′cs′ (rs′ (ε))zs′ s′ (rs′ (ε)) − ∂s′ s′ (ε)rs′ (ε)]h−1(t∗)dε

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s′,s

ws′ szs′ s(rs(ε))h−1(ε)dε

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s=1

ls′ sZs′ s(rs(ε − %s′ s(ε)))

h−1(ε)dε

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθrs′ (ε)Q(ε)dε

Here, based on the assumption Q1 − Q5

− cs′ (rs′ (ε))ds′ (rs′ (ε)) + ws′ s′cs′ (rs′ (ε))zs′ s′ (rs′ (ε))
− ∂s′ s′ (ε)rs′ (ε)
≤ − cs′ (rs′ (ε))ϕırs′ (ε) + ws′ s′cs′ (rs′ (ε))zs′ s′ (rs′ (ε))
− zs′ s′ (rs′ (ε))
≤ − εıϕırs′ (ε) + ws′ s′εızs′ s′ (rs′ (ε)) − zs′ s′ (rs′ (ε))

≤ − εıϕırs′ (ε) + (ws′ s′εı − 1)zs′ s′ (rs′ (ε))

≤0

where ws′ s′εı − 1 ≥ 0.
therefore

rs′ (t∗)

≤ ‖κ‖% h(t∗)h−1(t0)

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s′,s

ws′ s∂s′ s(ε)rs(ε)h−1(ε)dε

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s=1

ls′ s~́s′ s(ε)rs(ε − %s′ s(ε))h−1(ε)dε

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθrs′ (ε)Q(ε)dε

≤ ‖κ‖% h(t∗)h−1(t0)

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s′,s

ws′ s∂s′ s(ε)ks ‖κ‖% h(ε)

h−1(t0)h−1(ε)dε

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s=1

ls′ s~́s′ s(ε)ks ‖κ‖%

h(ε − %s′ s(ε))h−1(t0)h−1(ε)dε

+ h(t∗)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθkı ‖κ‖% h(ε)h−1(t0)Q(ε)dε

≤ ‖κ‖% h(t∗)h−1(t0)

+ ‖κ‖% h(t∗)h−1(t0)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s′,s

ws′ sks∂s′ s(ε)dε

+ ‖κ‖% h(t∗)h−1(t0)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s=1

ls′ sks~́s′ s(ε)

h(ε − %s′ s(ε))h−1(t0)h−1(ε)dε

+ ks′ ‖κ‖% h(t∗)h−1(t0)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθh(ε)Q(ε)dε

≤ ‖κ‖% h(t∗)h−1(t0) + ‖κ‖% h(t∗)h−1(t0)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s′,s

ws′ sks∂s′ s(ε)dε

+ ‖κ‖% h(t∗)h−1(t0)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθ

m∑
s=1

ls′ sks~́s′ s(ε)

h(ε − %s′ s(ε))h−1(ε)dε

+ ks′ ‖κ‖% h(t∗)h−1(t0)
∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθh(ε)Q(ε)dε

furthermore,

rs′ (t∗) ≤ks′ ‖κ‖% h(t∗)h−1(t0)
( 1
ks′

+

m∑
s′,s

ks

ks′
ws′ s∂̂s′ s(ε)Θ1s′

+

m∑
s=1

ks

ks′
ls′ s

ˆ́~s′ s(ε)Θ2s′ s + Θ3s′

)
where

Θ1s′ =

∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθdε

Θ2s′ s =

∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθh(ε − %s′ s(ε))h−1(ε)dε

Θ3s′ =

∫ t∗

t0
e
∫ t∗

ε
∂s′ s′ (θ)dθh(ε)Q(ε)dε
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because of e
∫ t∗

t0
∂s′ s′ (θ)dθ

≤ e∂̂s′ s′ (t∗−t0), by assuming A1 and
A2, we have:

Θ1s′ ≤

∫ t∗

t0
e∂̂s′ s′ (t∗−ε)dε = −

1

∂̂s′ s′
(1 − e∂̂s′ s′ (t∗−t0))

≤ −
1

∂̂s′ s′

Θ2s′ s ≤

∫ t∗

t0
e∂̂s′ s′ (t∗−ε)(η + ρ%s′ s(ε))eι%s′ s(ε) dε

≤ (η + ρ%s′ s(ε))eι∂̂s′ s′

∫ t∗

t0
e∂̂s′ s′ (t∗−ε)dε

≤ −
(η + ρ%s′ s(ε))eι%̂s′ s

∂̂s′ s′

Θ3s′ ≤ −
χ

∂̂s′ s′
e
∫ t∗

t0
∂s′ s′ (θ)dθ ≤ −

χ

∂̂s′ s′

to sum up

rs′ (t∗) ≤ kı ‖κ‖% h(t∗)h−1(t0)Ξ

from (6), Ξ < 1, then rs′ (t∗) < kı ‖κ‖% h(t∗)h−1(t0), which
contradicts (8), then (i) is established.

(ii) because

‖r(t)‖ ≤
m∑
ı=1

|rı(t)| ≤
m∑
ı=1

kı ‖κ‖% h(t)h−1(t0)

≤ k ‖κ‖% h(t)h−1(t0), t ≥ t0.

and k =
∑m
ı=1 kı, so the system (1) is global h-stability.

Remark 1: In Theorem 1, we make h(t) = e−εt, t ≥ t0,
where ε > 0 is a scalar. If on the basis of assuming A1
and A2, let η = 1, ρ = 0 and ι = χ = ε, then the system
(1) is globally exponentially stable through Theorem 1.
(Equivalent to the conclusion of Definition 1 and Theo-
rem 1 in the reference [25])

Remark 2: Assuming that A1 and A2 are true, if η = 1,
ρ = 0 and ι = χ = σ

x , make h(t) = e−σt +
xe−σt0

‖κ‖%
, x > 0,

σ > 0, at this time, the Theorems 2 and 3 in reference
[31] are equivalent to the Lagrangian exponential stabil-
ity criterion obtained from Theorem 1 in the paper.

Remark 3: In addition, when Theorem 1 is h = e−εt

1+%+t ,
t ≥ 0, we find that its convergence speed is faster than
h = e−εt, and it converges to zero first, as can be seen in
the following Example 1 and Figure 1.

4. Examples

Example 1: Take ı = 3, m = 3, then

ṙı(t) =cı(rı(t))
[
−dı(rı(t)) +

m∑
s=1

wıszıs(rı(t))

+

m∑
s=1

lısZıs(rı(t − %ıs(t))) + µı

]
rı(t) =κı(t), ı = 1, 2, 3. t ∈ [t0 − %, t0], (9)

where

rı(t) = κı(t) = [0.71, 0.42, 0.42]T , t ∈ [−%, 0]
cı(rı(t)) = diag[1.2 + 0.1cos(r1), 1.2 + 0.1sin(r2),

1.2 + 0.1tanh(r3)]

dı(rı(t)) = [6r1(t), 4.5r2(t), 3.5r3(t)]T

zıs(rı(t)) = Zıs(rı(t − %ıs(t))) =
1
2

(|rı(t) + 1| − |rı(t) − 1|)

W =

 4.6 −1.2 −1.1
−1.6 3.5 −1.2
−1.2 −1.1 1.9

 , L =

0.04 0.02 0.03
0.07 0.04 0.02
0.02 0.03 0.05

 ,
to satisfy Assumptions Q3 and Q4, let ~̀ıs = lıs, ~́ıs =

2lıs, and

δıs =

−4.6 1.2 1.1
1.6 −7 1.2
1.2 1.1 −2

 , ∂ıs =

−4.6 2.4 2.2
3.2 −3.5 2.4
2.4 2.2 −1.9

 .
To satisfy the Assumptions A1 and A2, let h = e−εt

1+%+t ,
t ≥ −%, η ≥ 1, ρ ≥ 1

1+%
, χ ≥ ε + 1, ι ≥ ε, %ıs = 1

2 |sint|.
Through MATLAB calculation (4), we can get:

χ =1.1221, ι = ε = 0.1221, η = 1.8402, ρ ≥ 1.667,

ð̄ =[0.9245, 1.1921, 1.0342]T .

According to the Theorem 1, it is concluded that
the PCGNN system under consideration satisfies ‖x‖ ≤
1.84814e−0.1221t, t ≥ −0.5, then the system has globally
h-stability.

In addition, we order h(t) = e−εt, t ≥ −%, η ≥ 1, ρ ≥
0, χ = ι ≥ ε. It satisfies the assumptions A1 and A2, and
combines Theorem 1, calculated by MATLAB (4) to get
the maximum value of ε = 0.1643, and at the same time,

χ = 0.4764, η = 1.7554, ρ = 0.7824, ι = ε = 0.1643,

ð̄ =[0.9367, 1.0124, 0.9876]T .
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An inequality has been derived with respect to the time
variable t, ‖x‖ ≤ 1.23209e−0.1643t, where x represents
the state vector of the positive system. Notably, this in-
equality holds for all t ≥ −0.5, establishing the system’s
global exponential stability. The implication is that the
system exhibits a decay rate faster than the exponen-
tial function, ensuring robust and reliable performance
across a wide range of time intervals.

Figure 1: The state responses of the PCGNN system in Example 1.

Based on the observations from Figure 1, it becomes
apparent that as t approaches infinity, the function h(t)
converges to zero at a significantly faster rate compared
to the exponential function. In other words, the con-
vergence speed of h(t) surpasses that of the exponential
function, highlighting the practical advantages of the
h(t) function in real-world applications.

Example 2: In system (1), we choose ı = 2, s =

2, t0 = 0, κı(t) = [0.7, 0.88]T ,

%ıs(t) =
et

1 + et , t ≥ 0,

z1s(t, rs(t)) = w1srs(t),
Z1s(t, rs(t − %1s(t))) = l1s[−rs(t − %1s(t)) + sint],

z2s(t, rs(t)) = w2srs(t),
Z2s(t, rs(t − %2s(t))) = l2s[−rs(t − %2s(t)) + cost],

dı(rı(t)) =rı(t), ı = 1, 2.

cı(rı(t)) = diag[0.8 + 0.1cos(r1(t)), 0.8 + 0.1sin(r2(t))]

wıs =

[
0.5 −0.1

0.45 0.3

]
, lıs =

[
0.65 0.37
0.75 0.52

]
δıs =

[
1.0 −0.1

0.45 0.6

]
, ∂ıs =

[
−2.5 4.1
−3.1 −2.2

]
.

To satisfy the assumptions A1 and A2, take ~̀ıs = lıs,
~́ıs = 2lıs, h(t) = e−σt +

xe−σt0

‖κ‖%
, t ≥ 0, η ≥ 1, ρ ≥ 0,

χ = ι = σ
x . When % = 50, x = 5.6773, χ = ι = σ

x =

0.00022017, η = 1.0789, and ρ = 0.0012, we bring
it into (4) to calculate ð̄ = [0.0004370, 0.0003156]T .
Based on the derivation of Theorem 1, we can conclude
that the positive system under consideration is global
h-exponential stability in the sense of Lagrange. From
Figure 2, it can be observed that under the conditions of
Example 2, the state response of system (1) gradually
converges to a periodic orbit after an initial perturbation.
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Figure 2: The state responses of the PCGNN system in Example 2.

5. Conclusions

This paper investigates the global h-stability of
PCGNN systems with time-varying delays, which is
more suitable for practical applications in our daily
lives. Due to the presence of time delays, the current s-
tate variables are influenced by both current information
and past input information in a nonlinear manner, mak-
ing it impossible to directly analyze the relationships
between system states using vector matrices. Therefore,
by taking advantage of the stability of h-system, the ap-
propriate h function is determined, and the differential
equation in system (1) is Laplace transformed by direct
analysis method, and the analytical solution of the equa-
tion is obtained. Then, the obtained analytical solution
is reverted to the time domain and sufficient condition-
s for global h-stability of the system are derived. By
changing the differential expression of the h function,
we can obtain the special h-stability, namely the La-
grange exponential stability of the system (1) and the
global exponential stability. The experimental results
show that the fitting effect of the system state trajectory
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can be optimized by changing the differential expression
of h function, which further shows that h function can
ensure the validity and accuracy of the stability results.

At present, sliding mode control methods have re-
ceived extensive attention in the field of studying the
stability of neural networks [32]. The sliding surface is
introduced to offset various system errors caused by un-
certainty and ensure the stability of the system. This is
a subject of great concern and worthy of further study,
and further research work can be done in this direction.
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