References
Adamo, S. A. (2006). Comparative psychoneuroimmunology: Evidence from the insects. Behavioral and Cognitive Neuroscience Reviews, 5 (3), 128-140. doi:10.1177/1534582306289580
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Bertness, M. D., Gaines, S. D., & Hay, M. E. (2001). Marine Community Ecology . Sunderland, Massachusetts: Sinauer Associates.
Bhatt, S., Nagappa, A. N., & Patil, C. R. (2020). Role of oxidative stress in depression. Drug Discovery Today, 25 (7), 1270-1276. doi:https://doi.org/10.1016/j.drudis.2020.05.001
Bibby, R., Widdicombe, S., Parry, H., Spicer, J., & Pipe, R. (2008). Effects of ocean acidification on the immune response of the blue musselMytilus edulis . Aquatic Biology, 2 (1), 67-74.
Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., . . . Williamson, P. (2019). Changing ocean, marine ecosystems, and dependent communities. In H.-O. Pörtner, D. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. Weyer (Eds.),IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 447 - 587). Cambridge, UK and New York, NY, USA: Cambridge University Press.
Bouayed, J. (2011). Relationship between oxidative stress and anxiety: Emerging role of antioxidants within therapeutic or preventive approaches. Anxiety Disorders , 27-38.
Bouayed, J., Rammal, H., & Soulimani, R. (2009). Oxidative stress and anxiety: Relationship and cellular pathways. Oxidative Medicine and Cellular Longevity, 2 , 623654. doi:10.4161/oxim.2.2.7944
Canesi, L., Betti, M., Ciacci, C., Lorusso, L., Pruzzo, C., & Gallo, G. (2006). Cell signalling in the immune response of mussel hemocytes.Invertebrate Survival Journal, 3 (1), 40-49.
Cao, R., Liu, Y., Wang, Q., Zhang, Q., Yang, D., Liu, H., . . . Zhao, J. (2018). The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas . Fish & Shellfish Immunology, 81 , 456-462. doi:https://doi.org/10.1016/j.fsi.2018.07.055
Cao, R., Wang, Q., Yang, D., Liu, Y., Ran, W., Qu, Y., . . . Zhao, J. (2018). CO2-induced ocean acidification impairs the immune function of the Pacific oyster against Vibrio splendiduschallenge: An integrated study from a cellular and proteomic perspective. Science of The Total Environment, 625 , 1574-1583. doi:https://doi.org/10.1016/j.scitotenv.2018.01.056
Charpentier, C. L., & Cohen, J. H. (2016). Acidification and γ-aminobutyric acid independently alter kairomone-induced behaviour.Open Science, 3 (9), 160311. doi:10.1098/rsos.160311
Chartier, F. J.-M., Hardy, É. J.-L., & Laprise, P. (2012). Crumbs limits oxidase-dependent signaling to maintain epithelial integrity and prevent photoreceptor cell death. Journal of Cell Biology, 198 (6), 991-998. doi:10.1083/jcb.201203083
Chen, E. Y.-S. (2021). Often overlooked: Understanding and meeting the current challenges of marine invertebrate conservation. Frontiers in Marine Science, 8 (1161), 690704. doi:10.3389/fmars.2021.690704
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34 (17), i884-i890. doi:10.1093/bioinformatics/bty560
Chung, W.-S., Kurniawan, N. D., & Marshall, N. J. (2022). Comparative brain structure and visual processing in octopus from different habitats. Current Biology, 32 (1), 97-110.e114. doi:https://doi.org/10.1016/j.cub.2021.10.070
Clayton, D. F., Anreiter, I., Aristizabal, M., Frankland, P. W., Binder, E. B., & Citri, A. (2020). The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential. Proceedings of the National Academy of Sciences, 117 (38), 23252-23260. doi:doi:10.1073/pnas.1820837116
Clements, J. C., Bishop, M. M., & Hunt, H. L. (2017). Elevated temperature has adverse effects on GABA-mediated avoidance behaviour to sediment acidification in a wide-ranging marine bivalve. Marine Biology, 164 (3), 56. doi:10.1007/s00227-017-3085-1
Cohen-Rengifo, M., Danion, M., Gonzalez, A.-A., Bégout, M.-L., Cormier, A., Noël, C., . . . Mazurais, D. (2022). The extensive transgenerational transcriptomic effects of ocean acidification on the olfactory epithelium of a marine fish are associated with a better viral resistance. BMC Genomics, 23 (1), 448. doi:10.1186/s12864-022-08647-w
Cooke, S. J., Sack, L., Franklin, C. E., Farrell, A. P., Beardall, J., Wikelski, M., & Chown, S. L. (2013). What is conservation physiology? Perspectives on an increasingly integrated and essential science.Conservation Physiology, 1 (1), cot001. doi:10.1093/conphys/cot001
Costandi, M. (2016). Neuroplasticity . Cambridge, Massachusetts: The MIT Press.
Crider, A., Pandya, C. D., Peter, D., Ahmed, A. O., & Pillai, A. (2014). Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder. Molecular Autism, 5 (1), 45. doi:10.1186/2040-2392-5-45
Culler-Juarez, M. E., & Onthank, K. L. (2021). Elevated immune response in Octopus rubescens under ocean acidification and warming conditions. Marine Biology, 168 (9), 137. doi:10.1007/s00227-021-03913-z
Dantzer, R., & Kelley, K. W. (2007). Twenty years of research on cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 21 (2), 153-160. doi:https://doi.org/10.1016/j.bbi.2006.09.006
Davidson, N. M., & Oshlack, A. (2014). Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes.Genome Biology, 15 (7), 1-14.
De Zoysa, M., Nikapitiya, C., Oh, C., Whang, I., Lee, J.-S., Jung, S.-J., . . . Lee, J. (2010). Molecular evidence for the existence of lipopolysaccharide-induced TNF-α factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus ). Fish & Shellfish Immunology, 28 (5), 754-763. doi:https://doi.org/10.1016/j.fsi.2010.01.024
Demas, G. E., Adamo, S. A., & French, S. S. (2011). Neuroendocrine-immune crosstalk in vertebrates and invertebrates: Implications for host defence. Functional Ecology, 25 (1), 29-39. doi:https://doi.org/10.1111/j.1365-2435.2010.01738.x
Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1 (1), 169-192. doi:10.1146/annurev.marine.010908.163834
Durant, A., Khodikian, E., & Porteus, C. S. (2023). Ocean acidification alters foraging behaviour in Dungeness crab through impairment of the olfactory pathway. Global Change Biology, n/a (n/a). doi:https://doi.org/10.1111/gcb.16738
Ellis, R. P., Davison, W., Queirós, A. M., Kroeker, K. J., Calosi, P., Dupont, S., . . . Urbina, M. A. (2017). Does sex really matter? Explaining intraspecies variation in ocean acidification responses.Biology Letters, 13 (2), 20160761.
Ertl, N. G., O’Connor, W. A., Wiegand, A. N., & Elizur, A. (2016). Molecular analysis of the Sydney rock oyster (Saccostrea glomerata ) CO2 stress response. Climate Change Responses, 3 (1), 6. doi:10.1186/s40665-016-0019-y
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32 (19), 3047-3048. doi:10.1093/bioinformatics/btw354
Fischer, E. K., Hauber, M. E., & Bell, A. M. (2021). Back to the basics? Transcriptomics offers integrative insights into the role of space, time and the environment for gene expression and behaviour.Biology Letters, 17 (9), 20210293. doi:doi:10.1098/rsbl.2021.0293
Fuller, A., Dawson, T., Helmuth, B., Hetem, Robyn S., Mitchell, D., & Maloney, Shane K. (2010). Physiological mechanisms in coping with climate change. Physiological and Biochemical Zoology, 83 (5), 713-720. doi:10.1086/652242
Fuller, T. F., Ghazalpour, A., Aten, J. E., Drake, T. A., Lusis, A. J., & Horvath, S. (2007). Weighted gene coexpression network analysis strategies applied to mouse weight. Mammalian Genome, 18 (6), 463-472.
González, I., Déjean, S., Martin, P., & Baccini, A. (2008). CCA: An R package to extend canonical correlation analysis. Journal of Statistical Software, 23 (12), 1-14.
Goodson, M. S., Kojadinovic, M., Troll, J. V., Scheetz, T. E., Casavant, T. L., Soares, M. B., & McFall-Ngai, M. J. (2005). Identifying components of the NF-κB pathway in the beneficial Euprymna scolopes -Vibrio fischeri light organ symbiosis. Applied and Environmental Microbiology, 71 (11), 6934-6946. doi:doi:10.1128/AEM.71.11.6934-6946.2005
Guen, V. J., Gamble, C., Lees, J. A., & Colas, P. (2017). The awakening of the CDK10/Cyclin M protein kinase. Oncotarget, 8 (30), 50174-50186. doi:10.18632/oncotarget.15024
Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97 (6), 1634-1658. doi:https://doi.org/10.1111/j.1471-4159.2006.03907.x
Halliwell, B., & Gutteridge, J. (2015). Oxidative stress and redox regulation: Adaptation, damage, repair, senescence, and death. In B. Halliwell & J. Gutteridge (Eds.), Free Radicals in Biology and Medicine. Fifth Edition (Vol. 3, pp. 199-283): Oxford University Press.
Hamilton, T. J., Tresguerres, M., Kwan, G. T., Szaskiewicz, J., Franczak, B., Cyrokak, T., . . . Kline, D. I. (2023). Effects of ocean acidification on dopamine-mediated behavioral responses of a coral reef damselfish. Science of The Total Environment , 162860. doi:https://doi.org/10.1016/j.scitotenv.2023.162860
Han, Z., Wang, W., Lv, X., Zong, Y., Liu, S., Liu, Z., . . . Song, L. (2019). ATG10 (autophagy-related 10) regulates the formation of autophagosome in the anti-virus immune response of pacific oyster (Crassostrea gigas ). Fish & Shellfish Immunology, 91 , 325-332. doi:https://doi.org/10.1016/j.fsi.2019.05.027
Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod Behaviour(Second ed.). Cambridge: Cambridge University Press.
Hannan, K. D., Miller, G. M., Watson, S.-A., Rummer, J. L., Fabricius, K., & Munday, P. L. (2020). Diel p CO2 variation among coral reefs and microhabitats at Lizard Island, Great Barrier Reef. Coral Reefs, 39 (5), 1391-1406. doi:10.1007/s00338-020-01973-z
Herath, H. M. L. P. B., Elvitigala, D. A. S., Godahewa, G. I., Whang, I., & Lee, J. (2015). Molecular insights into a molluscan transferrin homolog identified from disk abalone (Haliotis discus discus ) evidencing its detectable role in host antibacterial defense.Developmental & Comparative Immunology, 53 (1), 222-233. doi:https://doi.org/10.1016/j.dci.2015.07.013
Heuer, R. M., Hamilton, T. J., & Nilsson, G. E. (2019). The physiology of behavioural impacts of high CO2. In M. Grosell, P. L. Munday, A. P. Farrell, & C. J. Brauner (Eds.), Carbon Dioxide(Vol. 37, pp. 161-194). Cambridge, San Diego, Oxford, London: Academic Press.
Horvath, S., & Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Computational Biology, 4 (8), e1000117-e1000117. doi:10.1371/journal.pcbi.1000117
Ivanina, A. V., Hawkins, C., & Sokolova, I. M. (2014). Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalvesCrassostrea virginica and Mercenaria mercenaria .Fish & Shellfish Immunology, 37 (2), 299-312. doi:https://doi.org/10.1016/j.fsi.2014.02.016
Jackson, G. D. (1988). The use of statolith microstructures to analyze life history events in the small tropical cephalopod Idiosepius pygmaeus . Fishery Bulletin, 87 , 265-272.
Jiao, D., Chen, Y., Liu, Y., Ju, Y., Long, J., Du, J., . . . Liu, J. (2017). SYVN1, an ERAD E3 ubiquitin ligase, is involved in GABAAα1 degradation associated with methamphetamine-induced conditioned place preference. Frontiers in Molecular Neuroscience, 10 (313). doi:10.3389/fnmol.2017.00313
Johnson, K. M., & Hofmann, G. E. (2017). Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification. BMC Genomics, 18 (1), 812. doi:10.1186/s12864-017-4161-0
Kang, J., Nagelkerken, I., Rummer, J. L., Rodolfo-Metalpa, R., Munday, P. L., Ravasi, T., & Schunter, C. (2022). Rapid evolution fuels transcriptional plasticity to ocean acidification. Global Change Biology, 00 , 1-16. doi:https://doi.org/10.1111/gcb.16119
Kelley, J., Chapuis, L., Davies, W. I. L., & Collin, S. (2018). Sensory system responses to human-induced environmental change. Frontiers in Ecology and Evolution, 6 , 95.
Kim, M. J., Kim, J. A., Lee, D.-W., Park, Y.-S., Kim, J.-H., & Choi, C. Y. (2023). Oxidative Stress and Apoptosis in Disk Abalone (Haliotis discus hannai) Caused by Water Temperature and pH Changes.Antioxidants, 12 (5), 1003.
Kim, Y.-G., Lee, S., Kwon, O.-S., Park, S.-Y., Lee, S.-J., Park, B.-J., & Kim, K.-J. (2009). Redox-switch modulation of human SSADH by dynamic catalytic loop. The EMBO Journal, 28 (7), 959-968. doi:10.1038/emboj.2009.40
Kroeker, K. J., Kordas, R. L., Crim, R. N., & Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13 (11), 1419-1434. doi:https://doi.org/10.1111/j.1461-0248.2010.01518.x
Lai, F., Fagernes, C. E., Bernier, N. J., Miller, G. M., Munday, P. L., Jutfelt, F., & Nilsson, G. E. (2017). Responses of neurogenesis and neuroplasticity related genes to elevated CO2 levels in the brain of three teleost species. Biology Letters, 13 (8), 20170240. doi:10.1098/rsbl.2017.0240
Lambert, L. A., Perri, H., Halbrooks, P. J., & Mason, A. B. (2005). Evolution of the transferrin family: Conservation of residues associated with iron and anion binding. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142 (2), 129-141. doi:https://doi.org/10.1016/j.cbpb.2005.07.007
Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9 (1), 1-13.
Lebel, C. P., & Bondy, S. C. (1991). Oxygen radicals: Common mediators of neurotoxicity. Neurotoxicology and Teratology, 13 (3), 341-346. doi:https://doi.org/10.1016/0892-0362(91)90081-7
Li, H.-W., Chen, C., Kuo, W.-L., Lin, C.-J., Chang, C.-F., & Wu, G.-C. (2019). The characteristics and expression profile of transferrin in the accessory nidamental gland of the bigfin reef squid during bacteria transmission. Scientific Reports, 9 (1), 20163. doi:10.1038/s41598-019-56584-8
Li, S., Liu, Y., Liu, C., Huang, J., Zheng, G., Xie, L., & Zhang, R. (2015). Morphology and classification of hemocytes in Pinctada fucata and their responses to ocean acidification and warming.Fish & Shellfish Immunology, 45 (1), 194-202. doi:https://doi.org/10.1016/j.fsi.2015.04.006
Liu, S., Shi, W., Guo, C., Zhao, X., Han, Y., Peng, C., . . . Liu, G. (2016). Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways.Fish & Shellfish Immunology, 54 , 322-327. doi:https://doi.org/10.1016/j.fsi.2016.04.030
Liu, Z., Wang, L., Lv, Z., Zhou, Z., Wang, W., Li, M., . . . Song, L. (2018). The cholinergic and adrenergic autocrine signaling pathway mediates immunomodulation in oyster Crassostrea gigas .Frontiers in Immunology, 9 (284), 284. doi:10.3389/fimmu.2018.00284
Liu, Z., Zhou, Z., Jiang, Q., Wang, L., Yi, Q., Qiu, L., & Song, L. (2017). The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas .Open Biology, 7 (1), 160289. doi:doi:10.1098/rsob.160289
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15 (12), 550. doi:10.1186/s13059-014-0550-8
Marčeta, T., Matozzo, V., Alban, S., Badocco, D., Pastore, P., & Marin, M. G. (2020). Do males and females respond differently to ocean acidification? An experimental study with the sea urchin Paracentrotus lividus. Environmental Science and Pollution Research , 1-15.
Mather, J. A. (2006). Behaviour development: A cephalopod perspective.International Journal of Comparative Psychology, 19 (1), 98-115.
Merico, D., Isserlin, R., Stueker, O., Emili, A., & Bader, G. D. (2010). Enrichment map: A network-based method for gene-set enrichment visualization and interpretation. PloS One, 5 (11), e13984.
Moreau, P., Moreau, K., Segarra, A., Tourbiez, D., Travers, M.-A., Rubinsztein, D. C., & Renault, T. (2015). Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections. Autophagy, 11 (3), 516-526. doi:10.1080/15548627.2015.1017188
Moya, A., Howes, E. L., Lacoue‐Labarthe, T., Forêt, S., Hanna, B., Medina, M., . . . Torda, G. (2016). Near‐future pH conditions severely impact calcification, metabolism and the nervous system in the pteropodHeliconoides inflatus . Global Change Biology, 22 (12), 3888-3900. doi:10.1111/gcb.13350
Moynihan, M. (1983). Notes on the behavior of Idiosepius pygmaeus(Cephalopoda; Idiosepiidae). Behaviour, 85 (1), 42-57.
Muntz, W. R. A. (1999). Visual systems, behaviour, and environment in cephalopods. In S. N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C. Partridge, & S. Vallerga (Eds.), Adaptive Mechanisms in the Ecology of Vision (pp. 467-483). Dordrecht: Springer Netherlands.
Nagelkerken, I., & Connell, S. D. (2015). Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions.Proceedings of the National Academy of Sciences, 112 (43), 13272-13277.
Nagelkerken, I., & Munday, P. L. (2015). Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community‐level responses. Global Change Biology, 22 (3), 974-989. doi:10.1111/gcb.13167
Nardi, A., Benedetti, M., d’Errico, G., Fattorini, D., & Regoli, F. (2018). Effects of ocean warming and acidification on accumulation and cellular responsiveness to cadmium in mussels Mytilus galloprovincialis : Importance of the seasonal status. Aquatic Toxicology, 204 , 171-179. doi:https://doi.org/10.1016/j.aquatox.2018.09.009
Nilsson, G. E., Dixson, D. L., Domenici, P., McCormick, M. I., Sørensen, C., Watson, S.-A., & Munday, P. L. (2012). Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change, 2 (3), 201-204. doi:10.1038/NCLIMATE1352
O’Donnell, S. (2018). The neurobiology of climate change. The Science of Nature, 105 (1), 1-7.
Ong, S. T., Shan Ho, J. Z., Ho, B., & Ding, J. L. (2006). Iron-withholding strategy in innate immunity. Immunobiology, 211 (4), 295-314. doi:https://doi.org/10.1016/j.imbio.2006.02.004
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14 (4), 417-419. doi:10.1038/nmeth.4197
Picot, S., Morga, B., Faury, N., Chollet, B., Dégremont, L., Travers, M.-A., . . . Arzul, I. (2019). A study of autophagy in hemocytes of the Pacific oyster, Crassostrea gigas . Autophagy, 15 (10), 1801-1809. doi:10.1080/15548627.2019.1596490
Porteus, C. S., Hubbard, P. C., Webster, T. M. U., van Aerle, R., Canário, A. V., Santos, E. M., & Wilson, R. W. (2018). Near-future CO2 levels impair the olfactory system of a marine fish.Nature Climate Change, 8 (8), 737-746. doi:10.1038/s41558-018-0224-8
Pörtner, H.-O., Langenbuch, M., & Reipschläger, A. (2004). Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. Journal of Oceanography, 60 (4), 705-718. doi:10.1007/s10872-004-5763-0
R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rammal, H., Bouayed, J., & Soulimani, R. (2010). A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice. European Journal of Pharmacology, 627 (1), 173-176. doi:https://doi.org/10.1016/j.ejphar.2009.11.001
Reid, A. (2005). Family Idiosepiidae. In P. Jereb & C. F. E. Roper (Eds.), Cephalopods of the World : An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Volume 1. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). (Vol. 1, pp. 208 - 210). Rome: FAO.
Richardson, B., Martin, H., Bartels-Hardege, H., Fletcher, N., & Hardege, J. D. (2021). The role of changing pH on olfactory success of predator–prey interactions in green shore crabs, Carcinus maenas.Aquatic Ecology . doi:10.1007/s10452-021-09913-x
RStudio Team. (2021). RStudio: Integrated development environment for R. PBC, Boston, MA: RStudio. Retrieved from http://www.rstudio.com
Salazar, K. A., Joffe, N. R., Dinguirard, N., Houde, P., & Castillo, M. G. (2015). Transcriptome analysis of the white body of the squidEuprymna tasmanica with emphasis on immune and hematopoietic gene discovery. PloS One, 10 (3), e0119949.
Schunter, C., Jarrold, M. D., Munday, P. L., & Ravasi, T. (2021). Dielp CO2 fluctuations alter the molecular response of coral reef fishes to ocean acidification conditions. Molecular Ecology, 30 , 5105– 5118. doi:https://doi.org/10.1111/mec.16124
Schunter, C., Ravasi, T., Munday, P. L., & Nilsson, G. E. (2019). Neural effects of elevated CO2 in fish may be amplified by a vicious cycle. Conservation Physiology, 7 (1), coz100. doi:10.1093/conphys/coz100
Schunter, C., Welch, M. J., Nilsson, G. E., Rummer, J. L., Munday, P. L., & Ravasi, T. (2018). An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish.Nature Ecology and Evolution, 2 (2), 334. doi:10.1038/s41559-017-0428-8
Schunter, C., Welch, M. J., Ryu, T., Zhang, H., Berumen, M. L., Nilsson, G. E., . . . Ravasi, T. (2016). Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nature Climate Change, 6 , 1014-1018. doi:10.1038/NCLIMATE3087
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., . . . Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13 (11), 2498-2504.
Spady, B. L., Munday, P. L., & Watson, S.-A. (2018). Predatory strategies and behaviours in cephalopods are altered by elevated CO2. Global Change Biology, 24 , 2585-2596. doi:10.1111/gcb.14098
Spady, B. L., Watson, S.-A., Chase, T. J., & Munday, P. L. (2014). Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus . Biology Open, 3 (11), 1063-1070. doi:10.1242/bio.20149894
Stephens, M. (2016). False discovery rates: A new deal.Biostatistics, 18 (2), 275-294. doi:10.1093/biostatistics/kxw041
Strader, M. E., Wong, J. M., & Hofmann, G. E. (2020). Ocean acidification promotes broad transcriptomic responses in marine metazoans: A literature survey. Frontiers in Zoology, 17 (1), 7. doi:10.1186/s12983-020-0350-9
Su, W., Rong, J., Zha, S., Yan, M., Fang, J., & Liu, G. (2018). Ocean acidification affects the cytoskeleton, lysozymes, and nitric oxide of hemocytes: A possible explanation for the hampered phagocytosis in blood clams, Tegillarca granosa . Frontiers in Physiology, 9 (619). doi:10.3389/fphys.2018.00619
Sun, Q., Zheng, Y., Chen, X., Kong, N., Wang, Y., Zhang, Y., . . . Song, L. (2021). A diet rich in diatom improves the antibacterial capacity of Pacific oyster Crassostrea gigas by enhancing norepinephrine-regulated immunomodulation. Invertebrate Survival Journal , 56-65.
Thomas, J., Munday, P., & Watson, S.-A. (2020). Toward a mechanistic understanding of marine invertebrate behaviour at elevated CO2. Frontiers in Marine Science, 7 , 345. doi:10.3389/fmars.2020.00345
Thomas, J. T., Huerlimann, R., Schunter, C., Watson, S.-A., Munday, P. L., & Ravasi, T. (2022). Two-toned pygmy squid (Idiosepius pygmaeus) transcriptome assembly, and transcriptomic response of the nervous system to elevated CO2 [Dataset]. doi:BioProject: PRJNA798187
Thomas, J. T., Huerlimann, R., Schunter, C., Watson, S.-A., Munday, P. L., & Ravasi, T. (2023a). Correlating gene expression profiles with CO2 treatment and OA-affected behaviours in the two-toned pygmy squid (Idiosepius pygmaeus) [Dataset]. doi:https://doi.org/10.25903/7dcz-th66
Thomas, J. T., Huerlimann, R., Schunter, C., Watson, S.-A., Munday, P. L., & Ravasi, T. (2023b). Two-toned pygmy squid (Idiosepius pygmaeus) transcriptome assembly, and transcriptomic response of the nervous system to elevated CO2 [Dataset]. doi:https://doi.org/10.25903/ha66-mm11
Thomas, J. T., Spady, B. L., Munday, P. L., & Watson, S.-A. (2021). The role of ligand-gated chloride channels in behavioural alterations at elevated CO2 in a cephalopod. Journal of Experimental Biology, 224 (13), jeb242335. doi:10.1242/jeb.242335
Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E., & Sokolova, I. M. (2011). Proteomic response to elevated PCO2level in eastern oysters, Crassostrea virginica : Evidence for oxidative stress. Journal of Experimental Biology, 214 (11), 1836-1844. doi:10.1242/jeb.055475
Toy, J. A., Kroeker, K. J., Logan, C. A., Takeshita, Y., Longo, G. C., & Bernardi, G. (2022). Upwelling-level acidification and pH/pCO2 variability moderate effects of ocean acidification on brain gene expression in the temperate surfperch, Embiotoca jacksoni.Molecular Ecology, 31 (18), 4707-4725. doi:https://doi.org/10.1111/mec.16611
Tresguerres, M., & Hamilton, T. J. (2017). Acid–base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. Journal of Experimental Biology, 220 (12), 2136-2148. doi:10.1242/jeb.144113
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39 (1), 44-84.
Wang, J.-J., Shan, K., Liu, B.-H., Liu, C., Zhou, R.-M., Li, X.-M., . . . Yan, B. (2018). Targeting circular RNA-ZRANB1 for therapeutic intervention in retinal neurodegeneration. Cell Death & Disease, 9 (5), 540. doi:10.1038/s41419-018-0597-7
Wang, Q., Cao, R., Ning, X., You, L., Mu, C., Wang, C., . . . Zhao, J. (2016). Effects of ocean acidification on immune responses of the Pacific oyster Crassostrea gigas . Fish & Shellfish Immunology, 49 , 24-33. doi:https://doi.org/10.1016/j.fsi.2015.12.025
Wang, X., Wang, M., Wang, W., Liu, Z., Xu, J., Jia, Z., . . . Wang, L. (2020). Transcriptional changes of Pacific oyster Crassostrea gigas reveal essential role of calcium signal pathway in response to CO2-driven acidification. Science of The Total Environment, 741 , 140177.
Watson, S.-A., Lefevre, S., McCormick, M. I., Domenici, P., Nilsson, G. E., & Munday, P. L. (2014). Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proceedings of the Royal Society of London B: Biological Sciences, 281 (1774), 20132377. doi:10.1098/rspb.2013.2377
Williams, C. R., Dittman, A. H., McElhany, P., Busch, D. S., Maher, M. T., Bammler, T. K., . . . Gallagher, E. P. (2019). Elevated CO2 impairs olfactory‐mediated neural and behavioral responses and gene expression in ocean‐phase coho salmon (Oncorhynchus kisutch ). Global Change Biology, 25 , 963-977. doi:10.1111/gcb.14532
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20 (1), 257. doi:10.1186/s13059-019-1891-0
Wu, F., Lu, W., Shang, Y., Kong, H., Li, L., Sui, Y., . . . Wang, Y. (2016). Combined effects of seawater acidification and high temperature on hemocyte parameters in the thick shell mussel Mytilus coruscus . Fish & Shellfish Immunology, 56 , 554-562. doi:https://doi.org/10.1016/j.fsi.2016.08.012
Xie, J., Sun, X., Li, P., Zhou, T., Jiang, R., & Wang, X. (2023). The impact of ocean acidification on the eye, cuttlebone and behaviors of juvenile cuttlefish (Sepiella inermis). Marine Pollution Bulletin, 190 , 114831. doi:https://doi.org/10.1016/j.marpolbul.2023.114831
Yeh, C.-W., Kao, S.-H., Cheng, Y.-C., & Hsu, L.-S. (2013). Knockdown of cyclin-dependent kinase 10 (cdk10 ) gene impairs neural progenitor survival via modulation of raf1a gene expression. Journal of Biological Chemistry, 288 (39), 27927-27939. doi:10.1074/jbc.M112.420265
Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS: A Journal of Integrative Biology, 16 (5), 284-287. doi:10.1089/omi.2011.0118
Zhang, T., Qu, Y., Zhang, Q., Tang, J., Cao, R., Dong, Z., . . . Zhao, J. (2021). Risks to the stability of coral reefs in the South China Sea: An integrated biomarker approach to assess the physiological responses of Trochus niloticus to ocean acidification and warming.Science of The Total Environment, 782 , 146876. doi:https://doi.org/10.1016/j.scitotenv.2021.146876
Zhou, Z., Wang, L., Gao, Y., Wang, M., Zhang, H., Wang, L., . . . Song, L. (2011). A monoamine oxidase from scallop Chlamys farreriserving as an immunomodulator in response against bacterial challenge.Developmental & Comparative Immunology, 35 (7), 799-807. doi:https://doi.org/10.1016/j.dci.2011.03.014