References
Adamo, S. A. (2006). Comparative psychoneuroimmunology: Evidence from
the insects. Behavioral and Cognitive Neuroscience Reviews, 5 (3),
128-140. doi:10.1177/1534582306289580
Andrews, S. (2010). FastQC: A quality control tool for high throughput
sequence data.
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Bertness, M. D., Gaines, S. D., & Hay, M. E. (2001). Marine
Community Ecology . Sunderland, Massachusetts: Sinauer Associates.
Bhatt, S., Nagappa, A. N., & Patil, C. R. (2020). Role of oxidative
stress in depression. Drug Discovery Today, 25 (7), 1270-1276.
doi:https://doi.org/10.1016/j.drudis.2020.05.001
Bibby, R., Widdicombe, S., Parry, H., Spicer, J., & Pipe, R. (2008).
Effects of ocean acidification on the immune response of the blue musselMytilus edulis . Aquatic Biology, 2 (1), 67-74.
Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V.
A., Hallberg, R., . . . Williamson, P. (2019). Changing ocean, marine
ecosystems, and dependent communities. In H.-O. Pörtner, D. Roberts, V.
Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A.
Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. Weyer (Eds.),IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate (pp. 447 - 587). Cambridge, UK and New York, NY, USA: Cambridge
University Press.
Bouayed, J. (2011). Relationship between oxidative stress and anxiety:
Emerging role of antioxidants within therapeutic or preventive
approaches. Anxiety Disorders , 27-38.
Bouayed, J., Rammal, H., & Soulimani, R. (2009). Oxidative stress and
anxiety: Relationship and cellular pathways. Oxidative Medicine
and Cellular Longevity, 2 , 623654. doi:10.4161/oxim.2.2.7944
Canesi, L., Betti, M., Ciacci, C., Lorusso, L., Pruzzo, C., & Gallo, G.
(2006). Cell signalling in the immune response of mussel hemocytes.Invertebrate Survival Journal, 3 (1), 40-49.
Cao, R., Liu, Y., Wang, Q., Zhang, Q., Yang, D., Liu, H., . . . Zhao, J.
(2018). The impact of ocean acidification and cadmium on the immune
responses of Pacific oyster, Crassostrea gigas . Fish &
Shellfish Immunology, 81 , 456-462.
doi:https://doi.org/10.1016/j.fsi.2018.07.055
Cao, R., Wang, Q., Yang, D., Liu, Y., Ran, W., Qu, Y., . . . Zhao, J.
(2018). CO2-induced ocean acidification impairs the
immune function of the Pacific oyster against Vibrio splendiduschallenge: An integrated study from a cellular and proteomic
perspective. Science of The Total Environment, 625 , 1574-1583.
doi:https://doi.org/10.1016/j.scitotenv.2018.01.056
Charpentier, C. L., & Cohen, J. H. (2016). Acidification and
γ-aminobutyric acid independently alter kairomone-induced behaviour.Open Science, 3 (9), 160311. doi:10.1098/rsos.160311
Chartier, F. J.-M., Hardy, É. J.-L., & Laprise, P. (2012). Crumbs
limits oxidase-dependent signaling to maintain epithelial integrity and
prevent photoreceptor cell death. Journal of Cell Biology,
198 (6), 991-998. doi:10.1083/jcb.201203083
Chen, E. Y.-S. (2021). Often overlooked: Understanding and meeting the
current challenges of marine invertebrate conservation. Frontiers
in Marine Science, 8 (1161), 690704. doi:10.3389/fmars.2021.690704
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast
all-in-one FASTQ preprocessor. Bioinformatics, 34 (17), i884-i890.
doi:10.1093/bioinformatics/bty560
Chung, W.-S., Kurniawan, N. D., & Marshall, N. J. (2022). Comparative
brain structure and visual processing in octopus from different
habitats. Current Biology, 32 (1), 97-110.e114.
doi:https://doi.org/10.1016/j.cub.2021.10.070
Clayton, D. F., Anreiter, I., Aristizabal, M., Frankland, P. W., Binder,
E. B., & Citri, A. (2020). The role of the genome in
experience-dependent plasticity: Extending the analogy of the genomic
action potential. Proceedings of the National Academy of Sciences,
117 (38), 23252-23260. doi:doi:10.1073/pnas.1820837116
Clements, J. C., Bishop, M. M., & Hunt, H. L. (2017). Elevated
temperature has adverse effects on GABA-mediated avoidance behaviour to
sediment acidification in a wide-ranging marine bivalve. Marine
Biology, 164 (3), 56. doi:10.1007/s00227-017-3085-1
Cohen-Rengifo, M., Danion, M., Gonzalez, A.-A., Bégout, M.-L., Cormier,
A., Noël, C., . . . Mazurais, D. (2022). The extensive transgenerational
transcriptomic effects of ocean acidification on the olfactory
epithelium of a marine fish are associated with a better viral
resistance. BMC Genomics, 23 (1), 448.
doi:10.1186/s12864-022-08647-w
Cooke, S. J., Sack, L., Franklin, C. E., Farrell, A. P., Beardall, J.,
Wikelski, M., & Chown, S. L. (2013). What is conservation physiology?
Perspectives on an increasingly integrated and essential science.Conservation Physiology, 1 (1), cot001. doi:10.1093/conphys/cot001
Costandi, M. (2016). Neuroplasticity . Cambridge, Massachusetts:
The MIT Press.
Crider, A., Pandya, C. D., Peter, D., Ahmed, A. O., & Pillai, A.
(2014). Ubiquitin-proteasome dependent degradation of
GABAAα1 in autism spectrum disorder. Molecular
Autism, 5 (1), 45. doi:10.1186/2040-2392-5-45
Culler-Juarez, M. E., & Onthank, K. L. (2021). Elevated immune response
in Octopus rubescens under ocean acidification and warming
conditions. Marine Biology, 168 (9), 137.
doi:10.1007/s00227-021-03913-z
Dantzer, R., & Kelley, K. W. (2007). Twenty years of research on
cytokine-induced sickness behavior. Brain, Behavior, and Immunity,
21 (2), 153-160. doi:https://doi.org/10.1016/j.bbi.2006.09.006
Davidson, N. M., & Oshlack, A. (2014). Corset: Enabling differential
gene expression analysis for de novo assembled transcriptomes.Genome Biology, 15 (7), 1-14.
De Zoysa, M., Nikapitiya, C., Oh, C., Whang, I., Lee, J.-S., Jung,
S.-J., . . . Lee, J. (2010). Molecular evidence for the existence of
lipopolysaccharide-induced TNF-α factor (LITAF) and Rel/NF-kB pathways
in disk abalone (Haliotis discus discus ). Fish & Shellfish
Immunology, 28 (5), 754-763.
doi:https://doi.org/10.1016/j.fsi.2010.01.024
Demas, G. E., Adamo, S. A., & French, S. S. (2011).
Neuroendocrine-immune crosstalk in vertebrates and invertebrates:
Implications for host defence. Functional Ecology, 25 (1), 29-39.
doi:https://doi.org/10.1111/j.1365-2435.2010.01738.x
Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009).
Ocean acidification: The other CO2 problem. Annual
Review of Marine Science, 1 (1), 169-192.
doi:10.1146/annurev.marine.010908.163834
Durant, A., Khodikian, E., & Porteus, C. S. (2023). Ocean acidification
alters foraging behaviour in Dungeness crab through impairment of the
olfactory pathway. Global Change Biology, n/a (n/a).
doi:https://doi.org/10.1111/gcb.16738
Ellis, R. P., Davison, W., Queirós, A. M., Kroeker, K. J., Calosi, P.,
Dupont, S., . . . Urbina, M. A. (2017). Does sex really matter?
Explaining intraspecies variation in ocean acidification responses.Biology Letters, 13 (2), 20160761.
Ertl, N. G., O’Connor, W. A., Wiegand, A. N., & Elizur, A. (2016).
Molecular analysis of the Sydney rock oyster (Saccostrea
glomerata ) CO2 stress response. Climate Change
Responses, 3 (1), 6. doi:10.1186/s40665-016-0019-y
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC:
Summarize analysis results for multiple tools and samples in a single
report. Bioinformatics, 32 (19), 3047-3048.
doi:10.1093/bioinformatics/btw354
Fischer, E. K., Hauber, M. E., & Bell, A. M. (2021). Back to the
basics? Transcriptomics offers integrative insights into the role of
space, time and the environment for gene expression and behaviour.Biology Letters, 17 (9), 20210293. doi:doi:10.1098/rsbl.2021.0293
Fuller, A., Dawson, T., Helmuth, B., Hetem, Robyn S., Mitchell, D., &
Maloney, Shane K. (2010). Physiological mechanisms in coping with
climate change. Physiological and Biochemical Zoology, 83 (5),
713-720. doi:10.1086/652242
Fuller, T. F., Ghazalpour, A., Aten, J. E., Drake, T. A., Lusis, A. J.,
& Horvath, S. (2007). Weighted gene coexpression network analysis
strategies applied to mouse weight. Mammalian Genome, 18 (6),
463-472.
González, I., Déjean, S., Martin, P., & Baccini, A. (2008). CCA: An R
package to extend canonical correlation analysis. Journal of
Statistical Software, 23 (12), 1-14.
Goodson, M. S., Kojadinovic, M., Troll, J. V., Scheetz, T. E., Casavant,
T. L., Soares, M. B., & McFall-Ngai, M. J. (2005). Identifying
components of the NF-κB pathway in the beneficial Euprymna
scolopes -Vibrio fischeri light organ symbiosis. Applied
and Environmental Microbiology, 71 (11), 6934-6946.
doi:doi:10.1128/AEM.71.11.6934-6946.2005
Guen, V. J., Gamble, C., Lees, J. A., & Colas, P. (2017). The awakening
of the CDK10/Cyclin M protein kinase. Oncotarget, 8 (30),
50174-50186. doi:10.18632/oncotarget.15024
Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are
we now? Journal of Neurochemistry, 97 (6), 1634-1658.
doi:https://doi.org/10.1111/j.1471-4159.2006.03907.x
Halliwell, B., & Gutteridge, J. (2015). Oxidative stress and redox
regulation: Adaptation, damage, repair, senescence, and death. In B.
Halliwell & J. Gutteridge (Eds.), Free Radicals in Biology and
Medicine. Fifth Edition (Vol. 3, pp. 199-283): Oxford University Press.
Hamilton, T. J., Tresguerres, M., Kwan, G. T., Szaskiewicz, J.,
Franczak, B., Cyrokak, T., . . . Kline, D. I. (2023). Effects of ocean
acidification on dopamine-mediated behavioral responses of a coral reef
damselfish. Science of The Total Environment , 162860.
doi:https://doi.org/10.1016/j.scitotenv.2023.162860
Han, Z., Wang, W., Lv, X., Zong, Y., Liu, S., Liu, Z., . . . Song, L.
(2019). ATG10 (autophagy-related 10) regulates the formation of
autophagosome in the anti-virus immune response of pacific oyster
(Crassostrea gigas ). Fish & Shellfish Immunology, 91 ,
325-332. doi:https://doi.org/10.1016/j.fsi.2019.05.027
Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod Behaviour(Second ed.). Cambridge: Cambridge University Press.
Hannan, K. D., Miller, G. M., Watson, S.-A., Rummer, J. L., Fabricius,
K., & Munday, P. L. (2020). Diel p CO2 variation
among coral reefs and microhabitats at Lizard Island, Great Barrier
Reef. Coral Reefs, 39 (5), 1391-1406.
doi:10.1007/s00338-020-01973-z
Herath, H. M. L. P. B., Elvitigala, D. A. S., Godahewa, G. I., Whang,
I., & Lee, J. (2015). Molecular insights into a molluscan transferrin
homolog identified from disk abalone (Haliotis discus discus )
evidencing its detectable role in host antibacterial defense.Developmental & Comparative Immunology, 53 (1), 222-233.
doi:https://doi.org/10.1016/j.dci.2015.07.013
Heuer, R. M., Hamilton, T. J., & Nilsson, G. E. (2019). The physiology
of behavioural impacts of high CO2. In M. Grosell, P. L.
Munday, A. P. Farrell, & C. J. Brauner (Eds.), Carbon Dioxide(Vol. 37, pp. 161-194). Cambridge, San Diego, Oxford, London: Academic
Press.
Horvath, S., & Dong, J. (2008). Geometric interpretation of gene
coexpression network analysis. PLoS Computational Biology, 4 (8),
e1000117-e1000117. doi:10.1371/journal.pcbi.1000117
Ivanina, A. V., Hawkins, C., & Sokolova, I. M. (2014). Immunomodulation
by the interactive effects of cadmium and hypercapnia in marine bivalvesCrassostrea virginica and Mercenaria mercenaria .Fish & Shellfish Immunology, 37 (2), 299-312.
doi:https://doi.org/10.1016/j.fsi.2014.02.016
Jackson, G. D. (1988). The use of statolith microstructures to analyze
life history events in the small tropical cephalopod Idiosepius
pygmaeus . Fishery Bulletin, 87 , 265-272.
Jiao, D., Chen, Y., Liu, Y., Ju, Y., Long, J., Du, J., . . . Liu, J.
(2017). SYVN1, an ERAD E3 ubiquitin ligase, is involved in
GABAAα1 degradation associated with
methamphetamine-induced conditioned place preference. Frontiers in
Molecular Neuroscience, 10 (313). doi:10.3389/fnmol.2017.00313
Johnson, K. M., & Hofmann, G. E. (2017). Transcriptomic response of the
Antarctic pteropod Limacina helicina antarctica to ocean
acidification. BMC Genomics, 18 (1), 812.
doi:10.1186/s12864-017-4161-0
Kang, J., Nagelkerken, I., Rummer, J. L., Rodolfo-Metalpa, R., Munday,
P. L., Ravasi, T., & Schunter, C. (2022). Rapid evolution fuels
transcriptional plasticity to ocean acidification. Global Change
Biology, 00 , 1-16. doi:https://doi.org/10.1111/gcb.16119
Kelley, J., Chapuis, L., Davies, W. I. L., & Collin, S. (2018). Sensory
system responses to human-induced environmental change. Frontiers
in Ecology and Evolution, 6 , 95.
Kim, M. J., Kim, J. A., Lee, D.-W., Park, Y.-S., Kim, J.-H., & Choi, C.
Y. (2023). Oxidative Stress and Apoptosis in Disk Abalone (Haliotis
discus hannai) Caused by Water Temperature and pH Changes.Antioxidants, 12 (5), 1003.
Kim, Y.-G., Lee, S., Kwon, O.-S., Park, S.-Y., Lee, S.-J., Park, B.-J.,
& Kim, K.-J. (2009). Redox-switch modulation of human SSADH by dynamic
catalytic loop. The EMBO Journal, 28 (7), 959-968.
doi:10.1038/emboj.2009.40
Kroeker, K. J., Kordas, R. L., Crim, R. N., & Singh, G. G. (2010).
Meta-analysis reveals negative yet variable effects of ocean
acidification on marine organisms. Ecology Letters, 13 (11),
1419-1434. doi:https://doi.org/10.1111/j.1461-0248.2010.01518.x
Lai, F., Fagernes, C. E., Bernier, N. J., Miller, G. M., Munday, P. L.,
Jutfelt, F., & Nilsson, G. E. (2017). Responses of neurogenesis and
neuroplasticity related genes to elevated CO2 levels in
the brain of three teleost species. Biology Letters, 13 (8),
20170240. doi:10.1098/rsbl.2017.0240
Lambert, L. A., Perri, H., Halbrooks, P. J., & Mason, A. B. (2005).
Evolution of the transferrin family: Conservation of residues associated
with iron and anion binding. Comparative Biochemistry and
Physiology Part B: Biochemistry and Molecular Biology, 142 (2), 129-141.
doi:https://doi.org/10.1016/j.cbpb.2005.07.007
Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted
correlation network analysis. BMC Bioinformatics, 9 (1), 1-13.
Lebel, C. P., & Bondy, S. C. (1991). Oxygen radicals: Common mediators
of neurotoxicity. Neurotoxicology and Teratology, 13 (3), 341-346.
doi:https://doi.org/10.1016/0892-0362(91)90081-7
Li, H.-W., Chen, C., Kuo, W.-L., Lin, C.-J., Chang, C.-F., & Wu, G.-C.
(2019). The characteristics and expression profile of transferrin in the
accessory nidamental gland of the bigfin reef squid during bacteria
transmission. Scientific Reports, 9 (1), 20163.
doi:10.1038/s41598-019-56584-8
Li, S., Liu, Y., Liu, C., Huang, J., Zheng, G., Xie, L., & Zhang, R.
(2015). Morphology and classification of hemocytes in Pinctada
fucata and their responses to ocean acidification and warming.Fish & Shellfish Immunology, 45 (1), 194-202.
doi:https://doi.org/10.1016/j.fsi.2015.04.006
Liu, S., Shi, W., Guo, C., Zhao, X., Han, Y., Peng, C., . . . Liu, G.
(2016). Ocean acidification weakens the immune response of blood clam
through hampering the NF-kappa β and toll-like receptor pathways.Fish & Shellfish Immunology, 54 , 322-327.
doi:https://doi.org/10.1016/j.fsi.2016.04.030
Liu, Z., Wang, L., Lv, Z., Zhou, Z., Wang, W., Li, M., . . . Song, L.
(2018). The cholinergic and adrenergic autocrine signaling pathway
mediates immunomodulation in oyster Crassostrea gigas .Frontiers in Immunology, 9 (284), 284.
doi:10.3389/fimmu.2018.00284
Liu, Z., Zhou, Z., Jiang, Q., Wang, L., Yi, Q., Qiu, L., & Song, L.
(2017). The neuroendocrine immunomodulatory axis-like pathway mediated
by circulating haemocytes in pacific oyster Crassostrea gigas .Open Biology, 7 (1), 160289. doi:doi:10.1098/rsob.160289
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biology, 15 (12), 550. doi:10.1186/s13059-014-0550-8
Marčeta, T., Matozzo, V., Alban, S., Badocco, D., Pastore, P., & Marin,
M. G. (2020). Do males and females respond differently to ocean
acidification? An experimental study with the sea urchin Paracentrotus
lividus. Environmental Science and Pollution Research , 1-15.
Mather, J. A. (2006). Behaviour development: A cephalopod perspective.International Journal of Comparative Psychology, 19 (1), 98-115.
Merico, D., Isserlin, R., Stueker, O., Emili, A., & Bader, G. D.
(2010). Enrichment map: A network-based method for gene-set enrichment
visualization and interpretation. PloS One, 5 (11), e13984.
Moreau, P., Moreau, K., Segarra, A., Tourbiez, D., Travers, M.-A.,
Rubinsztein, D. C., & Renault, T. (2015). Autophagy plays an important
role in protecting Pacific oysters from OsHV-1 and Vibrio
aestuarianus infections. Autophagy, 11 (3), 516-526.
doi:10.1080/15548627.2015.1017188
Moya, A., Howes, E. L., Lacoue‐Labarthe, T., Forêt, S., Hanna, B.,
Medina, M., . . . Torda, G. (2016). Near‐future pH conditions severely
impact calcification, metabolism and the nervous system in the pteropodHeliconoides inflatus . Global Change Biology, 22 (12),
3888-3900. doi:10.1111/gcb.13350
Moynihan, M. (1983). Notes on the behavior of Idiosepius pygmaeus(Cephalopoda; Idiosepiidae). Behaviour, 85 (1), 42-57.
Muntz, W. R. A. (1999). Visual systems, behaviour, and environment in
cephalopods. In S. N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C.
Partridge, & S. Vallerga (Eds.), Adaptive Mechanisms in the
Ecology of Vision (pp. 467-483). Dordrecht: Springer Netherlands.
Nagelkerken, I., & Connell, S. D. (2015). Global alteration of ocean
ecosystem functioning due to increasing human CO2 emissions.Proceedings of the National Academy of Sciences, 112 (43),
13272-13277.
Nagelkerken, I., & Munday, P. L. (2015). Animal behaviour shapes the
ecological effects of ocean acidification and warming: Moving from
individual to community‐level responses. Global Change Biology,
22 (3), 974-989. doi:10.1111/gcb.13167
Nardi, A., Benedetti, M., d’Errico, G., Fattorini, D., & Regoli, F.
(2018). Effects of ocean warming and acidification on accumulation and
cellular responsiveness to cadmium in mussels Mytilus
galloprovincialis : Importance of the seasonal status. Aquatic
Toxicology, 204 , 171-179.
doi:https://doi.org/10.1016/j.aquatox.2018.09.009
Nilsson, G. E., Dixson, D. L., Domenici, P., McCormick, M. I., Sørensen,
C., Watson, S.-A., & Munday, P. L. (2012). Near-future carbon dioxide
levels alter fish behaviour by interfering with neurotransmitter
function. Nature Climate Change, 2 (3), 201-204.
doi:10.1038/NCLIMATE1352
O’Donnell, S. (2018). The neurobiology of climate change. The
Science of Nature, 105 (1), 1-7.
Ong, S. T., Shan Ho, J. Z., Ho, B., & Ding, J. L. (2006).
Iron-withholding strategy in innate immunity. Immunobiology,
211 (4), 295-314. doi:https://doi.org/10.1016/j.imbio.2006.02.004
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C.
(2017). Salmon provides fast and bias-aware quantification of transcript
expression. Nature Methods, 14 (4), 417-419.
doi:10.1038/nmeth.4197
Picot, S., Morga, B., Faury, N., Chollet, B., Dégremont, L., Travers,
M.-A., . . . Arzul, I. (2019). A study of autophagy in hemocytes of the
Pacific oyster, Crassostrea gigas . Autophagy, 15 (10),
1801-1809. doi:10.1080/15548627.2019.1596490
Porteus, C. S., Hubbard, P. C., Webster, T. M. U., van Aerle, R.,
Canário, A. V., Santos, E. M., & Wilson, R. W. (2018). Near-future
CO2 levels impair the olfactory system of a marine fish.Nature Climate Change, 8 (8), 737-746.
doi:10.1038/s41558-018-0224-8
Pörtner, H.-O., Langenbuch, M., & Reipschläger, A. (2004). Biological
impact of elevated ocean CO2 concentrations: Lessons
from animal physiology and earth history. Journal of Oceanography,
60 (4), 705-718. doi:10.1007/s10872-004-5763-0
R Core Team. (2021). R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing.
Retrieved from https://www.R-project.org/
Rammal, H., Bouayed, J., & Soulimani, R. (2010). A direct relationship
between aggressive behavior in the resident/intruder test and cell
oxidative status in adult male mice. European Journal of
Pharmacology, 627 (1), 173-176.
doi:https://doi.org/10.1016/j.ejphar.2009.11.001
Reid, A. (2005). Family Idiosepiidae. In P. Jereb & C. F. E. Roper
(Eds.), Cephalopods of the World : An Annotated and Illustrated
Catalogue of Cephalopod Species Known to Date. Volume 1. Chambered
Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiolidae,
Sepiadariidae, Idiosepiidae and Spirulidae). (Vol. 1, pp. 208 - 210).
Rome: FAO.
Richardson, B., Martin, H., Bartels-Hardege, H., Fletcher, N., &
Hardege, J. D. (2021). The role of changing pH on olfactory success of
predator–prey interactions in green shore crabs, Carcinus maenas.Aquatic Ecology . doi:10.1007/s10452-021-09913-x
RStudio Team. (2021). RStudio: Integrated development environment for R.
PBC, Boston, MA: RStudio. Retrieved from http://www.rstudio.com
Salazar, K. A., Joffe, N. R., Dinguirard, N., Houde, P., & Castillo, M.
G. (2015). Transcriptome analysis of the white body of the squidEuprymna tasmanica with emphasis on immune and hematopoietic gene
discovery. PloS One, 10 (3), e0119949.
Schunter, C., Jarrold, M. D., Munday, P. L., & Ravasi, T. (2021). Dielp CO2 fluctuations alter the molecular response of
coral reef fishes to ocean acidification conditions. Molecular
Ecology, 30 , 5105– 5118. doi:https://doi.org/10.1111/mec.16124
Schunter, C., Ravasi, T., Munday, P. L., & Nilsson, G. E. (2019).
Neural effects of elevated CO2 in fish may be amplified
by a vicious cycle. Conservation Physiology, 7 (1), coz100.
doi:10.1093/conphys/coz100
Schunter, C., Welch, M. J., Nilsson, G. E., Rummer, J. L., Munday, P.
L., & Ravasi, T. (2018). An interplay between plasticity and parental
phenotype determines impacts of ocean acidification on a reef fish.Nature Ecology and Evolution, 2 (2), 334.
doi:10.1038/s41559-017-0428-8
Schunter, C., Welch, M. J., Ryu, T., Zhang, H., Berumen, M. L., Nilsson,
G. E., . . . Ravasi, T. (2016). Molecular signatures of
transgenerational response to ocean acidification in a species of reef
fish. Nature Climate Change, 6 , 1014-1018.
doi:10.1038/NCLIMATE3087
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage,
D., . . . Ideker, T. (2003). Cytoscape: A software environment for
integrated models of biomolecular interaction networks. Genome
Research, 13 (11), 2498-2504.
Spady, B. L., Munday, P. L., & Watson, S.-A. (2018). Predatory
strategies and behaviours in cephalopods are altered by elevated
CO2. Global Change Biology, 24 , 2585-2596.
doi:10.1111/gcb.14098
Spady, B. L., Watson, S.-A., Chase, T. J., & Munday, P. L. (2014).
Projected near-future CO2 levels increase activity and
alter defensive behaviours in the tropical squid Idiosepius
pygmaeus . Biology Open, 3 (11), 1063-1070.
doi:10.1242/bio.20149894
Stephens, M. (2016). False discovery rates: A new deal.Biostatistics, 18 (2), 275-294. doi:10.1093/biostatistics/kxw041
Strader, M. E., Wong, J. M., & Hofmann, G. E. (2020). Ocean
acidification promotes broad transcriptomic responses in marine
metazoans: A literature survey. Frontiers in Zoology, 17 (1), 7.
doi:10.1186/s12983-020-0350-9
Su, W., Rong, J., Zha, S., Yan, M., Fang, J., & Liu, G. (2018). Ocean
acidification affects the cytoskeleton, lysozymes, and nitric oxide of
hemocytes: A possible explanation for the hampered phagocytosis in blood
clams, Tegillarca granosa . Frontiers in Physiology,
9 (619). doi:10.3389/fphys.2018.00619
Sun, Q., Zheng, Y., Chen, X., Kong, N., Wang, Y., Zhang, Y., . . . Song,
L. (2021). A diet rich in diatom improves the antibacterial capacity of
Pacific oyster Crassostrea gigas by enhancing
norepinephrine-regulated immunomodulation. Invertebrate Survival
Journal , 56-65.
Thomas, J., Munday, P., & Watson, S.-A. (2020). Toward a mechanistic
understanding of marine invertebrate behaviour at elevated
CO2. Frontiers in Marine Science, 7 , 345.
doi:10.3389/fmars.2020.00345
Thomas, J. T., Huerlimann, R., Schunter, C., Watson, S.-A., Munday, P.
L., & Ravasi, T. (2022). Two-toned pygmy squid (Idiosepius
pygmaeus) transcriptome assembly, and transcriptomic response of the
nervous system to elevated CO2 [Dataset].
doi:BioProject: PRJNA798187
Thomas, J. T., Huerlimann, R., Schunter, C., Watson, S.-A., Munday, P.
L., & Ravasi, T. (2023a). Correlating gene expression profiles
with CO2 treatment and OA-affected behaviours in the two-toned pygmy
squid (Idiosepius pygmaeus) [Dataset].
doi:https://doi.org/10.25903/7dcz-th66
Thomas, J. T., Huerlimann, R., Schunter, C., Watson, S.-A., Munday, P.
L., & Ravasi, T. (2023b). Two-toned pygmy squid (Idiosepius
pygmaeus) transcriptome assembly, and transcriptomic response of the
nervous system to elevated CO2 [Dataset].
doi:https://doi.org/10.25903/ha66-mm11
Thomas, J. T., Spady, B. L., Munday, P. L., & Watson, S.-A. (2021). The
role of ligand-gated chloride channels in behavioural alterations at
elevated CO2 in a cephalopod. Journal of
Experimental Biology, 224 (13), jeb242335. doi:10.1242/jeb.242335
Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E., & Sokolova, I.
M. (2011). Proteomic response to elevated PCO2level in eastern oysters, Crassostrea virginica : Evidence for
oxidative stress. Journal of Experimental Biology, 214 (11),
1836-1844. doi:10.1242/jeb.055475
Toy, J. A., Kroeker, K. J., Logan, C. A., Takeshita, Y., Longo, G. C.,
& Bernardi, G. (2022). Upwelling-level acidification and pH/pCO2
variability moderate effects of ocean acidification on brain gene
expression in the temperate surfperch, Embiotoca jacksoni.Molecular Ecology, 31 (18), 4707-4725.
doi:https://doi.org/10.1111/mec.16611
Tresguerres, M., & Hamilton, T. J. (2017). Acid–base physiology,
neurobiology and behaviour in relation to CO2-induced
ocean acidification. Journal of Experimental Biology, 220 (12),
2136-2148. doi:10.1242/jeb.144113
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., &
Telser, J. (2007). Free radicals and antioxidants in normal
physiological functions and human disease. The International
Journal of Biochemistry & Cell Biology, 39 (1), 44-84.
Wang, J.-J., Shan, K., Liu, B.-H., Liu, C., Zhou, R.-M., Li, X.-M., . .
. Yan, B. (2018). Targeting circular RNA-ZRANB1 for therapeutic
intervention in retinal neurodegeneration. Cell Death & Disease,
9 (5), 540. doi:10.1038/s41419-018-0597-7
Wang, Q., Cao, R., Ning, X., You, L., Mu, C., Wang, C., . . . Zhao, J.
(2016). Effects of ocean acidification on immune responses of the
Pacific oyster Crassostrea gigas . Fish & Shellfish
Immunology, 49 , 24-33.
doi:https://doi.org/10.1016/j.fsi.2015.12.025
Wang, X., Wang, M., Wang, W., Liu, Z., Xu, J., Jia, Z., . . . Wang, L.
(2020). Transcriptional changes of Pacific oyster Crassostrea
gigas reveal essential role of calcium signal pathway in response to
CO2-driven acidification. Science of The Total
Environment, 741 , 140177.
Watson, S.-A., Lefevre, S., McCormick, M. I., Domenici, P., Nilsson, G.
E., & Munday, P. L. (2014). Marine mollusc predator-escape behaviour
altered by near-future carbon dioxide levels. Proceedings of the
Royal Society of London B: Biological Sciences, 281 (1774), 20132377.
doi:10.1098/rspb.2013.2377
Williams, C. R., Dittman, A. H., McElhany, P., Busch, D. S., Maher, M.
T., Bammler, T. K., . . . Gallagher, E. P. (2019). Elevated
CO2 impairs olfactory‐mediated neural and behavioral
responses and gene expression in ocean‐phase coho salmon
(Oncorhynchus kisutch ). Global Change Biology, 25 ,
963-977. doi:10.1111/gcb.14532
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic
analysis with Kraken 2. Genome Biology, 20 (1), 257.
doi:10.1186/s13059-019-1891-0
Wu, F., Lu, W., Shang, Y., Kong, H., Li, L., Sui, Y., . . . Wang, Y.
(2016). Combined effects of seawater acidification and high temperature
on hemocyte parameters in the thick shell mussel Mytilus
coruscus . Fish & Shellfish Immunology, 56 , 554-562.
doi:https://doi.org/10.1016/j.fsi.2016.08.012
Xie, J., Sun, X., Li, P., Zhou, T., Jiang, R., & Wang, X. (2023). The
impact of ocean acidification on the eye, cuttlebone and behaviors of
juvenile cuttlefish (Sepiella inermis). Marine Pollution Bulletin,
190 , 114831. doi:https://doi.org/10.1016/j.marpolbul.2023.114831
Yeh, C.-W., Kao, S.-H., Cheng, Y.-C., & Hsu, L.-S. (2013). Knockdown of
cyclin-dependent kinase 10 (cdk10 ) gene impairs neural progenitor
survival via modulation of raf1a gene expression. Journal
of Biological Chemistry, 288 (39), 27927-27939.
doi:10.1074/jbc.M112.420265
Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: An R
package for comparing biological themes among gene clusters.OMICS: A Journal of Integrative Biology, 16 (5), 284-287.
doi:10.1089/omi.2011.0118
Zhang, T., Qu, Y., Zhang, Q., Tang, J., Cao, R., Dong, Z., . . . Zhao,
J. (2021). Risks to the stability of coral reefs in the South China Sea:
An integrated biomarker approach to assess the physiological responses
of Trochus niloticus to ocean acidification and warming.Science of The Total Environment, 782 , 146876.
doi:https://doi.org/10.1016/j.scitotenv.2021.146876
Zhou, Z., Wang, L., Gao, Y., Wang, M., Zhang, H., Wang, L., . . . Song,
L. (2011). A monoamine oxidase from scallop Chlamys farreriserving as an immunomodulator in response against bacterial challenge.Developmental & Comparative Immunology, 35 (7), 799-807.
doi:https://doi.org/10.1016/j.dci.2011.03.014