Reference
Ackerly, D.D., Reich, P.B., 1999. Convergence and Correlations among Leaf Size and Function in Seed Plants: A Comparative Test Using Independent Contrasts. American Journal of Botany 86, 1272–1281. https://doi.org/10.2307/2656775
Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S., Lavorel, S., 2010a. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits: Intra- vs. interspecific variability in plant traits. Functional Ecology 24, 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.x
Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P., Lavorel, S., 2010b. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98, 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
Alvarez-Flores, R., Winkel, T., Nguyen-Thi-Truc, A., Joffre, R., 2014. Root foraging capacity depends on root system architecture and ontogeny in seedlings of three Andean Chenopodium species. Plant Soil 380, 415–428. https://doi.org/10.1007/s11104-014-2105-x
Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D.C., Kuyper, T.W., Guerrero-Ramirez, N., Valverde-Barrantes, O.J., Bruelheide, H., Freschet, G.T., Iversen, C.M., Kattge, J., McCormack, M.L., Meier, I.C., Rillig, M.C., Roumet, C., Semchenko, M., Sweeney, C.J., van Ruijven, J., York, L.M., Mommer, L., 2020. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756. https://doi.org/10.1126/sciadv.aba3756
Blomberg, S.P., Garland, T., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Bouma, T.J., Nielsen, K.L., Van Hal, J., Koutstaal, B., 2001. Root system topology and diameter distribution of species from habitats differing in inundation frequency: Root systems in differing inundation frequencies . Functional Ecology 15, 360–369. https://doi.org/10.1046/j.1365-2435.2001.00523.x
Bu, W.S., Schmid, B., Liu, X.J., Li, Y., Härdtle, W., von Oheimb, G., Liang, Y., Sun, Z.K., Huang, Y.Y., Bruelheide, H., Ma, K.P., 2017. Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. Journal of Plant Ecology 10, 158–169. https://doi.org/10.1093/jpe/rtw096
Carmona, C.P., Bueno, C.G., Toussaint, A., Träger, S., Díaz, S., Moora, M., Munson, A.D., Pärtel, M., Zobel, M., Tamme, R., 2021. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687. https://doi.org/10.1038/s41586-021-03871-y
Chapin, F.S., 1991. Integrated Responses of Plants to Stress. BioScience 41, 29–36. https://doi.org/10.2307/1311538
Cheng, X.J., Tan, D.Y., 2009. Bet hedging in heteromorphic achenes of Heteracia Szovitsii (Asteraceae), a desert ephemeral. Chinese Journal of Plant Ecology 33, 901–910. https://doi.org/10.3773/j.issn.1005-264x.2009.05.009
Cheng, X.L., An, S.Q., Li, B., Chen, J.Q., Lin, G.H., Liu, Y.H., Luo, Y.Q., Liu, S.R., 2006. Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecol 184, 1–12. https://doi.org/10.1007/s11258-005-9047-6
Dannowski, M., Block, A., 2005. Fractal geometry and root system structures of heterogeneous plant communities. Plant Soil 272, 61–76. https://doi.org/10.1007/s11104-004-3981-2
Defrenne, C.E., McCormack, M.L., Roach, W.J., Addo-Danso, S.D., Simard, S.W., 2019. Intraspecific Fine-Root Trait-Environment Relationships across Interior Douglas-Fir Forests of Western Canada. Plants 8, 199. https://doi.org/10.3390/plants8070199
Diaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A., Montserrat‐Martí, G., Grime, J.P., Zarrinkamar, F., Asri, Y., Band, S.R., Basconcelo, S., Castro‐Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez‐Harguindeguy, N., Pérez‐Rontomé, M.C., Shirvany, F.A., Vendramini, F., Yazdani, S., Abbas‐Azimi, R., Bogaard, A., Boustani, S., Charles, M., Dehghan, M., Torres‐Espuny, L., Falczuk, V., Guerrero‐Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi‐Saeed, F., Maestro‐Martínez, M., Romo‐Díez, A., Shaw, S., Siavash, B., Villar‐Salvador, P., Zak, M.R., 2004. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15, 295–304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x
Erktan, A., Roumet, C., Bouchet, D., Stokes, A., Pailler, F., Munoz, F., 2018. Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. J Ecol 106, 2031–2042. https://doi.org/10.1111/1365-2745.12953
Felsenstein, J., 1985. Phylogenies and the Comparative Method. THE AMERICAN NATURALIST 125, 1–15.
Freschet, G.T., Kichenin, E., Wardle, D.A., 2015a. Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground? J Veg Sci 26, 431–440. https://doi.org/10.1111/jvs.12259
Freschet, G.T., Swart, E.M., Cornelissen, J.H.C., 2015b. Integrated plant phenotypic responses to contrasting above‐ and below‐ground resources: key roles of specific leaf area and root mass fraction. New Phytol 206, 1247–1260. https://doi.org/10.1111/nph.13352
Freschet, G.T., Valverde‐Barrantes, O.J., Tucker, C.M., Craine, J.M., McCormack, M.L., Violle, C., Fort, F., Blackwood, C.B., Urban‐Mead, K.R., Iversen, C.M., Bonis, A., Comas, L.H., Cornelissen, J.H.C., Dong, M., Guo, D., Hobbie, S.E., Holdaway, R.J., Kembel, S.W., Makita, N., Onipchenko, V.G., Picon‐Cochard, C., Reich, P.B., Riva, E.G., Smith, S.W., Soudzilovskaia, N.A., Tjoelker, M.G., Wardle, D.A., Roumet, C., 2017. Climate, soil and plant functional types as drivers of global fine‐root trait variation. J Ecol 105, 1182–1196. https://doi.org/10.1111/1365-2745.12769
Freschet, G.T., Violle, C., Bourget, M.Y., Scherer-Lorenzen, M., Fort, F., 2018. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol 219, 1338–1352. https://doi.org/10.1111/nph.15225
Grime, J.P., 2006. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science 17, 255–260. https://doi.org/10.1111/j.1654-1103.2006.tb02444.x
Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y., Wang, Z., 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species. New Phytologist 180, 673–683. https://doi.org/10.1111/j.1469-8137.2008.02573.x
Hajek, P., Hertel, D., Leuschner, C., 2013. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Front. Plant Sci. 4. https://doi.org/10.3389/fpls.2013.00415
Hogan, J.A., Valverde-Barrantes, O.J., Ding, Q., Xu, H., Baraloto, C., 2020. Morphological variation of fine root systems and leaves in primary and secondary tropical forests of Hainan Island, China. Annals of Forest Science 77, 79. https://doi.org/10.1007/s13595-020-00977-7
Isaac, M.E., Martin, A.R., de Melo Virginio Filho, E., Rapidel, B., Roupsard, O., Van den Meersche, K., 2017. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients. Front. Plant Sci. 8, 1196. https://doi.org/10.3389/fpls.2017.01196
Jung, V., Albert, C.H., Violle, C., Kunstler, G., Loucougaray, G., Spiegelberger, T., 2014. Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J Ecol 102, 45–53. https://doi.org/10.1111/1365-2745.12177
Kong, D.L., Ma, C.G., Zhang, Q., Li, L., Chen, X.Y., Zeng, H., Guo, D.L., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203, 863–872. https://doi.org/10.1111/nph.12842
Kraft, N.J.B., Valencia, R., Ackerly, D.D., 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80, 401–422. https://doi.org/10.1890/09-1672.1
Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J., Laughlin, D.C., 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104, 1299–1310. https://doi.org/10.1111/1365-2745.12562
Laboski, C.A.M., Dowdy, R.H., Allmaras, R.R., Lamb, J.A., 1998. Soil strength and water content influences on corn root distribution in a sandy soil. Plant and Soil 203, 239-247,.
Lan H.Y., Zhang F.C., 2008. Reviews on special mechanisms of adaptability of early-spring ephemeral plants to desert habitats in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica 28, 1478–1475.
Liu, C., Xiang, W., Zou, L., Lei, P., Zeng, Y., Ouyang, S., Deng, X., Fang, X., Liu, Z., Peng, C., 2019. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant Soil 436, 347–364. https://doi.org/10.1007/s11104-019-03934-0
Lozano, Y.M., Aguilar‐Trigueros, C.A., Flaig, I.C., Rillig, M.C., 2020. Root trait responses to drought are more heterogeneous than leaf trait responses. Funct Ecol 34, 2224–2235. https://doi.org/10.1111/1365-2435.13656
Lu, J.J., Tan, D.Y., Baskin, J.M., Baskin, C.C., 2015. Post-release fates of seeds in dehiscent and indehiscent siliques of the diaspore heteromorphic species Diptychocarpus strictus (Brassicaceae). Perspectives in Plant Ecology, Evolution and Systematics 17, 255–262. https://doi.org/10.1016/j.ppees.2015.04.001
Lynch, J., 1995. Root Architecture and Plant Productivity. Plant Physiol. 109, 7–13. https://doi.org/10.1104/pp.109.1.7
Ma, X.M., Du, B.C.X., Cheng, Y.X., Wu, L., 2021. Analysis of vegetation variation trend and correlative factors in Junggar Basin. Arid Zone Research 38, 1401–1410. https://doi.org/10.13866/j.azr.2021.05.22
Ma, Z.Q., Guo, D.L., Xu, X.L., Lu, M., Bardgett, R.D., Eissenstat, D.M., McCormack, M.L., Hedin, L.O., 2018. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97. https://doi.org/10.1038/nature25783
Maherali, H., 2017. The evolutionary ecology of roots. New Phytol 215, 1295–1297. https://doi.org/10.1111/nph.14612
Mamut J., Cheng X.J., Tan D.Y., 2018. Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb. Biodiversity Science 26, 498–509. https://doi.org/10.17520/biods.2018046
Mamut, J., Tan, D.Y., Baskin, C.C., Baskin, J.M., 2019. Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China. J. Arid Land 11, 774–784. https://doi.org/10.1007/s40333-019-0015-8
Mao, Z.M., Zhang, D.M., 1994. The conspectus of Emphemeral flora in northern Xinjiang. Arid Zone Research 1–26. https://doi.org/10.13866/j.azr.1994.01.001
Markesteijn, L., Poorter, L., 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology 97, 311–325. https://doi.org/10.1111/j.1365-2745.2008.01466.x
Martínez-Sánchez, J.J., Ferrandis, P., Trabaud, L., Galindo, R., Franco, J.A., Herranz, J.M., 2003. Comparative Root System Structure of Post-Fire Pinus halepensis Mill. and Cistus monspeliensis L Saplings. Plant Ecology 168, 309–320.
Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L., Valladares, F., van Kleunen, M., 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008
Oppelt, A.L., Kurth, W., Godbold, D.L., 2001. Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiology 21, 117–128. https://doi.org/10.1093/treephys/21.2-3.117
Paradis, E., Schliep, K., 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer, L., 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist 193, 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Qiu J., Tan D.Y., Fan D.Y., 2007. Characteristics of photosynthesis and biomass allocation of spring ephemerals in the Gunggar desert. Chinese Journal of Plant Ecology 31, 883–891.
Shan L., Li Y., Dong Q.L., Geng D.M., 2012. Ecological adaptation of Reaumuria Soongorica root system architecture to arid environment. Jounal of Desert Research 32, 1283–1290.
Shi, Z.Y., Feng, G., Christie, P., Li, X.L., 2006. Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza 16, 269–275. https://doi.org/10.1007/s00572-006-0041-1
Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., Aarssen, L.W., Baraloto, C., Carlucci, M.B., Cianciaruso, M.V., L. Dantas, V., Bello, F., Duarte, L.D.S., Fonseca, C.R., Freschet, G.T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C., Katabuchi, M., Kembel, S.W., Kichenin, E., Kraft, N.J.B., Lagerström, A., Bagousse‐Pinguet, Y.L., Li, Y., Mason, N., Messier, J., Nakashizuka, T., Overton, J.McC., Peltzer, D.A., Pérez‐Ramos, I.M., Pillar, V.D., Prentice, H.C., Richardson, S., Sasaki, T., Schamp, B.S., Schöb, C., Shipley, B., Sundqvist, M., Sykes, M.T., Vandewalle, M., Wardle, D.A., 2015. A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18, 1406–1419. https://doi.org/10.1111/ele.12508
Spanos, I., Ganatsas, P., Raftoyannis, Y., 2008. The root system architecture of young Greek fir ( Abies cephalonica Loudon) trees. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 142, 414–419. https://doi.org/10.1080/11263500802151082
Tjoelker, M.G., Craine, J.M., Wedin, D., Reich, P.B., Tilman, D., 2005. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist 167, 493–508. https://doi.org/10.1111/j.1469-8137.2005.01428.x
Tracy, S.R., Black, C.R., Roberts, J.A., Dodd, I.C., Mooney, S.J., 2015. Using X-ray Computed Tomography to explore the role of abscisic acid in moderating the impact of soil compaction on root system architecture. Environmental and Experimental Botany 110, 11–18. https://doi.org/10.1016/j.envexpbot.2014.09.003
Tsakaldimi, M., Tsitsoni, T., Ganatsas, P., Zagas, T., 2009. A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant Soil 324, 103–113. https://doi.org/10.1007/s11104-009-9974-4
Valverde‐Barrantes, O.J., Freschet, G.T., Roumet, C., Blackwood, C.B., 2017. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine‐root tissues in seed plants. New Phytol 215, 1562–1573. https://doi.org/10.1111/nph.14571
Valverde-Barrantes, O.J., Smemo, K.A., Blackwood, C.B., 2014. Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology 29, 796–807.
Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., Jung, V., Messier, J., 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution 27, 244–252. https://doi.org/10.1016/j.tree.2011.11.014
Wake, D.B., 1991. Homoplasy: The Result of Natural Selection, or Evidence of Design Limitations? The American Naturalist 138, 543–567. https://doi.org/10.1086/285234
Wang A., Ma J., Gong H., Fan G., Wang M., Zhao H., Cheng J., 1 College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 8300522 Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, 2021. Patterns and drivers of species richness of early spring annual ephemeral plants in northern Xinjiang. Biodiversity Science 29, 735–745. https://doi.org/10.17520/biods.2020331
Wang, R., Wang, Q., Zhao, N., Xu, Z., Zhu, X., Jiao, C., Yu, G., He, N., 2018. Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits. Funct Ecol 32, 29–39. https://doi.org/10.1111/1365-2435.12983
Wang X., Chen G.S., Cheng X.J., Chen T., Jiang Q., Chen Y.H., Fan A.L., Jia L.Q., Xiong D.C., Huang J.X., 2019. Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest. Chinese Journal of Plant Ecology 43, 969–978. https://doi.org/10.17521/cjpe.2019.0189
Wang Z.Y., Cheng L., Wang M.T., Sun J., Zhong Q.L., Li M., Cheng D.L., 2018. Fine root traits of woody plants in deciduous forest of the Wuyi Mountains. Acta Ecologica Sinica 38, 8088–8097. https://doi.org/10.5846 / stxb201712262331
Weemstra, M., Freschet, G.T., Stokes, A., Roumet, C., 2021a. Patterns in intraspecific variation in root traits are species‐specific along an elevation gradient. Funct Ecol 35, 342–356. https://doi.org/10.1111/1365-2435.13723
Weemstra, M., Mommer, L., Visser, E.J.W., Ruijven, J., Kuyper, T.W., Mohren, G.M.J., Sterck, F.J., 2016. Towards a multidimensional root trait framework: a tree root review. New Phytol 211, 1159–1169. https://doi.org/10.1111/nph.14003
Weemstra, M., Zambrano, J., Allen, D., Umaña, M.N., 2021b. Tree growth increases through opposing above‐ground and below‐ground resource strategies. Journal of Ecology 109, 3502–3512. https://doi.org/10.1111/1365-2745.13729
Willaume, M., Pagès, L., 2011. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens). Annals of Botany 107, 653–662. https://doi.org/10.1093/aob/mcq270
Withington, J.M., Reich, P.B., Oleksyn, J., Eissenstat, D.M., 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs 76, 381–397. https://doi.org/10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. https://doi.org/10.1038/nature02403
Xiao Y., Tao Y., Zhang Y.M., 2014. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China. Chinese Journal of Plant Ecology 38, 929–940. https://doi.org/10.3724/SP.J.1258.2014.00087
Xu M.Q., Gao Y.J., Zhang Z.H., Zeng F.J., 2021. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress. Pratacultural Science 38, 1559–1569. https://doi.org/10.11829/j.issn.1001-0629.2021-0092
Yin, Q., Tian, T., Han, X., Xu, J., Chai, Y., Mo, J., Lei, M., Wang, L., Yue, M., 2019. The relationships between biomass allocation and plant functional trait. Ecological Indicators 102, 302–308. https://doi.org/10.1016/j.ecolind.2019.02.047
Zhang L., Zhang L.W., Liu H.L., Chen Y.F., 2020. Effects of increased precipitation on growth of two ephemeral plants in the Gurbantunggut Desert,China. Chinese Journal of Applied Ecology 31, 9–16. https://doi.org/10.13287/j.1001-9332.202001.004
Zhou, M., Bai, W., Zhang, Y., Zhang, W.-H., 2018. Multi-dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. J Ecol 106, 2320–2331. https://doi.org/10.1111/1365-2745.12977
Zhou, M., Wang, J., Bai, W., Zhang, Y., Zhang, W., 2019. The response of root traits to precipitation change of herbaceous species in temperate steppes. Funct Ecol 33, 2030–2041. https://doi.org/10.1111/1365-2435.13420