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Summary

Some properties of the Dawson Integral are presented first in the current work, fol-
lowed by the introduction of the Dawson Integral Transform. Iteration identities and
relationships, similar to the Parseval Goldstein type, are established involving various
well-known integral transforms, such as the Laplace Transform, the ℒ2-Transform,
and the Dawson Integral for the new integral transform. Furthermore, improper inte-
grals of well-known functions, including the Dawson Integral, Exponential Integral,
and the Macdonald Function, are evaluated using the results obtained.
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1 INTRODUCTION AND DEFINITIONS

Dawson’s integral, sometimes called Dawson’s function, is defined by the integral

daw(𝑡) =

𝑡

∫
0

exp(𝑠2 − 𝑡2) 𝑑𝑠, (1)

1 p. 427, Eq. 42:3:1. It has various applications such as heat conduction, spectroscopy, electrical oscillations in certain special
vacuum tubes. Complex error function is closely related to Dawson’s integral:

erfi(𝑡) = erf(𝑖𝑡)
𝑖

= 2
√

𝜋
exp(𝑡2)daw(𝑡). (2)

The important mathematical properties of Dawson’s integral are given in Chapter 7 of2. Some applications and computational
methods are discussed in3. Rational Chebyshev approximations to Dawson’s integral are shown in4.

In this paper, we introduce a new integral transform

𝒟
[

𝑓 (𝑡)](𝑠) =

∞

∫
0

daw(𝑠𝑡)𝑓 (𝑡) 𝑑𝑡 (3)

with the kernel Dawson’s integral. We will refer the transform as the Dawson transform.
We obtain iteration identities for the Dawson transform (3), the Fourier sine transform, the Fourier cosine transform8, the

Glasser transform11, the Widder transform10 and the ℒ2-transform

ℒ2
[

𝑓 (𝑡)](𝑠) =

∞

∫
0

𝑡 exp
(

−𝑡2𝑠2
)

𝑓 (𝑡) 𝑑𝑡. (4)
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A systematic account the Glasser transform11 is discussed in Yürekli et al.5. The ℒ2-transform is introduced by the fourth
author6. An expository article about recent results related various integral transforms including the ℒ2-transform can be found
in Chapter 4 of the recent book7.

The ℒ2-transform is related to the well known Laplace transform8 with the following identity with the following identity

ℒ2
[

𝑓 (𝑡)](𝑠) = 1
2
ℒ
[

𝑓
(
√

𝑡
)

]

(

𝑠2
)

. (5)

2 ITERATION IDENTITIES

We start with the iteration identities for Dawson integral, Fourier sine, Fourier cosine and ℒ2-transforms.

Lemma 1. The iteration identities

𝒟
[

ℱ𝑠[𝑓 (𝑡)](𝑢)
]

(𝑠) = 𝜋
4𝑠

ℒ2

[

𝑓 (𝑡)
𝑡

](

1
2𝑠

)

(6)

and

ℱ𝑠

[

𝒟 [𝑓 (𝑡)](𝑢)
]

(𝑠) = 𝜋
4
ℒ2

[

1
𝑡2
𝑓
(1
𝑡

)

](

𝑠
2

)

. (7)

hold true, provided that the integrals involved converge absolutely.

Proof. Using the definition (3) of the Dawson transform and the Fourier sine transform, we have

𝒟
[

ℱ𝑠[𝑓 (𝑡)](𝑢)
]

(𝑠) =

∞

∫
0

daw(𝑢𝑠)
⎛

⎜

⎜

⎝

∞

∫
0

sin(𝑢𝑡)𝑓 (𝑡) 𝑑𝑡
⎞

⎟

⎟

⎠

𝑑𝑢 (8)

where the Fourier sine transform is defined as

ℱ𝑠
[

𝑓 (𝑡)](𝑠) =

∞

∫
0

sin(𝑠𝑡)𝑓 (𝑡) 𝑑𝑡. (9)

Changing the order of the integration in Equation (8), we have

𝒟
[

ℱ𝑠[𝑓 (𝑡)](𝑢)
]

(𝑠) =

∞

∫
0

𝑓 (𝑡)
⎛

⎜

⎜

⎝

∞

∫
0

sin(𝑢𝑡) daw(𝑢𝑠) 𝑑𝑢
⎞

⎟

⎟

⎠

𝑑𝑡. (10)

Using the formula1 p. 431, Eq. 42:10:5, the inner integral on the right-hand side of Equation (10) is
∞

∫
0

sin(𝑢𝑡) daw(𝑢𝑠) 𝑑𝑢 = 𝜋
4𝑠

exp
(

− 𝑡2

4𝑠2

)

, 𝑡 > 0. (11)

Substituting Equation (11) into Equation (10) and using the definition (4) of the ℒ2-transform yield the claim (6) of Lemma 1.
Assertion (7) of Lemma 1’s proof is similar.

An immediate corollary of Equation (6) of Lemma 1 is the following Corollary.

Corollary 1. We have
𝒟
[

daw(𝑎𝑡)
]

(𝑠) = 𝜋3∕2

8
1

√

𝑠2 + 𝑎2
⋅ (12)

Proof. We put

𝑓 (𝑡) = exp
(

−𝑡2

4𝑎2

)

(13)

in (6) of Lemma 1. Using the formula8 Entry (18), p. 73, we have

ℱ𝑠
[

𝑓 (𝑡)
]

(𝑢) = ℱ𝑠

[

exp
(

−𝑡2

4𝑎2

)]

(𝑢) = −𝑖
√

𝜋 exp
(

−𝑎2𝑢2
)

erf(𝑖𝑎𝑢) (14)
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Using Equation (2), we have

ℱ𝑠

[

exp
(

−𝑡2

4𝑎2

)]

(𝑢) = 2𝑎 daw(𝑎𝑢) (15)

Using Equation (5) and the formula8 Entry (3), p. 144, we have

ℒ2

[

1
𝑡
exp

(

−𝑡2

4𝑎2

)](

1
2𝑠

)

= 1
2
ℒ
[

1
𝑡1∕2

exp
( −𝑡
4𝑎2

)

]

( 1
2𝑠2

)

= 𝜋1∕2 𝑎𝑠
√

𝑠2 + 𝑎2
(16)

Now the assertion (12) of Corollary 1 follows upon substituting Equations (13), (15), and (16) into (6) of Lemma 1.

The next iteration identity shows the second iteration of the Dawson transform (3) is the Glasser transform defined by

𝒢
[

𝑓 (𝑡)](𝑠) =

∞

∫
0

𝑓 (𝑡)
√

𝑡2 + 𝑠2
𝑑𝑡. (17)

Lemma 2. The iteration identity
𝒟
[

𝒟 [𝑓 (𝑡)](𝑢)
]

(𝑠) = 𝜋3∕2

8
𝒢 [𝑓 (𝑡)](𝑠) (18)

holds true, if the integrals involved converge absolutely.

Proof. Using the definition (3) of Dawson transform, we get

𝒟
[

𝒟 [𝑓 (𝑡)](𝑢)
]

(𝑠) =

∞

∫
0

daw(𝑢𝑠)
⎛

⎜

⎜

⎝

∞

∫
0

daw(𝑢𝑡)𝑓 (𝑡) 𝑑𝑡
⎞

⎟

⎟

⎠

𝑑𝑢. (19)

Changing the order of the integration in Equation (19), we have

𝒟
[

𝒟 [𝑓 (𝑡)](𝑢)
]

(𝑠) =

∞

∫
0

𝑓 (𝑡)
⎛

⎜

⎜

⎝

∞

∫
0

daw(𝑢𝑠)daw(𝑢𝑡) 𝑑𝑢
⎞

⎟

⎟

⎠

𝑑𝑡. (20)

and again using the definition (3) of Dawson transform, we express Equation (20) as

𝒟
[

𝒟 [𝑓 (𝑡)](𝑢)
]

(𝑠) =

∞

∫
0

𝑓 (𝑡)𝒟
[

daw(𝑡𝑢)
]

(𝑠) 𝑑𝑡. (21)

Using Equation (12) of Corollary (1), we obtain

𝒟
[

𝒟 [𝑓 (𝑡)](𝑢)
]

(𝑠) = 𝜋3∕2

8

∞

∫
0

𝑓 (𝑡)
√

𝑡2 + 𝑠2
𝑑𝑡. (22)

Now the assertion (18) of Lemma 2 follows from Equation (22) and the definition (17) of the Glasser transform.

The next iteration identities are for the Dawson transform (3), the ℒ2-transform (4), and the Widder transform defined by

𝒲
[

𝑓 (𝑡)](𝑠) =

∞

∫
0

𝑡𝑓 (𝑡)
𝑡2 + 𝑠2

𝑑𝑡. (23)

Lemma 3. The iteration identities

ℒ2

[

𝒟
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) = 𝜋1∕2

4𝑦
𝒲

[

𝑓 (𝑡)
]

(𝑠) (24)

and

𝒟
[

𝑢ℒ2
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) = 𝜋1∕2𝑠
4

𝒲
[

𝑓 (𝑡)
𝑡

]

(𝑠) (25)

hold true, if the integrals involved converge absolutely.
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Proof. Using the definition (4) and the definition (3) of Dawson transform, we have

ℒ2

[

𝒟
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) =

∞

∫
0

𝑢 exp
(

−𝑢2𝑠2
)

⎛

⎜

⎜

⎝

∞

∫
0

daw(𝑢𝑡)𝑓 (𝑡) 𝑑𝑡
⎞

⎟

⎟

⎠

𝑑𝑢. (26)

Changing the order of the integration in Equation (26) and using the definition (4), we get

ℒ2

[

𝒟
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) =

∞

∫
0

𝑓 (𝑡)ℒ2
[

daw(𝑢𝑡)
]

(𝑠) 𝑑𝑡. (27)

Using the identity (5), we express Equation (27) as

ℒ2

[

𝒟
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) = 1
2

∞

∫
0

𝑓 (𝑡)ℒ
[

daw(𝑡
√

𝑢)
]

(𝑠2) 𝑑𝑡. (28)

Using the formula1 42:10:8, p. 432, we obtain

ℒ2

[

𝒟
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) = 𝜋1∕2

4𝑠

∞

∫
0

𝑡𝑓 (𝑡)
𝑡2 + 𝑠2

𝑑𝑡. (29)

Now the assertion Equation (24) follows from the definition (23) of the Widder transform.
The proof of the assertion Equation (25) is similar.

The next iteration identitity is for the Dawson transform (3), the ℒ2-transform (4), and the Glasser transform (17).

Lemma 4. The iteration identitity

𝒟
[

ℒ2
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) = 1
2
𝒢
[

𝑡𝑓 (𝑡)arcsinh(𝑡∕𝑠)
]

(𝑠), (30)

holds true, if the integrals involved converge absolutely.

Proof. Using the definition (3) of the Dawson transform, the definition (4) of the ℒ2-transform, and changing the order of
integration, we have

𝒟
[

ℒ2
[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) =

∞

∫
0

𝑡 𝑓 (𝑡)ℒ2

[

daw(𝑠𝑢)
𝑢

]

(𝑡) 𝑑𝑡. (31)

Using the formula1 42:10:4, p. 431, we obtain

ℒ2

[

daw(𝑠𝑢)
𝑢

]

(𝑡) =
arcsinh(𝑡∕𝑠)
2(𝑡2 + 𝑠2)1∕2

. (32)

The proof of the assertion Equation (30) follows upon substituting Equation (32) into Equation (31) and using the definition
(17) of the Glasser transform.

The next iteration identitity is for the Dawson transform (3), and the ℒ2-transform (4).

Lemma 5. The iteration identitity

𝒟
[

1
𝑢
ℒ2

[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) = 𝜋1∕2

2

∞

∫
0

𝑡 arctan
(𝑠
𝑡

)

𝑓 (𝑡) 𝑑𝑡, (33)

holds true, if the integrals involved converge absolutely.

Proof. Using the definition (3) of the Dawson transform, the definition (4) of the ℒ2-transform, and changing the order of
integration, we have

𝒟
[

1
𝑢
ℒ2

[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) =

∞

∫
0

𝑡 𝑓 (𝑡)ℒ2

[

daw(𝑠𝑢)
𝑢2

]

(𝑡) 𝑑𝑡. (34)
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Using the identity (5) and the property of the Laplace transform obtain

ℒ
[

𝑓 (
√

𝑡)
𝑡

]

(𝑢2) =

∞

∫
𝑢

2𝑢ℒ
[

𝑓 (
√

𝑡)
]

(𝑢2) 𝑑𝑢, (35)

in Equation (34), we obtain

𝒟
[

1
𝑢
ℒ2

[

𝑓 (𝑡)
]

(𝑢)
]

(𝑠) = 1
2

∞

∫
0

𝑡 𝑓 (𝑡)ℒ
[daw

(

𝑠 𝑢1∕2
)

𝑢

]

(𝑡2) 𝑑𝑡

= 1
2

∞

∫
0

𝑡 𝑓 (𝑡)
⎛

⎜

⎜

⎝

∞

∫
𝑡

2𝑣ℒ
[

daw
(

𝑠 𝑢1∕2
)

]

(𝑣2) 𝑑𝑣
⎞

⎟

⎟

⎠

𝑑𝑡 (36)

Now the assertion Equation (33) follows from the definition8 of the Laplace transform and the formula1 42:10:8, p. 431.

3 PARSEVAL-GOLDSTEIN RELATIONSHIPS AND EXCHANGE IDENTITIES

We start with the Parseval-Goldstein relationships for the Dawson integral (3), the Fourier sine transform (9), and the ℒ2-
transform (4).

Theorem 1. The Parseval-Goldstein relationships
∞

∫
0

𝒟
[

𝑓 (𝑡)
]

(𝑠)ℱ𝑠
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 = 𝜋
4

∞

∫
0

𝑓 (𝑡)
𝑡

ℒ2

[

𝑔(𝑢)
𝑢

](

1
2𝑡

)

𝑑𝑡 (37)

and
∞

∫
0

𝒟
[

𝑓 (𝑡)
]

(𝑠)ℱ𝑠
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 = 𝜋
4

∞

∫
0

𝑔(𝑢)ℒ2

[

1
𝑡2
𝑓
(

1
𝑡

)](

𝑢
2

)

𝑑𝑢 (38)

hold true, if the integrals involved converge absolutely.

Proof. Using the definition (3) of the Dawson transform, we get
∞

∫
0

𝒟
[

𝑓 (𝑡)
]

(𝑠)ℱ𝑠
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 =

∞

∫
0

ℱ𝑠
[

𝑔(𝑢)
]

(𝑠)
⎛

⎜

⎜

⎝

∞

∫
0

daw(𝑠𝑡) 𝑓 (𝑡) 𝑑𝑡
⎞

⎟

⎟

⎠

𝑑𝑠 (39)

Changing the order of the integration in Equation (39) and using the definition (3) of the Dawson transform, we have
∞

∫
0

𝒟
[

𝑓 (𝑡)
]

(𝑠)ℱ𝑠
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 =

∞

∫
0

𝑓 (𝑡)𝒟
[

ℱ𝑠
[

𝑔(𝑢)
]

(𝑠)
]

(𝑡) 𝑑𝑡 (40)

Using the iteration identity (6), we obtain the assertion (37) of Theorem 1.
The proof of the assertion Equation (38) of Theorem 1 similarly follows first using the definition (9) of the Fourier sine

transform, changing the order of integration, and using the iteration identity (7).

The following exchange identity forℒ2-transform (4) is an immediate result of the iteration identities (37) and (38) of Theorem
1.

Corollary 2. The exchange identity
∞

∫
0

𝑓 (𝑡)
𝑡

ℒ2

[

𝑔(𝑢)
𝑢

](

1
2𝑡

)

𝑑𝑡 =

∞

∫
0

𝑔(𝑢)ℒ2

[

1
𝑡2
𝑓
(

1
𝑡

)](

𝑢
2

)

𝑑𝑢, (41)

hold true, provided that the integrals involved converge absolutely.



6 Durmuş ALBAYRAK, Fatih AYLIKCI, Ayşe Neşe DERNEK, Osman YÜREKLİ

The next Parseval-Goldstein relationships are for the Dawson integral (3), the Widder transform (23), and the ℒ2-transform
(4).

Theorem 2. The Parseval-Goldstein relationships
∞

∫
0

𝑠ℒ2
[

𝑓 (𝑡)
]

(𝑠)𝒟
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 = 𝜋1∕2

4

∞

∫
0

𝑓 (𝑡)𝒲
[

𝑔(𝑢)
]

(𝑡) 𝑑𝑡 (42)

and
∞

∫
0

𝑠ℒ2
[

𝑓 (𝑡)
]

(𝑠)𝒟
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 = 𝜋1∕2

4

∞

∫
0

𝑢𝑔(𝑢)𝒲
[

𝑓 (𝑡)
𝑡

]

(𝑢) 𝑑𝑢 (43)

hold true, if the integrals involved converge absolutely.

Proof. Using the definition (4) of the ℒ2-transform, we get
∞

∫
0

𝑠ℒ2
[

𝑓 (𝑡)
]

(𝑠)𝒟
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 =

∞

∫
0

𝑠ℒ2
[

𝑓 (𝑡)
]

(𝑠)
⎛

⎜

⎜

⎝

∞

∫
0

daw(𝑢𝑠) 𝑔(𝑢) 𝑑𝑢
⎞

⎟

⎟

⎠

𝑑𝑠 (44)

Changing the order of the integration in Equation (44) and using the definition (4) of the ℒ2-transform, we have
∞

∫
0

𝑠ℒ2
[

𝑓 (𝑡)
]

(𝑠)𝒟
[

𝑔(𝑢)
]

(𝑠) 𝑑𝑠 =

∞

∫
0

𝑔(𝑢)𝒟
[

𝑠ℒ2
[

𝑓 (𝑡)
]

(𝑠)
]

(𝑢) 𝑑𝑢 (45)

Using the iteration identity (25) of Lemma 3, we obtain the assertion (43) of Theorem 2.
The proof of the assertion Equation (42) of Theorem 2 similarly follows first using the definition (3) of the Dawson transform,

changing the order of integration, and using the iteration identity (24).

The following exchange identity for the Widder transform (23) is an immediate result of the iteration identities (42) and (43)
of Theorem 2.

Corollary 3. The exchange identity
∞

∫
0

𝑓 (𝑠)𝒲
[

𝑔(𝑡)
]

(𝑠) 𝑑𝑠 =

∞

∫
0

𝑡𝑔(𝑡)𝒲
[

𝑓 (𝑠)
𝑠

]

(𝑡) 𝑑𝑡 (46)

hold true, if the integrals involved converge absolutely.

4 SOME ILLUSTRATIVE EXAMPLES

The next three examples are illustration for Equation (6) of Lemma 1.

Example 1. If 0 < 𝜇 < 1, then
𝒟
[

𝑡𝜇−1
]

(𝑠) = 𝜋1∕2

4𝑠𝜇
tan

(𝜋𝜇
2

)

Γ
(𝜇
2

)

. (47)

Proof. We set
𝑓 (𝑡) = 𝑡−𝜇. (48)

in Equation (6) of Lemma 1. Using the formula8 Entry (1), p. 68, and the identity (5), respectively, we have

ℱ𝑠
[

𝑓 (𝑡)
]

(𝑠) = 𝑠𝜇−1Γ (1 − 𝜇) cos
(𝜇𝜋

2

)

. (49)

and
ℒ2

[

1
𝑡1+𝜇

]

( 1
2𝑠

)

= 1
2
ℒ
[

1
𝑡(1+𝜇)∕2

]

( 1
4𝑠2

)

= 1
2
Γ
(1
2
−

𝜇
2

)

(2𝑠)1−𝜇. (50)

Now the assertion (47) follows upon substituting Equations (48), (49) and (50) to Equation (6) of Lemma 1.
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Example 2. If ℜ(𝑎) > 0 and | arg 𝑎| < 𝜋
2

, then

𝒟
[

exp (−𝑎𝑡)
]

(𝑠) = − 1
4𝑠

exp
(

𝑎2

4𝑠2

)

Ei
(

− 𝑎2

4𝑠2

)

. (51)

Proof. We set
𝑓 (𝑡) = 𝑡

𝑡2 + 𝑎2
. (52)

in Equation (6) of Lemma 1. Using the formula8 Entry (15), p. 65, we have

ℱ𝑠

[

𝑡
𝑡2 + 𝑎2

]

(𝑠) = 𝜋
2
exp(−𝑎𝑠). (53)

Using the identity (5) and the formula8 Entry (7), p. 137

ℒ2

[

1
𝑡2 + 𝑎2

]

( 1
2𝑠

)

= 1
2
ℒ
[

1
𝑡 + 𝑎2

]

( 1
4𝑠2

)

= −1
2
exp

(

𝑎2

4𝑠2

)

Ei
(

− 𝑎2

4𝑠2

)

. (54)

Now the assertion (51) follows upon substituting Equations (52), (53) and (54) to Equation (6) of Lemma 1.

Example 3. If ℜ(𝑎) > 0, then
𝒟
[

𝑡
𝑡2 + 𝑎2

]

(𝑠) = 𝜋3∕2

4
exp

(

𝑎2𝑠2
)

erfc (𝑎𝑠) . (55)

Proof. We set
𝑓 (𝑡) = exp(−𝑎𝑡). (56)

in Equation (6) of Lemma 1. Using the formula8 Entry (1), p. 72, we have

ℱ𝑠

[

exp(−𝑎𝑡)
]

(𝑠) = 𝑠
𝑠2 + 𝑎2

. (57)

Using the identity (5) and the formula8 Entry (33), p. 147, we have

ℒ2

[

1
𝑡
exp(−𝑎𝑡)

]

( 1
2𝑠

)

= 1
2
ℒ
[

1
𝑡1∕2

exp
(

−𝑎𝑡1∕2
)

]

( 1
4𝑠2

)

= 𝜋1∕2𝑠 exp
(

𝑎2𝑠2
)

erfc (𝑎𝑠) . (58)

Now the assertion (55) follows upon substituting Equations (56), (57), and (58) to Equation (6) of Lemma 1.

The next two examples are illustrations for Equation (18) of Lemma 2.

Example 4. We have
𝒟
[

arcsinh(𝑎∕𝑡)
(𝑡2 + 𝑎2)1∕2

]

(𝑠) = 𝜋3∕2

8
exp

(

𝑎2𝑠2

2

)

K0

(

𝑎2𝑠2

2

)

, (59)

where K0 is the Macdonald function of order zero.

Proof. We set
𝑓 (𝑡) = exp(−𝑎2𝑡2) (60)

in Equation (18) of Lemma 2. Using the formula1 42:10:4, p. 431, we have

𝒟
[

exp
(

−𝑎2𝑡2
) ]

(𝑠) =
arcsinh(𝑎∕𝑠)
2(𝑠2 + 𝑎2)1∕2

. (61)

Using the formula8 Entry (13), p. 138 and the identity (5), we have

𝒢
[

exp
(

−𝑎2𝑡2
) ]

(𝑠) = ℒ2

[

1
𝑡(𝑡2 + 𝑠2)1∕2

]

(𝑎)

= 1
2
ℒ
[

1
𝑡1∕2(𝑡 + 𝑠2)1∕2

]

(

𝑎2
)

= 1
2
exp

(

𝑎2𝑠2

2

)

K0

(

𝑎2𝑠2

2

)

. (62)

Now the assertion (59) follows upon substituting Equations (60), (61) and (62) to Equation (18) of Lemma 2.
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Example 5. We have

𝒟
[

1
𝑡
exp

(

−𝛽2

4𝑡2

)]

(𝑠) = 𝜋3∕2

4
[

I0(𝛽𝑠) − L0(𝛽𝑠)
]

, (63)

where I0 is the modified Bessel function of the first kind of order zero and L0 is the modified Struve function order zero.

Proof. We set
𝑓 (𝑡) = sin(𝛽𝑡) (64)

in Equation (18) of Lemma 2. Using the definition (17), the definition (9) and the formula1 Entry (6), p. 68, we have

𝒢
[

sin(𝛽𝑡
]

(𝑠) = ℱ𝑠

[

(𝑡2 + 𝑠2)−1∕2
]

(𝛽) = 𝜋
2
[

I0(𝛽𝑠) − L0(𝛽𝑠)
]

. (65)

Now the assertion (63) follows upon substituting Equations (64) and (65) to the iteration identity (18) of Lemma 2, and finally
using Equation (11).

Example 6. We have
𝒟
[

1
𝑡2

daw
( 𝑎
2𝑡

)

]

(𝑠) = 𝜋3∕2

4𝑎
[

1 − exp(−𝑎𝑠)
]

. (66)

Proof. If we set
𝑓 (𝑡) =

sin(𝑎𝑡)
𝑡

(67)
in Equation (33) of Lemma 5, we have

𝒟

[

1
𝑢
ℒ2

[

sin(𝑎𝑡)
𝑡

]

(𝑢)

]

(𝑠) = 𝜋1∕2

2

∞

∫
0

arctan
(𝑠
𝑡

)

sin(𝑎𝑡) 𝑑𝑡. (68)

Using the formula12 3.23, p. 126 and using Equation (2), we have

ℒ2

[

sin(𝑎𝑡)
𝑡

]

(𝑢) = ℱ𝑠

[

exp
(

− 𝑢2𝑡2
)

]

(𝑎) = 1
𝑢

daw
( 𝑎
2𝑢

)

⋅ (69)

Using the integration by parts on the right-hand side of Equation (68) and the definition of the Fourier cosine transform, we have
∞

∫
0

arctan
(𝑠
𝑡

)

sin(𝑎𝑡) 𝑑𝑡 = 𝜋
2𝑎

− 𝑠
𝑎

∞

∫
0

cos(𝑎𝑡)
𝑡2 + 𝑠2

𝑑𝑡 = 𝜋
2𝑎

− 𝑠
𝑎
ℱ𝑐

[

1
𝑡2 + 𝑠2

]

(𝑎) (70)

where the Fourier cosine transform is defined by

ℱ𝑐
[

𝑓 (𝑡)](𝑠) =

∞

∫
0

cos(𝑡𝑠)𝑓 (𝑡) 𝑑𝑡, (71)

Using the formula8 Entry (11), p. 8
∞

∫
0

arctan
(𝑠
𝑡

)

sin(𝑎𝑡) 𝑑𝑡 = 𝜋
2𝑎

[

1 − exp(−𝑎𝑠)
]

(72)

Now the assertion (66) follows upon substituting Equation (70) into (69), substituting Equation (72) to (68) and using Lemma
5.

Example 7. We have
𝒟
[

1
𝑡2
exp

(

−𝑎2

4𝑡2

)]

(𝑠) = 1
2𝑎

[

exp(−𝑎𝑠)Ei(𝑎𝑠) − exp(𝑎𝑠)Ei(−𝑎𝑠)
]

, (73)

where Ei(𝑡) is the exponential integral function.

Proof. If we set
𝑓 (𝑡) =

cos(𝑎𝑡)
𝑡

(74)
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in Equation (33) of Lemma 5, we have

𝒟

[

1
𝑢
ℒ2

[

cos(𝑎𝑡)
𝑡

]

(𝑢)

]

(𝑠) = 𝜋1∕2

2

∞

∫
0

arctan
(𝑠
𝑡

)

cos(𝑎𝑡) 𝑑𝑡. (75)

Using the definition (4), the definition (71), and the formula12 3.17, p. 11, we have

ℒ2

[

cos(𝑎𝑡)
𝑡

]

(𝑠) = F𝑐
[

exp
(

−𝑡2𝑠2
)]

(𝑎) = 𝜋1∕2

2𝑠
exp

(

− 𝑎2

4𝑠2

)

. (76)

Using the integration by parts on the right hand side of Equation (68) and the definition (23) of the Widder transform, we have
∞

∫
0

arctan
(𝑠
𝑡

)

cos(𝑎𝑡) 𝑑𝑡 = − 𝑠
𝑎

∞

∫
0

sin(𝑎𝑡)
𝑡2 + 𝑦2

𝑑𝑡 = 𝑠
𝑎
𝒲

[

sin(𝑎𝑡)
𝑡

]

(𝑠) (77)

Using the formula13 Entry (A5), p. 248

𝒲
[

sin(𝑎𝑡)
𝑡

]

(𝑠) = 1
2𝑠

[

exp(−𝑎𝑠)Ei(𝑎𝑠) − exp(𝑎𝑠)Ei(−𝑎𝑠)
]

(78)

Now the assertion (73) follows upon substituting Equation (78) into (76), substituting Equation (76) to (68) and using Lemma
5.

5 CONCLUSION

In this work, after introducing the Dawson Transform, we establish various iteration identities and Parseval-Goldstein relation-
ships involving the Dawson Transform, the Laplace Transform, and the ℒ2-Transform. Our results show that evaluating integral
transforms or improper integrals of well-known special functions can be done in an elementary manner using the iteration
identities and Parseval-Goldstein type relations presented in this work.
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