References
Aggarwal R, Kumar A, Thakur HL (1997) Effect of Sclerotinia rot on oil
quality in low erucic acid cultivars of rapeseed. cruciferae newsletter
19:103-104
Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, Oxidative
Stress, and Signal Transduction. Annual Review of Plant Biology 55
(1):373-399
Birchler JA, Yang H (2022) The multiple fates of gene duplications:
Deletion, hypofunctionalization, subfunctionalization,
neofunctionalization, dosage balance constraints, and neutral variation.
Plant Cell 34 (7):2466-2474. doi:10.1093/plcell/koac076
Bo Y, Srivastava S, De Yholos MK, Kav N (2007) Transcriptional profiling
of canola (Brassica napus L.) responses to the fungal pathogenSclerotinia sclerotiorum . Plant Science 173 (2):156-171
Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia
sclerotiorum . Canadian Journal of Plant Pathology 16 (2):93-108
Bolton M, Thomma B, Nelson BD (2010) Sclerotinia sclerotiorum(Lib.) de Bary: Biology and molecular traits of a cosmopolitanPathogen.
Molecular Plant Pathology 7 (1):1-16
Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering
the diploid ancestral genome of the Mesohexaploid Brassica rapa .
Plant Cell 25 (5):1541-1554. doi:10.1105/tpc.113.110486
Clough SJ, Bent AF (1998) Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana .
Plant Journal 16 (6):735-743. doi:DOI 10.1046/j.1365-313x.1998.00343.x
Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and
subcellular localization of members of the Arabidopsisglutathione transferase superfamily. J Exp Bot 60 (4):1207-1218.
doi:10.1093/jxb/ern365
Droog F, Hooykaas P, Van Der Zaal BJ (1995) 2,4-Dichlorophenoxyacetic
acid and related chlorinated compounds inhibit two auxin-regulated
Type-III tobacco glutathione S-transferases. Plant Physiol 107
(4):1139-1146. doi:10.1104/pp.107.4.1139
Dun X, Shen W, Hu K, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu
T, Lagercrantz U (2014) Neofunctionalization of duplicated Tic40genes caused a gain-of-function variation related to male fertility inBrassica oleracea lineages. Plant Physiol 166 (3):1403-1419.
doi:10.1104/pp.114.246470
Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases:
enzymes with multiple functions in sickness and in health. Trends in
Plant Science 5 (5):193-198
Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic
and necrotrophic pathogens. Annu Rev Phytopathol 43:205-227.
doi:10.1146/annurev.phyto.43.040204.135923
Gong Q, Yang ZE, Chen EY, Sun GF, He SP, Butt HI, Zhang CJ, Zhang XY,
Yang ZR, Du XM, Li FG (2018) A Phi-class glutathione S-transferase Gene
for Verticillium Wilt resistance in Gossypium arboreum Identified
in a genome-wide association study. Plant Cell Physiol 59 (2):275-289.
doi:10.1093/pcp/pcx180
GratãO PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy
metal-stressed plants a little easier. Functional Plant Biology 32
(6):481-494
Gullner G, Komives T, Király L, Schröder P (2018) Glutathione
S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant
Science 9:1836
Hu HZ, Tang YW, Wu J, Chen FZ, Yang YD, Pan XC, Dong X, Jin XD, Liu S,
Du XZ (2021) Brassica napus Mediator Subunit16 induces
BnMED25-and BnWRKY33-activated defense signaling to conferSclerotinia sclerotiorum resistance. Frontiers in Plant Science
12:663536. doi:ARTN 66353610.3389/fpls.2021.663536
Jianan Z, Li W, Zhang Y, Song W, Jiang H, Zhao J, Zhan Y, Teng W, Qiu L,
Zhao X, Han Y (2021) Identification of glutathione transferase gene
associated with partial resistance to Sclerotinia stem rot of soybean
using genome-wide association and linkage mapping. Theor Appl Genet 134
(8):2699-2709. doi:10.1007/s00122-021-03855-6
Jiang S, Chen M, He N, Chen X, Wang N, Sun Q, Zhang T, Xu H, Fang H,
Wang Y, Zhang Z, Wu S, Chen X (2019) MdGSTF6, activated by MdMYB1, plays
an essential role in anthocyanin accumulation in apple. Hortic Res 6:40.
doi:10.1038/s41438-019-0118-6
Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating
abiotic stresses including arsenic Detoxification in Plants. Front Plant
Sci 9:751. doi:10.3389/fpls.2018.00751
Lagercrantz U (1998) Comparative mapping between Arabidopsis
thaliana and Brassica nigra indicates that Brassica genomes have
evolved through extensive genome replication accompanied by chromosome
fusions and frequent rearrangements. Genetics 150 (3):1217-1228
Li ZK, Chen B, Li XX, Wang JP, Ma ZY (2019) A newly-identified cluster
of glutathione S-transferase genes provides Verticillium wilt resistance
in cotton. The Plant Journal 98 (2):213-227
Liao W, Ji L, Wang J, Chen Z, Ye M, Ma H, An X (2014) Identification of
glutathione S-transferase genes responding to pathogen infestation inPopulus tomentosa . Funct Integr Genomics 14 (3):517-529.
doi:10.1007/s10142-014-0379-y
Lin L, Fan J, Li P, Liu D, Ren S, Lin K, Fang Y, Lin C, Wang Y, Wu J
(2022) The Sclerotinia sclerotiorum -inducible promoter pBnGH17D7
in Brassica napus : isolation, characterization, and application
in host-induced gene silencing. J Exp Bot 73 (19):6663-6677.
doi:10.1093/jxb/erac328
Liu DX, Wu J, Lin L, Li PP, Li SF, Wang Y, Li J, Sun QF, Liang JS, Wang
YP (2021) Overexpression of Cinnamoyl-CoA Reductase 2 inBrassica napus increases resistance to Sclerotinia
sclerotiorum by affecting lignin biosynthesis. Frontiers in Plant
Science 12:732733. doi:ARTN 73273310.3389/fpls.2021.732733
Liu F, Li X, Wang M, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J (2018)
Interactions of WRKY15 and WRKY33 transcription factors and their roles
in the resistance of oilseed rape to Sclerotinia infection. Plant
Biotechnol J 16 (4):911-925. doi:10.1111/pbi.12838
Liu YJ, Han XM, Ren LL, Yang HL, Zeng QY (2013) Functional divergence of
the glutathione S-transferase supergene family in Physcomitrella
patens reveals complex patterns of large gene family evolution in land
plants. Plant Physiology 161 (2):773-786
McCartney HA, Doughty KJ, Norton G, Booth EJ, Kightly SPJ, Landon G,
West G, Walker KC, Thomas JE (1999) A study of the effect of disease on
seed quality parameters of oilseed rape. Proceedings 10th International
Rapeseed Congress: New Horizons for an Old Crop, Canberra, 26-29
September 1999
Mei J, Ding Y, Li Y, Tong C, Du H, Yu Y, Wan H, Xiong Q, Yu J, Liu S
(2016) Transcriptomic comparison between Brassica oleracea and
rice (Oryza sativa ) reveals diverse modulations on cell death in
response to Sclerotinia sclerotiorum . Scientific reports 6
(1):33706
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM
(2012) Hormonal modulation of plant immunity. Annual Review of Cell and
Developmental Biology 28:489-521.
doi:10.1146/annurev-cellbio-092910-154055
Roxas VP, Smith RK, Jr., Allen ER, Allen RD (1997) Overexpression of
glutathione S-transferase/glutathione peroxidase enhances the growth of
transgenic tobacco seedlings during stress. Nat Biotechnol 15
(10):988-991. doi:10.1038/nbt1097-988
Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A,
Singh KB (2009) The Arabidopsis glutathione transferase gene family
displays complex stress regulation and co-silencing multiple genes
results in altered metabolic sensitivity to oxidative stress. Plant J 58
(1):53-68. doi:10.1111/j.1365-313X.2008.03761.x
Sonia EV, Maldonado AM, Francisco AR, Berta DLS, Fernando R, Fernando
PA, Juan MB, Caballero JL (2009) Evidence for a positive regulatory role
of strawberry (Fragaria ×ananassa ) Fa WRKY1 andArabidopsis At WRKY75 proteins in resistance. Journal of
Experimental Botany 60 (11):3043-3065
Tian M, von Dahl CC, Liu PP, Friso G, van Wijk KJ, Klessig DF (2012) The
combined use of photoaffinity labeling and surface plasmon
resonance-based technology identifies multiple salicylic acid-binding
proteins. Plant J 72 (6):1027-1038. doi:10.1111/tpj.12016
Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani MK (2020)
Glutathione S-transferase: a versatile protein family. 3 Biotech 10
(7):321. doi:10.1007/s13205-020-02312-3
Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X (2014) Overexpression
of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia
sclerotiorum. Mol Plant Pathol 15 (7):677-689. doi:10.1111/mpp.12123
Wang Z, Zhang WH, Ma LY, Li X, Zhao FY, Tan XL (2020) Overexpression ofBrassica napus NPR1 enhances resistance toSclerotinia sclerotiorum in oilseed rape. Physiol Mol Plant P
110:101460. doi:ARTN 10146010.1016/j.pmpp.2020.101460a
Wasternack C, Song S (2017) Jasmonates: biosynthesis, metabolism, and
signaling by proteins activating and repressing transcription. J Exp Bot
68 (6):1303-1321. doi:10.1093/jxb/erw443
Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J
(2016) Genome-wide association analysis and differential expression
analysis of resistance to Sclerotinia stem rot in Brassica
napus . Plant Biotechnol J 14 (6):1368-1380. doi:10.1111/pbi.12501
Wei L, Zhu Y, Liu R, Zhang A, Zhu M, Xu W, Lin A, Lu K, Li J (2019)
Genome wide identification and comparative analysis of glutathione
transferases (GST) family genes in Brassica napus . Sci Rep 9
(1):9196. doi:10.1038/s41598-019-45744-5
Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M,
Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease
resistances suggests a pleiotropic genetic basis and implicates aGST gene. Proc Natl Acad Sci USA 108 (18):7339-7344.
doi:10.1073/pnas.1011739108
Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y
(2016) Comparative transcriptomic analysis uncovers the complex genetic
network for resistance to Sclerotinia sclerotiorum inBrassica napus . Scientific Reports 6:19007
Yin NW, Li B, Liu X, Liang Y, Lian JP, Xue YF, Qu CM, Lu K, Wei LJ, Wang
R, Li JA, Chai YR (2022) Two types of cinnamoyl-CoA reductase function
divergently in accumulation of lignins, flavonoids and glucosinolates
and enhance lodging resistance in Brassica napus . Crop J 10
(3):647-660. doi:10.1016/j.cj.2021.10.0022214-5141
Zang Y, Xu C, Xuan L, Ding L, Zhu J, Si Z, Zhang T, Hu Y (2021)
Identification and characteristics of a novel gland-forming gene in
cotton. Plant J 108 (3):781-792. doi:10.1111/tpj.15477
Zhao, J., Wang, L., Doerge, R. W, Chen, Z. J, Grau, C. R (2007) Analysis
of gene expression profiles in response to Sclerotinia
sclerotiorum in Brassica napus . Planta 227:13-24
Zhao J, Buchwaldt L, Rimmer SR, Sharpe A, Mcgregor L, Bekkaoui D,
Hegedus D (2010) Patterns of differential gene expression inBrassica napus cultivars infected with Sclerotinia
sclerotiorum . Molecular Plant Pathology 10 (5):635-649