References
[1] Roy, S.; Chikkerur, J.; Roy, S. C.; Dhali, A.; Kolte, A. P.;
Sridhar, M.; Samanta, A. K. Tagatose as a potential nutraceutical:
Production, properties, biological roles, and applications. J Food
Sci. 2018 , 83 (11), 2699-2709.
https://doi.org/10.1111/1750-3841.14358
[2] Buemann, B.; Toubro, S.; Raben, A.; Blundell, J.; Astrup, A. The
acute effect of D-tagatose on food intake in human
subjects. Br. J. Nutr. 2007 . 84 (2), 227-231.
https://doi.org/10.1017/S000711450000146X
[3] Guerrero-Wyss, M.; Duran Aguero, S.; Angarita Davila, L.D-tagatose is a promising sweetener to control
glycaemia: a new functional food. Biomed Res Int. 2018 ,
8718053. https://doi.org/10.1155/2018/8718053
[4] de Bruyn, C. A. L.; van Ekenstein, W. A. Action des alcalis sur
les sucres. V: Transformation de la galactose. Les tagatoses, et la
galtose. Recueil des Travaux Chimiques des Pays-Bas et de la
Belgique. 1897 , 16 (9), 262-273.
https://doi.org/10.1002/recl.18970160903
[5] Zhang, G.; An, Y.; Parvez, A.; Zabed, H. M.; Yun, J.; Qi, X.
Exploring a highly D-galactose specificL-arabinose isomerase from Bifidobacterium
adolescentis for D-tagatose production. Front
Bioeng Biotechnol. 2020 , 8 , 377.
https://doi.org/10.3389/fbioe.2020.00377
[6] Zheng, Z.; Mei, W.; Xia, M.; He, Q.; Ouyang, J. Rational design
of Bacillus coagulans NL01 L-arabinose isomerase
and use of its F279I variant in D-tagatose production.J. Agric. Food Chem. 2017 , 65 (23), 4715-4721.
https://doi.org/10.1021/acs.jafc.7b01709
[7] Jeong, D. W.; Hyeon, J. E.; Shin, S. K.; Han, S. O. Trienzymatic
complex system for isomerization of agar-derivedD-galactose into D-tagatose as a
low-calorie sweetener. J Agric Food Chem. 2020 ,68 (10), 3195-3202.https://doi.org/10.1021/acs.jafc.9b07536
[8] Hong, Y. H.; Lee, D. W.; Lee, S. J.; Choe, E. A.; Kim, S. B.;
Lee, Y. H.; Cheigh, C. I.; Pyun, Y. R. Production ofD-tagatose at high temperatures using immobilizedEscherichia coli cells expressing L-arabinose
isomerase from Thermotoga neapolitana . Biotechnol Lett.2007 , 29 (4), 569-574.https://doi.org/10.1007/s10529-006-9277-2
[9] Kim, J. H.; Lim, B. C.; Yeom, S. J.; Kim, Y. S.; Kim, H. J.;
Lee, J. K.; Lee, S. H.; Kim, S. W.; Oh, D. K. Differential selectivity
of the Escherichia coli cell membrane shifts the equilibrium for
the enzyme-catalyzed isomerization of galactose to tagatose. Appl
Environ Microbiol. 2008 , 74 (8), 2307-2313.https://doi.org/10.1128/AEM.02691-07
[10] Sha, F.; Zheng, Y.; Chen, J.; Chen, K.; Cao, F.; Yan, M.;
Ouyang, P. D-tagatose manufacture through bio-oxidation
of galactitol derived from waste xylose mother liquor. Green
Chem. 2018 , 20 (10), 2382-2391.https://doi.org/10.1039/C8GC00091C
[11] Liu, J. J.; Zhang, G. C.; Kwak, S.; Oh, E. J.; Yun, E. J.;
Chomvong, K.; Cate, J. H. D.; Jin, Y. S. Overcoming the thermodynamic
equilibrium of an isomerization reaction through oxidoreductive
reactions for biotransformation. Nat Commun. 2019 ,10 (1), 1356. https://doi.org/10.1038/s41467-019-09288-6
[12] Ding, J.; S. You.; W. Ba.; H. Zhang.; H. Chang.; W. Qi.; R.
Su.; Z. He. Bifunctional Utilization of Whey Powder as a Substrate and
Inducer for Beta-Farnesene Production in an Engineered Escherichia
Coli . Bioresour Technol . 2021 , 341, 125739.
https://doi.org/10.1016/j.biortech.2021.125739
[13] Watanabe, S.; Kodaki, T.; Makino, K. Complete reversal of
coenzyme specificity of xylitol dehydrogenase and increase of
thermostability by the introduction of structural zinc. J Biol
Chem. 2005 , 280 (11), 10340-10349.https://doi.org/10.1074/jbc.M409443200
[14] Xu, X.; Zhang, W.; You, C.; Fan, C.; Ji, W.; Park, J. T.; Kwak,
J.; Chen, H.; Zhang, Y. P. J.; Ma, Y. Biosynthesis of Artificial Starch
and Microbial Protein from Agricultural Residue. Sci. Bull.2023, 68 (2), 214-23.
https://dx.doi.org/10.1016/j.scib.2023.01.006.
[15] Zhang, G.; Quin, M. B.; Schmidt-Dannert, C. Self-assembling
protein scaffold system for easy in vitro coimmobilization of
biocatalytic cascade enzymes. ACS Catalysis, 2018 ,8 (6), 5611-5620.https://doi.org/10.1021/acscatal.8b00986
[16] Bortone, N.; Fidaleo, M.
Immobilization of the recombinant (His)6-taggedL-arabinose isomerase from Thermotoga maritima on
epoxy and cupper-chelate epoxy supports. Food Bioprod. Process.2015 , 95 , 155-162.https://doi.org/10.1016/j.fbp.2015.05.002
[17] Zheng, Z.; Xie, J.; Liu, P.; Li, X.; Ouyang, J. Elegant and
efficient biotransformation for dual production ofD-tagatose and bioethanol from cheese whey powder.J. Agric. Food Chem. 2019 , 67 (3), 829-835.https://doi.org/10.1021/acs.jafc.8b05150
[18] Zhang, G.; Zabed, H. M.; An, Y.; Yun, J.; Huang, J.; Zhang, Y.;
Li, X.; Wang, J.; Ravikumar, Y.; Qi, X. Biocatalytic conversion of a
lactose-rich dairy waste into D-tagatose,D-arabitol and galactitol using sequential whole cell
and fermentation technologies. Bioresour Technol. 2022 ,358 , 127422.https://doi.org/10.1016/j.biortech.2022.127422
[19] Jayamuthunagai, J.; Srisowmeya, G.; Chakravarthy, M.; Gautam,
P. D-tagatose production by permeabilized and
immobilized Lactobacillus plantarum using whey permeate.Bioresour Technol. 2017 , 235 , 250-255.https://doi.org/10.1016/j.biortech.2017.03.123
[20] Zhang, G.; Zabed, H. M.; Yun, J.; Yuan, J.; Zhang, Y.; Wang,
Y.; Qi, X. Two-stage biosynthesis of D-tagatose from
milk whey powder by an engineered Escherichia coli strain
expressing L-arabinose isomerase fromLactobacillus plantarum . Bioresour Technol. 2020 ,305 , 123010.https://doi.org/10.1016/j.biortech.2020.123010
[21] Xu, Z.; Li, S.; Fu, F.; Li, G.; Feng, X.; Xu, H.; Ouyang, P.
Production of D-tagatose, a functional sweetener,
utilizing alginate immobilized Lactobacillus fermentum CGMCC2921
cells. Appl Biochem Biotechnol. 2012 , 166 (4),
961-973.https://doi.org/10.1007/s12010-011-9484-8
[22] Bober, J. R.; Nair, N. U. Galactose to tagatose isomerization
at moderate temperatures with high conversion and productivity.Nat Commun. 2019 , 10 (1), 4548.https://doi.org/10.1038/s41467-019-12497-8
[23] Liu, Y.; Li, S.; Xu, H.; Wu, L.; Xu, Z.; Liu, J.; Feng, X.
Efficient production of D-tagatose using a food-grade
surface display system. J. Agric. Food Chem. 2014 ,62 (28), 6756-6762.https://doi.org/10.1021/jf501937j
[24] Guo, Q.; An, Y.; Yun, J.; Yang, M.; Magocha, T. A.; Zhu, J.;
Xue, Y.; Qi, Y.; Hossain, Z.; Sun, W.; & Qi, X. EnhancedD-tagatose production by spore surface-displayedL-arabinose isomerase from isolated Lactobacillus
brevis PC16 and biotransformation. Bioresour Technol.2018 , 247 , 940-946.https://doi.org/10.1016/j.biortech.2017.09.187
[25] Liu, J.; Li, H.; Zhao, G.; Caiyin, Q.; Qiao, J. Redox cofactor
engineering in industrial microorganisms: strategies, recent
applications and future directions. J Ind Microbiol Biotechnol.2018 , 45 (5), 313-327.https://doi.org/10.1007/s10295-018-2031-7
[26] You, C.; Huang, R.; Wei, X.; Zhu, Z.; Zhang, Y. P. Protein
engineering of oxidoreductases utilizing nicotinamide-based coenzymes,
with applications in synthetic biology. Synth Syst Biotechnol.2017 , 2 (3), 208-218.https://doi.org/10.1016/j.synbio.2017.09.002
[27] Cahn, J. K.; Werlang, C. A.; Baumschlager, A.; Brinkmann-Chen,
S.; Mayo, S. L.; Arnold, F. H. A general tool for engineering the
NAD/NADP cofactor preference of oxidoreductases. ACS Synth Biol .2017 , 6 (2) , 326-333.https://doi.org/10.1021/acssynbio.6b00188
[28] Liu, W.; Zhang, Z.; Li, Y.; Zhu, L.; Jiang, L. Efficient
production of D-tagatose via DNA scaffold mediated
oxidoreductases assembly in vivo from whey powder. Food Res. Int.2023 , 166 , 112637.https://doi.org/10.1016/j.foodres.2023.112637
[29] Solanki, K.; Abdallah, W.; Banta, S. Extreme makeover:
Engineering the activity of a thermostable alcohol dehydrogenase (AdhD)
from Pyrococcus furiosus . Biotechnol J. 2016 ,11 (12), 1483-1497.https://doi.org/10.1002/biot.201600152
[30] Iorgu, A. I.; Hedison, T. M.; Hay, S.; Scrutton, N. S.
Selectivity through discriminatory induced fit enables switching of
NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases.FEBS J. 2019 , 286 (16), 3117-3128.https://doi.org/10.1111/febs.14862
[31] Maddock, D. J.; Patrick, W. M.; Gerth, M. L. Substitutions at
the cofactor phosphate-binding site of a clostridial alcohol
dehydrogenase lead to unexpected changes in substrate specificity.Protein Eng. Des. Sel. 2015 , 28 (8), 251-258.
https:// doi.org/10.1093/protein/gzv028
[32] Watanabe, S.; Saleh, A. A.; Pack, S. P.; Annaluru, N.; Kodaki,
T.; Makino, K. Ethanol production from xylose by recombinantSaccharomyces cerevisiae expressing protein engineered
NADP+-dependent xylitol dehydrogenase. J Biol
Chem. 2007 , 130 (3), 316-319.
[33] Matsushika, A.; Watanabe, S.; Kodaki, T.; Makino, K.; Inoue,
H.; Murakami, K.; Takimura, O.; Sawayama, S. Expression of protein
engineered NADP+-dependent xylitol dehydrogenase
increases ethanol production from xylose in recombinantSaccharomyces cerevisiae . Appl Microbiol Biot.2008 , 81 (2), 243-255.
https://doi.org/10.1007/s00253-008-1649-1
[34] Bastian, S.; Liu, X.; Meyerowitz, J. T.; Snow, C. D.; Chen, M.
M.; Arnold, F. H. Engineered ketol-acid reductoisomerase and alcohol
dehydrogenase enable anaerobic 2-methylpropan-1-ol production at
theoretical yield in Escherichia coli . Metab Eng.2011 , 13 (3), 345-352.
https://doi.org/10.1016/j.ymben.2011.02.004
[35] Brinkmann-Chen, S.; Flock, T.; Cahn, J. K.; Snow, C. D.;
Brustad, E. M.; McIntosh, J. A.;
Meinhold, P.; Zhang, L.; Arnold, F. H. General approach to reversing
ketol-acid reductoisomerase cofactor dependence from NADPH to NADH.Proc Natl Acad Sci U S A. 2013 , 110 (27),
10946-10951. https://doi.org/10.1073/pnas.1306073110
[36] Chanique, A. M.; Parra, L. P. Protein engineering for
nicotinamide coenzyme specificity in oxidoreductases: Attempts and
challenges. Front Microbiol . 2018 , 9 , 194.
https://doi.org/10.3389/fmicb.2018.00194
[37] Petschacher, B.; Staunig, N.; Muller, M.; Schurmann, M.; Mink,
D.; De Wildeman, S.; Gruber, K.; Glieder, A. Cofactor specificity
engineering of streptococcus mutans NADH oxidase 2 for
NAD(P)+ regeneration in biocatalytic oxidations.Comput Struct Biotechnol . 2014 , 9 ,
e201402005. https://doi.org/10.5936/csbj.201402005
[38] You, Z.-N.; Chen, Q.; Shi, S.-C.; Zheng, M.-M.; Pan, J.; Qian,
X.-L.; Li, C.-X.; Xu, J.-H. Switching cofactor dependence of
7β-hydroxysteroid dehydrogenase for cost-effective production of
ursodeoxycholic acid. ACS Catalysis. 2018 , 9 (1),
466-473. https://www.x-mol.com/paperRedirect/919853
[39] Jiang, Y.; Shen, Y.; Gu,
L.; Wang, Z.; Su, N.; Niu, K.; Guo, W.; Hou, S.; Bao, X.; Tian, C.;
Fang, X. Identification and characterization of an efficientD-xylose transporter in Saccharomyces cerevisiae .J Agric Food Chem. 2020 , 68 (9), 2702-2710.
https://doi.org/10.1021/acs.jafc.9b07113
[40] Grawe, A.; Stein, V. Linker engineering in the context of
synthetic protein switches and sensors. Trends Biotechnol.2021 , 39 (7), 731-744.
https://doi.org/10.1016/j.tibtech.2020.11.007
[41] Guo, H.; Yang, Y.; Xue, F.; Zhang, H.; Huang, T.; Liu, W.; Liu,
H.; Zhang, F.; Yang, M.; Liu, C.; Lu, H.; Zhang, Y.; Ma, L. Effect of
flexible linker length on the activity of fusion protein 4-coumaroyl-CoA
ligase::stilbene synthase. Mol Biosyst. 2017 , 13(3), 598-606. https://doi.org/10.1039/C6MB00563B
[42] Keeble, A. H.; Turkki, P.; Stokes, S.; Khairil Anuar, I. N. A.;
Rahikainen, R.; Hytonen, V. P.; Howarth, M. Approaching infinite
affinity through engineering of peptide-protein interaction. Proc
Natl Acad Sci U S A. 2019 , 116 (52),
26523-26533.
https://doi.org/10.1073/pnas.1909653116
[43] Manigandan, S.; Praveenkumar, T. R.; Anderson, A.; Maryam, A.;
Mahmoud, E. Benefits of pretreated water hyacinth for enhanced anaerobic
digestion and biogas production. International Journal of
Thermofluids . 2023 , 19 , 100369.
https://dx.doi.org/10.1016/j.ijft.2023.100369.
[44] Ritala, A.; Hakkinen, S. T.; Toivari, M.; Wiebe, M. G. Single
Cell Protein-State-of-the-Art, Industrial Landscape and Patents
2001-2016. Front Microbiol. 2017 , 8 , 2009.
https://dx.doi.org/10.3389/fmicb.2017.02009.
[45] Tuse, D. Single-Cell Protein: Current Status and Future
Prospects. Crit Rev Food Sci. 1984 , 19(4), 273-325. https://dx.doi.org/10.1080/10408398409527379.
[46] Humpenoder, F.; Bodirsky, B. L.; Weindl, I.; Lotze-Campen, H.;
Linder, T.; Popp, A. Projected environmental benefits of replacing beef
with microbial protein. Nature. 2022 , 605 (7908),
90-96. https://doi.org/10.1038/s41586-022-04629-w
[47] Ma, J.; Sun, Y.; Meng, D.; Zhou, Z.; Zhang, Y.; Yang, R. Yeast
proteins: The novel and sustainable alternative protein in food
applications. Trends Food Sci Technol . 2023 , 135 ,
190-201. https://doi.org/10.1016/j.tifs.2023.04.003
[48] Xia, S.; Song, J.; Li, K.; Hao, T.; Ma, C.; Shen, S.; Jiang,
X.; Xue, C.; Xue, Y. Yeast protein-based meat analogues: Konjac
glucomannan induces the fibrous structure formation by modifying protein
structure. Food Hydrocoll . 2023 , 142 , 108798.
https://doi.org/10.1016/j.foodhyd.2023.108798