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Abstract

We propose Reduced Collatz Conjecture that is equivalent to Collatz Con-
jecture but is easier to explore, because reduced dynamics is more primitive
than original dynamics and presents better structures (e.g., period and ratio).
Reduced dynamics (that are occurred computation sequence from a starting
integer to the first integer less than the starting integer) is the component of
original dynamics (from a starting integer to 1). Reduced dynamics of x is
represented by a sequence of computation that is either (3*x+1)/2 or x/2,
because 3*x+1 is always even and followed by x/2. We prove that reduced
dynamics is periodical and its period equals 2 to the power of the count of
x/2. More specifically, if there exists reduced dynamics of x, then there exists
reduced dynamics of x+P, where P equals 2% and L is the total count of x/2
computations in reduced dynamics of x (equivalently, L is the length of the
sequence).
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The Collatz conjecture can be stated simply as follows: Take any positive
integer number z. If x is even, divide it by 2 to get z/2. If = is odd, multiply
it by 3 and add 1 to get 3 * x + 1. Repeat the process again and again. The
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Collatz conjecture is that no matter what the number (i.e., z) is taken, the
process will always eventually reach 1.

The current known integers that have been verified are about 60 bits by
T.O. Silva using normal personal computers |1, 2|. They verified all integers
that are less than 60 bits.

Wei Ren et al. [3] verified 2199 — 1 can return to 1 after 481603 times
of 3%z + 1 computation, and 863323 times of x/2 computation, which is the
largest integer being verified in the world. Wei Ren [4] also pointed out a new
approach for the possible proof of Collatz conjecture. Wei Ren [5] proposed
to use a tree-based graph to reveal two key inner properties in reduced Collatz
dynamics: one is ratio of the count of z/2 over the count of 3 %z + 1 (for
any reduced Collatz dynamics, the count of x/2 over the count of 3*x+1
is larger than In3/In2), and the other is partition (all positive integers are
partitioned regularly corresponding to ongoing dynamics). Wei Ren et al. [6]
also proposed an automata method for fast computing Collatz dynamics. All
source code and output data by computer programs in those related papers
can be accessed in public repository [§].

1. Preliminaries

Notation 1.1.

(1) N*: positive integers;

(2) N=N"U{0};

(3) 1] ={z|r =1 mod 2,2 € N*}; [0]; = {z|]r =0 mod 2,z € N*}.

(4) lt]m ={zlr =1 mod m,z e N* m>2meN*0<i<m-—1,ie N}

Proposition 1.2. /2 always follows after 3 x x + 1.

Proof When z € [1]5, then next computation is 3xz+1. Obviously, 3xx+1 €
[0]5, thus the next computation must be z/2 consequently. 0

We thus can represent required computation as (3 * x + 1)/2 and z/2,
which are denoted by I(x) and O(z), respectively.

Notation 1.3. I(z) = 3*xz+1)/2, O(z) = z/2.



Note that, I(z) and O(z) can be simply denoted as I(-) and O(-), or
I and O, respectively. Obviously, Vo € N* I(z) = B3*xx +1)/2 > x,
O(z) = x/2 < x. That is the reason of notation - I represents “Increase” and
O represents “dOwn”.

Definition 1.4. Collatz transformation, denoted as f(-), where f(-) = I(-) =
Bxx+1)/2 if x € [1]2, and f(-) = O(-) = x/2 if x € [0]s.

Remark 1.5.
(1) We assume f°(z) = z.
(2) Obviously, il fal|---[[fn(x) = fu(fa-r(. f2(f1(2)))), where fi(-) € {I(-), O()},

i=1,2,...n, and “||” is the concatenation of Collatz transformations. For

simplicity, we just denote f;(-) as f € {I,O}.

(3) fr(x) = f..f(x), f*(z) = f(f* (zx)),n € N*. Note that, whether f is I
—~

or O in f(f"(z)), is determined by f"'(x) € [1] or [0]a.

Definition 1.6. Collatz Conjecture. Vo € N*, 3L € N*, such that fL(z) =1
where f € {I,0}.

Obviously, Collatz conjecture is held when x = 1. In the following, we
mainly concern z > 2, x € N*.

Definition 1.7. Reduced Collatz Conjecture. Vxr € N* x > 2, 4L € N¥,
such that fL(z) <z and fi(z) £ z,i=0,1,...,L—1, f € {I,O}.

Obviously, L must be the minimal positive integer such that fL(x) < z.

Theorem 1.8. Collatz Conjecture is equivalent to Reduced Collatz Conjec-
ture.

Proof Vz, L € N*,x > 2, it is obvious that fX(z) € N*, ie., fi(z) > 1.

(1) Suppose Collatz Conjecture is true. That is, Vo € N* z > 2, 3L € N*,
fE(z) = 1. Thus, f¥(x) < x. Hence, Reduced Collatz Conjecture is true.

(2) Inversely, suppose Reduced Collatz Conjecture is true. That is, Vz €
N* x> 2, dg0 € N*, f9(z) < x.

If fo(z) =1, then Collatz Conjecture is true.



If foo(x) > 1, then let y; = f®(x). As Reduced Collatz Conjecture is
true, 3q1 € N*, f9(y1) < y1.

For better notation, let yo = z. Iteratively, if y; = f%-*(y;_1) = 1,7 € N*,
then Collatz Conjecture is true. If y; = f%-1(y;_1) > 1, then Jq; € N*,
Yir1 = [T(vi) < yi-

Thus, yiy1 < ¥ < ... <11 <yo=2x. y; (i € N*) is a strictly decreasing
sequence.

Besides, y;11 = fqo+q1+q2+...+qz' (33) > 1.

Therefore, after finite times of iterations, In € N*, y,, = 1.

That is, 3g=qo + @1 + ... + o1 = X0 @i, ¢ € N*, fi(z) = 1.

Thus, Collatz Conjecture is true. 0

Remark 1.9.

(1) We call an ordered sequence f9 € {I,0}9 in above proof as original dy-
namics (referring to f4(x) = 1), which consists of q occurred Collatz transfor-
mations during the computing procedure from a starting integer to 1. For ex-
ample, the original dynamics of 5 is IOOO duetob — 16 - 8 — 4 — 2 — 1.

(2) In contrast, we call f in above proof as reduced dynamics (referring to
fP(x) < x), which is represented by a sequence of occurred Collatz transfor-
mations during the computing procedure from a starting integer (i.e., x) to the
first transformed integer that is less than the starting integer (i.e., f%(x)).
For exzample, the reduced dynamics of 5 is IO due to 5 — 16 — 8 — 4.

(8) Obviously, reduced dynamics is more primitive than original dynamics,
because original dynamics consists of reduced dynamics. Simply speaking,
reduced dynamics are building blocks of original dynamics.

Due to above theorem, we concentrate on reduced dynamics.

Notation 1.10. RD[z]. [t denotes reduced dynamics of x that are repre-
sented by f € {I,0}. Formally, Vo € N*, x > 2, if AL € N* such that
i (z) < x and fi(x) £ x,i = 0,1,....L — 1, where f € {I,0}, then let
s = fb e {I,0} and s is called as reduced dynamics of x, denoted as
RD[z] = ff =s.

Remark 1.11.

(1) Simply speaking (or recall that), RD[z]| represents occurred Collatz trans-
formations in terms of I and O during the computing process from starting
integer x to the first transformed integer that is less than x.
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(2) Roughly speaking, f* € {I,0} is an ordered sequence consisting of I
and O. Besides, fL' = fE7Y|f, fL(x) = f(fF"Y(x)), and fO(x) = x. Further-
more, this sequence implicitly matches the parity of all occurred intermediate
transformed integers that are taken as input of f(-).

(3) Recall that, in RD[x] = f%*, x is called starting integer. fi(x),i =
1,2,..., L are called transformed integers. fL(x) is the first transformed in-
teger that is less than the starting integer x. In other words, f'(x) € x,i =

Ovla"'aL - 17 and fL($) < x. (fo(w) = I) B@Sid@S, the pamty Of fl(l‘)
determines the selection of the intermediately next f € {I,O} after f'.
(4) Obviously, RD[x € [0],] = O.

(5) For example, RD[3] = IIOO, RD[5] = IO, RD[7] = IIIOI0OO, RD[9] =
10, RD[11] = II0OIO0O. Indeed, we design computer programs that output all
RD[z],Vz € [1,99999999] /8/. From the data we discover the property - period
and its relation to the number of computing x/2 in reduced dynamics - will
be proved in the following of this paper.

(6) In fact, we proved some results on RD[x] for specific x, e.g., RD[x €
[1]4] = IO, RD[x € [3]16] = [I00, RD[x € [11]32] = IIOIO, and so on [5].

(7) ITOO can be denoted in short as [*O*. ITTOIOO can be denoted in short
as I0OI0?. In other words, we denote I...I as I", and we denote O...0 as
<~ —

O™ where n € N*,n > 2. We also assume I' =1, O' = O. I = 0% = ()
means no transformation occurs.

(8) In fact, we formally proved that the ratio exists in any reduced Collatz
dynamics. That is, the count of x/2 over the count of 3 * x + 1 is larger
than loge3 [7]. The ratio can also be observed and verified in our proposed
tree-based graph [5].

Example 1.12. RD[5] = IO. It implies following results:

“I”is due to 5 € [1]s;

I(5) = (3%5+1)/2 =8 &5, thus continue;

“O7is due to I(5) = 8 € [0];

I0(5) =0(I(5)) = O(8) = 8/2 =4 < 5, thus end.

To better present above the implicity in reduced dynamics, we introduce
two functions as follows:



Definition 1.13. IsMatched : x x ¢ — bool. It takes as input x € N*
and ¢ € {1,0}, and outputs bool € {True, False}. If x € [1]y and ¢ = I,
or if x € [0]y and ¢ = O, then output bool = True; Otherwise, output
bool = False.

Remark 1.14. Simply speaking, this function checks whether the forthcom-
ing Collatz transformation (i.e., ¢ € {I,0}) matches with the current trans-
formed integer x.

Definition 1.15. GetS : s x i x j — §'. It takes as input s,i,7j, where
s € {I,O}sI 1 < i < |s|, 1 <j < |s| — (i — 1), and outputs s’ where
s = S|l |Isp, [Sal =@ — 1, || = 74, |se] = |s| — |sa|l — |$'| and “| - |” returns
length.

Remark 1.16.
(1) For example, GetS(1100,1,4) = I100,GetS(I100,1,3) = I110.

(2) Especially, GetS(s,1,]|s|) = s. GetS(s,|s|, 1) returns the last transforma-
tion in s. GetS(s,1,1) returns the first transformation in s. GetS(s,j,1)
returns the j-th transformation in s.

(3) In other words, s' is a selected segment in s that starts from the location
1 and has the length of j. Indeed, that is the reason we call this function as
“Get Substring”.

(4) Simply speaking, this function can obtain the Collatz transforms from i to
i+ 7 —1 from a given inputting transform sequence (e.g., reduced dynamics)
in terms of s € {I,0}*.

(5) Note that, GetS(-) itself is a function. In other words, it can be looked
as GetS(-)(+). E.g., GetS(I1100,1,1)(3) =1(3) = (3x3+1)/2 =15,
GetS(I100,1,2)(3) = I1(3) = I(I(3)) = I(5) = (3% 5+ 1)/2 = 8,
GetS(I1100,1,3)(3) =110(3) = O(I1(3)) = O(8) = 8/2 = 4,
GetS(I100,1,4)(3) = I100O(3) = O(I10(3)) =0(4) =4/2 =2 < 3.

(6) It is worth to stress that, although in above definition j > 1, it can be
extended to j > 0 by assuming GetS(-,-,0)(x) = x.

Example 1.17. IfRD[z] (x € N*,z > 2) exists, then
(1) s(x) < x, where s = RD|z];
(2) GetS(s,1,i)(x) £ x, where i = 1,2, ..., |s| — 1;

Y
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(3) IsMatched(GetS(s,1,j—1)(x),GetS(s, j, 1)) = True, wherej = 1,2, ...,|s].

Remark 1.18.

(1) s(x) is the last transformed integer, or the first transformed integer that
15 less than the starting integer.

(2) GetS(s,1,i)(x) (i = 1,2,....|s| — 1) are all intermediate transformed
integers.

(8) When j =1, GetS(s,1,7 — 1)(x) = GetS(s,1,0)(z) = x. GetS(s,j,1) is
the first transformation.

(4) If GetS(s, 1,5 —1)(x) (j = 2,...,|s|) is current transformed integer, then
GetS(s, j, 1) is the next intermediate Collatz transformation.

Proposition 1.19. Vo € N*, x > 2, if RD|x] exists, then RD[x] is unique.

Proof Straightforward. Given z, either I(x) or O(x) is deterministic and
unique. Similarly, given z, §'(x) is deterministic and unique, where s =
GetS(s,1,i),s = RD[z],i = 1,2, ...,|s|. Thus, s is unique for any given z. [J

Remark 1.20.

We assume RD[x = 1] = IO, although I0(1) = O((3%x1+1)/2) = O(2) =
2/2 =1 £ x. In other words, we assume the reduced dynamics of v = 1 is
10. In the following, we always concern x > 2, € N*.

Proposition 1.21. Given x € N*, if RD[z| exists, then RD|x] ends by O.

Proof Straightforward due to I(z) = (3*x + 1)/2 > x. Suppose Jx € N*,
x > 2, s(x) £ x, RD[z] = s||I. Then, {s||[I[}(x) = I(s(z)) > s(z), thus
RD[z] = {s||[{}(x) £ x. Contradiction occurs. O

Proposition 1.22. RD[z € [0];] = O, RD[z € [1]4] = IO.

Proof (1) z € [0]2, thus O occurs. z/2 < z, thus RD[z] = O.

(2) If x =1, RD[1] = IO (by assumption).

If v >2 o =4t+1 € [l]y, where t € N*. Thus, I occurs. [(x) =
Bxz+1)/2=0B+«Mt+1)+1)/2=(12t+4)/2 =23t + 1) € [0].
2% (3t +1) > x = 4t + 1, thus further transformation occurs. O(I(x)) =
2% (3t+1)/2=3t+1<4t+1=x (..t € N*), thus RD[z] = IO. O



2. Period Theorem

In this section, we will formally prove RD[z + 2L] = RD[z], L = |RD[z]|,
RD[z] € {I,0}>! in this section. Note that, interestingly, L is indeed the
count of x/2 computations in reduced dynamics.

2.1. Notations and Observations
Notation 2.1.

(1) min(S = {...}) : The minimal element in a set S.
(2) max(S = {...}) : The mazximal element in a set S.

Definition 2.2. Period. min({P|RD[z + P] = RD|z],z, P € N*}) is called
the period of x.

Remark 2.3.

(1) Va € [0]y, RD[z + 2] = RD[z] = O, period P = 2IRPlIl = 20 — 21 — 9.
(2) Va € [1]4, RD[x + 4] = RD[z] = IO, period P = 2IRPlll = oll0l — 22 — 4
(3) We thus concentrate on x € [3]4 in the following.

For easily understanding, we point out two concerns in the forthcoming
proof.

1. Obviously, RD[3 + 16] = IIOO = RDI[3]. We observed that during the
computing of I700(3 + 16), intermediate transformed integers (i.e.,
I(3 4+ 16),11(3 4+ 16),110(3 + 16)) are odd or even, if and only if
1(3),11(3),110(3) are odd or even. Besides, 16 is the minimal integer
to satisfy above requirements.

2. Formally speaking, the parity of s(z+ P) and s(x) are always identical,
where s = GetS(RD[z],1,4), and i = 1,2,...,|RD[z]| — 1. Also, the
parity of x4+ P and x are identical. That is, the parity sequence during
computing for the reduced dynamics of starting integer x4 P is identical
with that of starting integer z, which results in the occurred Collatz
transformations of both are exactly identical. Besides, P is the minimal
integer to satisfy above requirements. This is one concern.

3. The other concern is to prove s(x+P) < x+ P and s(x) < = where s =
RD[z]; Also, s(z+P) £ x+P and s(z) £ x where s = GetS(RD|z], 1,1),
i=1,2,...,|RD[z]| — 1.



A new notation [’() is introduced hereby to reveal the relations among

)
I(x+ P), I(z) and I'(P).
Notation 2.4. I'(z) = (3% x)/2.

Example 2.5.

(1) I(3+16) = (3(3+16)+1)/2 = (3%3+1)/2+3%16/2 = I(3) + I'(16),
I(3) = (3%3+1)/2=5,I"(16) = 3%16/2 = 24 € [0]5, 5 > 3, 5+24 > 3+ 16.

Thus, either next transformation for 3+16 and 3 is I.

(2) TI(3 +16) = I(I(3) + I'(16)) = (3 % (I(3) + I'(16)) + 1)/2 = (31(3) +
1)/2+431'(16)/2 = I1(3) + I'T'(16),
11(3) = I(5) = (3%5+1)/2 = 8, I'T'(16) = I'(24) = 3 24/2 = 36 € [0].,
8 > 3,8+ 36 > (3 + 16). Thus, either next transformation is O.
(3) IIO(3 + 16) = O(I1(3) + I'I'(16)) = I10(3) + I'I'O(16),
[10(3) = 8/2 = 4, I'T'O(16) = 36/2 = 18 € [0],, 4 > 3, 4 + 18 = 22 >
(34 16). Thus, either next transformation is O.
(4) ITOO(3+16) = O(IIO(3) + I'T'O(16)) = ITOO(3) + I'I'OO(16)
[100(3) = 4/2 = 2, 'T’OO(16) = 18/2 = 9, 2 < 3, 2+9 = 11 < (3+16).

Thus, either reduced dynamics ends.

Remark 2.6. In above example we can observe that I'(16), I'1'(16), I'I'O(16)
are always remained even. Thus, they do not influence the resulting next
Collatz transformation (i.e., “I” or “O”) during computing for the reduced
dynamics of starting integer 3. Therefore, the parity of s(x + 16) and s(z)
always maintain to be identical, where x = 3, s = GetS(RD[z], 1,17), and
i=1,2,...,|RD[z]| — 1.

For better presentation, we thus introduce two functions as follows:

Definition 2.7. IsEven : x — bool. It takes as input x € N*, and outputs
bool € {True, False}, where bool = True if x € [0]y and bool = False if
x € [1]2

Definition 2.8. Replace : s — s'. It takes as input s € {I,0}=', and
outputs s € {I' O}z, where GetS(s',i,1) = I' if GetS(s,i,1) = I, and
GetS(s',i,1) = O if GetS(s,i,1) = O, fori=1,2,...,|s|.

Remark 2.9.



(1) Simply speaking, replacing all “I” in “s” respectively by “I'” will result in

«ol
S .

(2) Obviously, Vs € {I,0}=', |s'| = |s| where s' = Replace(s).

(8) By using above introduced functions, we can restate the reason in Remark
2.0 as follows: GetS(s',1,i) € [0]s, where s = Replace(s), i =1,2,...,|s'|—1,
thus the parity of s(x + 16) and s(x) are always identical, where x = 3,
s = GetS(RD[z], 1,i), and i = 1,2, ...,|RD[z]| — 1.

2.2. The Proof of Period Theorem
Lemma 2.10. If P € [0]y,x € N*, then IsEven(x + P) = IsEven(z).

Proof Straightforward. Due to P € [0],, if x € [1]y, then x + P € [1]y; If
x € [0]y, then x + P € [0]y. Thus, IsEven(z + P) = IsEven(z). O

Remark 2.11. Above lemma states that if P € (0], the first Collatz trans-
formation of x + P s identical with that of x.

Lemma 2.12. s(z + P) = s(x) + §'(P), where s € {I,0}, s’ = Replace(s),
x € N*, P € [0].

Proof IsEven(x + P) = IsEven(z) because P € [0],, due to Lemma 2.10.
Thus, the first Collatz transformation of x + P and the first Collatz trans-
formation of x are identical.

(1) Suppose x € [1]g, so s = I. Thus, s’ = Replace(s) = I'.

s(fte+P)=Ix+P)=3(x+P)+1)/2=Bzx+1)/2+3%P/2 =
I(z)+ I'(P) = s(z) + §'(P).

(2) Suppose x € [0]z, so s = O. Thus, s = Replace(s) = O.

s(t+P) =0+ P) = (x+P))2=2/24+P/2 =0(x)+0O(P) =
s(x) + s'(P).

Summarizing (1) and (2), s(x + P) = s(z) + s'(P). O

Lemma 2.13. (Separation Lemma.) Suppose v € N*, s € {I,0}2% &' =
Replace(s). If GetS(s',1,7)(P) € [0]a, 7 =0,1,2,...,|s| — 1, then

(1) IsEven(GetS(s,1,j)(x + P)) = IsEven(GetS(s,1,j)(x));

(2) GetS(s,1,j+1)(x+ P) = GetS(s,1,j+ 1)(x) + GetS(s', 1,5+ 1)(P).
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Proof (1) j =0.

(1.1) GetS(s',1,j)(P) € [0]2. Besides, GetS(s',1,7)(P) = GetS(s',1,0)(P) =

P. Thus, P € [0],. Thus, IsEven(z + P) = IsEven(z) due to Lemma 2.10.
Thus, the intermediate next Collatz transformation of x + P and x are iden-
tical.

(1.2) GetS(s,1,7 +1)(z + P)
= GetS(s,1,1)(x+P) - j=0

= GetS(s,1,1)(x) + GetS(s',1,1)(P) . Lemma 2.12
= GetS(s,1,5 + 1)(z) + GetS(s', 1,5+ 1)(P).
(2)j=1

(2.1) Dueto (1), GetS(s,1,1)(z+P) = GetS(s,1,1)(x)+GetS(s',1,1)(P).
Besides, GetS(s',1,1)(P) € [0]. Thus,
IsEven(GetS(s,1,1)(z + P)) = IsEven(GetS(s,1,1)(x)). Thus, the in-
termediate next Collatz transformation of x + P and z are identical.
(2.2) There exists two cases as follows:
(2.2.1) If GetS(s,1,j+ 1) = GetS(s,1,7)||1, then
GetS(s,1,j+1)(z+ P)
= (GetS(s,1,7)|I)(x + P)
= I(GetS(s,1,j)(x + P))
= [(GetS(s,1,7)(z) + GetS(s',1,7)(P)) . (1.2)
= (3(GetS(s, 1,j)(z) + GetS(s',1,75)(P)) + 1)/2
(3% GetS(s,1,7)(x) +1)/2 + 3« GetS(s',1,7)(P)/2
I(GetS(s,1,7)(x)) + I'(GetS(s', 1, §)(P))
= (GetS(s, 1, J) 1) () + (GetS(s', 1, )| 1) (P)
= GetS(s,1,5 + 1)(z) + GetS(s', 1,5+ 1)(P).
(2.2.2) If GetS(s,1,j+ 1) = GetS(s,1,7)]|O, then
GetS(s,1,j +1)(x + P)
= GetS(s, 1,7)|0)(xz + P)
= O(GetS(s,1,7)(z + P))
= O(GetS(s,1,7)(x) + GetS(s',1,5)(P)), . (1.2)

R\/&\/

= (GetS(s,1,7)(x) + GetS(s',1,5)(P))/2
= O(GetS(s,1,7)(x)) + O(GetS(s', 1, 5)(P))
+ O(GetS(s',1,7)(P))

= (GetS(s,1,7)]|0)(x) + (GetS(s',1,5)||O)(P)
= GetS(s,1,j + 1)(z) + GetS(s', 1,7 + 1)(P).
(Note that, here j + 1 = 2. Recall that “||” is concatenation.)
(3) Similarly, j = 2.
Due to (2), GetS(s,1,2)(x + P) = GetS(s, 1,2)(z) + GetS(s', 1,2)(P).

)
= O(GetS(s,1,7)(x 2)
)
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Besides, GetS(s',1,2)(P) € [0],. Thus,

IsEven(GetS(s,1,j)(x + P)) = IsEven(GetS(s,1,j)(x)). Thus, the in-
termediate next Collatz transformation of x + P and x are identical.

(Note that, here j = 2).

Again, we can prove the following similar to (2.2).

GetS(s,1,j+ 1)(x + P) = GetS(s,1,5+ 1)(z) + GetS(s', 1,5 + 1)(P).

(Note that, here j +1 = 3.)

(4) Similarly, we can prove j = 3, ..., |s'| — 1, respectively and especially
in an order. ([l

|

Remark 2.14.

(1) Obviously, above conclusion can be extended to include |s| = 1 by Lemma
2.10 and Lemma 2.12.

(2) Separation Lemma states the sufficient condition (i.e., GetS(s',1,j)(P) €
0], 7 =0,1,2,...,|s| — 1) for guaranteeing that all intermediate parities of
transformed integers x + P are exactly identical with those of x.

(8) Separation Lemma is general, as s could be either original dynamics or
reduced dynamics of certain x € N*. That is the reason we give a special
name to this lemma for emphasizing its importance.

(4) In above proof, we assume the number of transformations will be s. Note
that, it does not influence the conclusion, as we can use condition “j =
0,1,2,...7 instead of “j = 0,1,2,...,|s| — 17 to omit the assumption on the
number of transformations.

We next explore how to compute GetS(s', 1, j)(x).

Definition 2.15. Function CntI(-). Cntl : s — n. It takes as input s €
{I,0}=, and outputs n € N that is the count of I in s.

Example 2.16. CntI(II00) =2, CntI(11I) = 3. Obviously, the function
name stems from “Count the number of I”.

Lemma 2.17. Suppose s € {I,0}=', s’ = Replace(s), v € N*, we have

3CntI(G€tS(571»j))

GetS(s',1,5)(z) = 5 xx, j=1,2..]s|

12



Proof (1) |s| = 1. Thus, j = 1.
(1.1) If s = I, then s’ = Replace(s) = I'.
GetS(s',1,7)(z) = GetS(I',1,1)(z) = I'(x) =3 x/2 = 3L x z/2!
— SC’ntI(I) * x/2\1| — 3C’ntl(GetS(s,1,j))/2j % T
(1.2) If s = O, then s’ = Replace(s) = O.
GetS(s',1,5)(z) = O(x) = 2/2 = 3° x 1/2' = 36mH(O) 2 /2[0|
— BC’ntl(GetS(s,l,j))/Qj % T
2) Js] > 2.
(2.1) j=1.
(2.1.1) If GetS(s,1,1) = I, then
GetS(s',1,5)(x) = I'(x) = 3x2/2 = 3 x x/2! = 36D 4 /2l =
3CntI(GetS(s,1,j))/2j % T,
(2.1.2) If GetS(s,1,1) = O, then
GetS(s',1,5)(x) = O(x) = /2 = 30 % /21 = 36O 5 2 /210
— SCntl(GetS(s,l,j))/Qj % T
(2.2) Tteratively, for j = 1,2,...,|s'| — 1 in an order (recall that |s'| = |s|).
(2.2.1) If GetS(s,2,1) = I, then
GetS(s',1,7 4+ 1)(x)
= (GetS(s', 1, J)||I')(x)
= I'(GetS(s',1,7)(x))
= I'(GetS(s',1,7)(x))
=3xGetS(s',1,7)(x)/2
=3 w xx/2 o (21)forj=1,(22)for j=2,.. || -1

J
3CntI(GetS(s,1,5))+1

5771
— 3C”H(G2€;i(f’1’”1)) xx. - GetS(s,1,7+1)=GetS(s,1,5)|II
(2.2.2) If GetS(s,2,1) = O, then
GetS(s', 1,5+ 1)(x)
= (GetS(s',1,7)[0)(x)
= O(GetS(s',1,j)(x))
= GetS(s',1,7)(x)/2

CntI(GetS(s,1,5))
=3 T k)2

3CntI(GetS(s,1,5))
=T
3CntI(GetS(s,1,j+1))

27+1 * . GGtS(S,l,j—i—l) :GetS(S,l,j)HO [

Remark 2.18.
(1) Recall that s = GetS(s',1,|s|) and s = GetS(s,1,|s|). Thus, when

3CntI(GetS(s,1,]s])) o 3CntI(s)

J = sl then s'(z) = GetS(s', 1, [s])(z) = o Beo

13



(2) Indeed, j = |GetS(s,1,7))|, thus the lemma can be restated as
3CntI(GetS(s,1,j))

GetS(s',1,5)(7) = “Seaseaor— * 5 J = 1,2, ..., |s].
Lemma 2.19.
min({P|GetS(s',1,7)(P) € [0]2,7 =0,1,2, ..., |s| — 1,
s € {I,0}2% s = Replace(s), P € N*}) = 2|,

Proof (1) j =0, GetS(s',1,7)(P) € [0]s & P € [0]».
(2)j=1,2,...]s| - L.
By Lemma 2.17, GetS(s',1,7)(x)
GetS(s', 1, j)(P) = 3Gt
& P/2 €09, =1,2,...,]s| — 1
& P/ eN j=1,2,... |s] -1
& P/2kl e N*
& min(P) = 2.
By (1) and (2), min(P) = 2/*. O

CntI(GetS(s,1,5))
— 32—] x x. Thus,

x P e0]2,j=1,2,...,|s] — 1

Notation 2.20. Setrp = {s|z € N*,3RD[z], s = RD[z] € {I,O0}='}.

Simply speaking, Setgp is a set of all reduced dynamics for those x € N*
if reduced dynamics of x exists. That is, Vo € N* if RD[x] exists, then
RD[z] = s will be included in Setrp, which is a set of existing reduced
dynamics.

Lemma 2.21. §'(P) < P, where s € Setrp, s’ = Replace(s), P € N*.

Proof By Lemma 2.17 and Remark 2.18 (1),
S/(P> —_ 30ntl(s)/2|s| % P.

Due to Corollary 2.31, 30;—”'()

< 1. Thus, 36" /2lsl « P < P. O

Remark 2.22. Here we use Corollary 2.31 (Form Corollary) given in Ap-
pendiz, which is formally proved by us in another paper [7].

Lemma 2.23. GetS(s',1,7)(P) > P,j = 1,2,...,|s| — 1, where s € Setrp,
s' = Replace(s), P € N*.

14



Proof By Lemma 2.17, .
GetS(s',1,j)(P) = &2 o p

CntI(GetS(s,1,5)) CntI(GetS(s,1,5))
Due to Corollary 2.32, &———""= > 1. Thus *¥——"~

*xP>P. O

Theorem 2.24. (Period Theorem.) If RD[z] € {I,O0}2! ewists, then
RD[x + 2L exists and RD[x + 2*] = RD[z], L = |RD|x]]|.

Proof (1) Regarding two special cases:

RD[z € [0]s] = O, RD[z + 2L] = RD|[z], L = |RD[z]| = |O| = 1.

RD[x € [1],] = IO, RD[x + 21] = RD[], L = [RD[a]| = |IO] = 2.

(2) Next, w.l.o.g., suppose RD[z] = s, |s| > 3. Let P = 2F = 2IRPlIl — olsl,
s" = Replace(s).

Thus, GetS(s',1,7)(P) € [0]2,j =0,1,2,...,|s| — 1, and P is the minimal
integer for this requirement by Lemma 2.19.

(2.1) Regarding the ordered parity sequence of x + P and z.

P € [0]y, thus the first transformation of x + P and z is identical by
Lemma 2.10.

GetS(s,1,j+1)(x+P) = GetS(s,1,j+1)(x)+GetS(s', 1, j4+1)(P) where
s’ = Replace(s), by Lemma 2.13 (i.e., Separation Lemma). The parity for
all transformed integers for x + P and P (except for the last one) are exactly
identical due to GetS(s',1,7)(P) € [0]2,j =0,1,2,...,|s| — 1.

(2.2) Regarding the comparison between transformed integers and start-
ing integer.

(2.2.1) s(x) < x due to the definition of RD[z].

(2.2.2) GetS(s,1,j)(x) £ x,7 = 1,2,...,|s| — 1, due to the definition of
RD[z].

(2.2.3) §'(P) < P by Lemma 2.21.

(2.2.4) GetS(s',1,7)(P) £ P,j =1,2,...,|s'| — 1, by Lemma 2.23.

(2.2.5) s(x + P) = s(z) + §'(P) < x + P, by Lemma 2.13, (2.2.1) and
(2.2.3).

(2.2.6) GetS(s,1,j)(x + P) = GetS(s,1,7)(x) + GetS(s',1,5)(P) £ x +
P j=1,2,..,]s| — 1, due to (2.2.2) and (2.2.4).

Thus, only the last transformed integer s(x + P) is less than the starting
integer x+ P, and the other transformed integers are not less than the starting
integer « + P. Thus, RD[z + P] = s.

Due to (2.1) and (2.2), RD[z + P] = RD[z], P = 2L L = |s| > 3.

Summarizing (1) and (2), RD[x+2%] exists and RD[z+2%] = RD|z] where
L = |RD[z]| € N*. O
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Remark 2.25. Interestingly, the period equals 2 to the power of the count of
x/2 in reduced dynamics, as the count of x/2 equals to the length of RD|x].
The count of x/2 has two folders: one equals the count of “I” due to (3% x +
1)/2; the other equals the count of “O” due to x/2. Obviously, the count of
“I” add the count of “O” equals the length of RD|x].

Corollary 2.26. If reduced dynamics of © € N* exists, denoted as RD[x] €
{I,0}, L € N*, then reduced dynamics of x + k x 2L (k € N*) exists and is
identical with that of x.

Corollary 2.27. Vs € Setrp, ||[{z|RD[z] = s}|| = |IN*|| = Ry where || - ||”
returns the number of a set.

Proof Let 21/ = P € N*. RD[z + P] = s = RD[z]. Thus, RD[z + k * P] =
s = RD[z],k € N*. A bijective mapping from {z|RD[z] = s} to N* can be
created as follows: ©z < 1,z + k* P < k+ 1,k € N*. Thus, ||{z|RD[z] =
sHI = [IN*[} = Ro. O
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Appendix

In our another paper [7], we proved the following Form Corollary that
states the requirements on the count of “O” and the count of “I” in any
reduced dynamics.

Definition 2.28. CntO : s — n. It takes as input s € {I,0}=', and outputs
n € N* that is the count of “O” in s.

E.g., CntO(1100) =2, CntO(10) = 1.

Corollary 2.29. (Form Corollary.) Vs € {I,0}2', s € Setgp, if and
only if

(1) s = 0O; Or,

(2) CntO(s) = [logy 1.5+ Cntl(s)] and CntO(s") < [logy 1.5 % Cntl(s')]
where s' = GetS(s,1,i),1=1,2,...,|s| — 1, |s| > 2.

Following conclusions are all derived from above Form Corollary.

Following corollary states that Setgrp can be constructed by generating s €
{I,0}=" that satisfies aforementioned requirements instead of by conducting
concrete Collatz transformations for all z € N*.

Corollary 2.30. Setgp = {O} U {s|s € {I,O},L e N*|L > 2,
CntO(s) = [logy 1.5 % Cntl(s)],
CntO(s") < [logy 1.5 CntI(s')], s = GetS(s,1,i),i =1,2,...,L — 1}.

Proof It is straightforward due to Corollary 2.29. U

Following corollary states the relations between CntI(s) and CntO(s) +
Cntl(s) = |s|, s € Setgp. Note that, Cntl(s) is indeed equal to the count
of 3%z + 1 computation, and |s| is indeed equal to the total count of x/2
computation in reduced dynamics.

Corollary 2.31. s € {I,0}=', s € Setrp, we have
(1) |s| > [log, 3 Cntl(s)]; (2) 3¢ () < 2lsl,
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Proof (1) When s = O, Cntl(s) = 0, |s| = 1. 1 > [logy,3 % 0] = 0 by
Corollary 2.30.

When s # O, s € Setgp = |s| = [logy 1.5 x Cntl(s)] + Cntl(s) =
[log, 1.5 % Cntl(s) + Cntl(s)] = [logy 3 x Cntl(s)] by Corollary 2.30.

In summary, s € Setgp = |s| > [log, 3 * Cntl(s)], and note that “>" is
obtained when and only when s = O.

(2) |s| > [logy3 * Cntl(s)] = |s| > log, 3¢ () = 3Cnt(s) < olsl =
3Cntl(s) < 2\5\ ]

Corollary 2.32. s € Setrp,s € {I,0}2, we have 3°MH(GetS(s:19) > 97,
G=1,2, . ]s| - 1.

Proof Let s’ = GetS(s,1,7),7 =1,2,...,|s| — 1. Obviously, |¢'| = j.
s € Setrp
= CntO(s') < [logy 1.5 % CntI(s")] .- Corollary 2.29
= OntO(s') <logy 1.5« Cntl(s") . logy, 1.5 ¢ Q,Cntl(s), CntO(s) € N*
= CntO(s") + Cntl(s') < logy 3 Cntl(s)
= |s'| <logy 3 * Cntl(s') = 2181 < 36
= BCntl(GetS(s,l,j)) > 2j. 0
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