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Highlights: 12 
 Water resource management, particularly for critical infrastructure, can be improved using a 13 

mixed methods approach to provide knowledge of the upper limit of flooding. 14 
 Paleoflood data can be verified and constrained using household survey data and channel cross-15 

sections to improve peak streamflow estimates in in ungauged catchments in data-limited regions. 16 
 Detailed survey data that incorporates local knowledge to bridge gaps in traditional 17 

hydrometeorological and modeling methods helps distinguish timing, magnitude and duration of 18 
extreme floods in multiple river reaches. 19 

Abstract: Annually, flooding causes major economic losses and affects millions of people worldwide. 20 
However, flood-prone regions with insufficient hydrological information typically suffer the greatest 21 
flood impacts. These regions are often hard-to-access, lack human and financial resources, and have 22 
limited or erroneous flood information. Alternatively, non-instrumental data sources can provide 23 
knowledge of the local hydrology. Paleohydrology landscape evidence of past major floods can estimate 24 
the most extreme flood discharge within a catchment. Human observations can constrain this value and 25 
provide reliable estimates on flood duration, flow paths, and geomorphic impacts. This study uses mixed 26 
paleohydrology and human observational methods in a representative ungauged catchment in Ostional, 27 
Nicaragua after an extreme flood in October 2017. To estimate daily-to-hourly flood information from 28 
mean survey responses and reconstruct storm hydrographs of the upper, middle, and lower reaches, 32 29 
household surveys were conducted. Household survey results supported paleoflood data and provided 30 
important hydrograph components, such as lag time and shape, often missing in ungauged catchments. 31 
Incorporating human observations into hydrological analyses enhances scientific understanding by 32 
providing perspectives of flooding rarely incorporated into research and by providing a voice for 33 
inhabitants affected by flooding. Although it is not possible to distinguish between spatial and human 34 
ambiguity, this information is highly valuable to improve understanding of extreme and flash flood events 35 
not typically captured in traditional hydrometeorological and streamflow monitoring methods. Our 36 
mixed-methods approach has significant potential for improving the reliability of current flood 37 
assessments and predictions for better flood management in any data-limited region around the world. 38 

Plain Language Abstract: Flooding is a major problem that affects many people and causes economic 39 
losses worldwide. Unfortunately, areas with little or no flood information suffer the most from these 40 
disasters. These regions are often difficult to reach, lack financial resources, and have limited personnel, 41 
which leads to a lack of monitoring sites and data. This results in inaccurate flood information. However, 42 
we can use alternative sources of data to fill these gaps. By studying evidence of past floods, known as 43 
paleohydrology proxy records, we can estimate the most extreme flood discharge that has occurred in a 44 
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watershed. Combining this information with observations from local residents can provide reliable 45 
estimates of storm and flood characteristics. In our study conducted in Ostional, Nicaragua, we used a 46 
mixed methods approach after a severe flood in 2017. We conducted household surveys and collected 47 
data from paleoflood records to reconstruct the storm's impact. The survey results supported the 48 
paleoflood data and provided valuable information about the flood, such as timing and shape, which is 49 
often missing in areas without monitoring. Including human observations in hydrological analyses 50 
improves our understanding of flooding and gives a voice to those affected by floods. Although we can't 51 
separate spatial and human factors, this information is valuable for improving flood assessments and 52 
predictions in regions with limited data. Our approach has the potential to enhance flood management 53 
worldwide. 54 

Keywords: extreme flood, paleoflood hydrology, human observations, hydrograph, ungauged catchment, 55 
data-limited regions 56 
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1. Introduction 64 

Consistently identified as one of the greatest natural hazards, flooding affects millions of people 65 

worldwide and estimated annual economic damages of billions of US dollars (NCEI, 2021). These 66 

damages are expected to increase with increased frequency and severity of floods by the mid-21st century 67 

(IPCC, 2019). To reduce current and minimize future flood risks, an effective understanding of drivers 68 

and impacts of floods are needed to inform decision making. Yet, flood-prone regions with limited 69 

hydrometeorological data often suffer the most severe impacts from floods (Walker et al., 2016). 70 

Hydrologic processes in these data-limited regions can be difficult to characterize due to several 71 

factors, including insufficient human and financial resources, many ungauged catchments, difficult-to-72 

access terrain, and sparsely placed, shorter-term monitoring sites (Kundzewicz, 2007; Wohl et al., 2012; 73 

Zheng et al., 2018; Gorgoglione et al., 2020; Nigussie et al., 2020). These constraints result in spatial and 74 

temporally limited hydrometeorological monitoring networks, and few long-term comprehensive 75 

hydrologic analyses (Calderón, 2015). Combined, these factors result in poorlydefined local flood 76 

information that can lead to greater economic loss and loss of life (Hall et al., 2014).  77 

Data limitations increase erroneous information which can lead to severe financial, environmental, 78 

and social consequences. A common approach for estimating peak discharges in ungauged catchments is 79 

to apply channel morphometric properties and regional parameters to calibrate hydrologic models. 80 

Relying solely on traditional hydrologic monitoring and modeling – which for this paper is described as 81 

instrumental records (i.e., weather stations, stream gauges), hydrologic equations, models, and GIS – can 82 

lead to several assumptions. For example, single-point instrumental records do not have the temporal 83 

frequency to accurately determine extreme flood recurrence and are insufficient to capture spatial flood 84 

information within a catchment, such as flow paths, geomorphic changes, and variability of flooding 85 

(Starkey et al., 2017). Peak discharges – or maximum extent and depth of floods – are empirically-derived 86 

or determined from stream gages to estimate flood frequency. However, these methods oversimplify 87 

parameters and produce highly uncertain local estimates (Petroselli, Vojtek, & Vojtekova, 2019). 88 

Simulated outputs derived from these data are often the main source of flood knowledge that informs 89 

water resource policy and decision making (i.e., 100-year floodplain and flood insurance). 90 

Furthermore, local management decisions are often based on regional flood models that rarely 91 

incorporate local flood knowledge (Johnson, 2002). Watershed development projects in data-limited 92 

regions often perform poorly due to false assumptions that techniques from one location will be as 93 
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applicable in another location with little recognition of local flood knowledge (Johnson et al. 2002). Thus, 94 

there is an urgent, ongoing need for better local flood characterization in data-limited regions. 95 

These challenges suggest the need to consider approaches at the right scale and scope to address 96 

water resource issues. Previous studies have identified a multitude of alternative methods, with several 97 

studies focusing on reducing uncertainty, improving accuracy, and extending beyond instrumental records 98 

to include longer-term and extreme flood information (Brázdil et al., 2006; Davis et al., 2019). Metrics, 99 

such as root mean square error (RMSE) and comparison of observed and simulated discharges, can be 100 

used to assess the reliability of model predictions that can, themselves, be updated (lav et al., 2012). Real-101 

time information from large or flash floods is difficult to capture, thus, quantitative field data and 102 

qualitative observations can be used for key inputs of a storm hydrograph (Table 1). These data can 103 

calibrate and constrain the simulated flood when traditional hydrologic data are unreliable. This study 104 

represents a novel mixed methods approach that combines paleohydrology methods and human 105 

observations to construct post-storm hydrographs of an extreme flood. The main objective of this paper is 106 

to demonstrate the feasibility of using local knowledge and proxy measures to generate extreme flood 107 

hydrographs of the most recent extreme flood in an ungauged catchment. 108 

Table 1: Data and methods to construct a storm hydrograph. 109 

Hydrograph 
Component 

Input Data Description Traditional Methods Alternative Methods 

Storm duration 
Total time of 
precipitation 

Instrumental records, GIS, 
model 

historical & human 
observations 

Precipitation 
Precipitation values Instrumental records, GIS, 

model 
historical & human 
observations 

Precipitation intensity 
Precipitation / unit of 
time 

Instrumental records / time 
of storm 

N/A 

Pre-storm discharge 
Flow discharge Instrumental records, 

model 
historical & human 
observations 

Bankfull discharge 
Channel slope, 
Manning's R, Cross-
sectional area 

Hydraulic equation, GIS Measured stream cross-
section, paleohydrology 

Rising limb 
Discharge between 
bankfull and Qmax 

Instrumental records, 
model 

N/A 

Peak discharge 
(Qmax) 

Flood Stage, Peak 
Discharge 

Equation/model Paleohydrology, historical & 
human observations 

Falling Limb 
Discharge between 
Qmax and bankfull 

Instrumental records, 
model 

N/A 

Post-storm discharge 
Flow discharge after the 
storm 

Instrumental records, 
model 

historical and human 
observations 

Flood duration 
Total time of flow 
above bankfull 
discharge 

Instrumental records, GIS, 
model 

Measured stream cross-
section, historical & human 
observations 
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Additional Context       

Flood Magnitude 
Return Interval Instrumental records Historical & human 

observations 
Sub-watershed 
variability 

Precipitation & flow 
values across watershed 

Multiple monitoring sites / 
GIS, model interpolation 

Historical & human 
observations 

Geomorphic impacts 
Topography, elevation, 
channel properties 

GIS Paleohydrology, historical & 
human observations 

Socioeconomic 
impacts 

Social & economic data N/A Historical & human 
observations 

1.1 Paleohydrology 110 

The growing field of paleoflood hydrology uses landscape evidence of past major floods, known as 111 

paleoproxy evidence, to determine the maximum extent of flooding in a channel. A majority of 112 

paleoflood research has been conducted in temperate climates in gauged catchments. Yet, proxy data can 113 

be particularly valuable to reconstruct a flood event and to assess the hydrology of ungauged catchments. 114 

Thus, there is opportunity to apply paleohydrology methods in data-limited regions to improve the 115 

reliability of current flood assessments.  116 

Peak discharge (Qmax) is an important paleoflood indicator used to understand flooding within a 117 

catchment. Qmax can be estimated using paleoproxy evidence, such as debris lines, boulder bars, or high-118 

water marks, to calculate the minimal critical discharge to entrain and move the largest clasts during an 119 

event (Costa, 1983; Jarrett & Costa, 1988; Wohl, 1992; Knox, 1993; Fanok & Wohl, 1997; Benito et al., 120 

2004; Baker, 2013; Alexander & Cooker, 2016). The Qmax value obtained from paleostage indicators can 121 

be used with channel geometry measures for flood management and for critical infrastructure – such as 122 

levees, bridges, and roads – to withstand the largest anticipated flow velocity in the channel. However, 123 

Qmax represents a single estimate of peak flow and underestimates discharge by up to 20% (Lam et al., 124 

2017). However, paleoflood estimates are insufficient to determine the duration and timing of a flood.  125 

1.2 Qualitative Evidence 126 

Qualitative data, used alone or combined with other methods, can provide spatio-temporal 127 

information during and immediately following flood events (Zanon et al., 2010; Hlavcova et al., 2016; 128 

Rollason et al., 2018). There is a growing trend of using human observations and historical records to 129 

verify, compliment, and improve predictions of flood occurrence and damage from instrumental flood 130 

records and conventional hydrologic models (e.g., Assumpção et al., 2018; Borga et al., 2019; 131 

Avellaneda, et al., 2020; Etter et al., 2020; Nardi, et al., 2021). Additionally, several studies highlight the 132 

benefits of using human observations as a source, rather than as an adjunct to traditional data to improve 133 
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data scarcity and accuracy in data-limited regions (e.g., Walker et al., 2016; Njue et al., 2019; Nigussie, et 134 

al., 2020, among others). Benefits include engaging, collaborating, and actively involving local 135 

communities to improve local monitoring networks, produce new landscape perspectives, and 136 

fundamentally contribute to innovative solutions to reduce flood risk. Additionally, observational data can 137 

provide consistent information, including estimated flood magnitudes and frequencies, to better predic?t 138 

the likelihood of future flood events (Brázdil et al., 2006; Goodchild, 2007; Raska & Brazdil, 2015; 139 

Assumpção et al., 2018). 140 

Yet, there is little guidance for interpreting qualitative information to improve estimates of flood 141 

magnitude and duration (Poser et al., 2008; Mazzoleni, Amaranto, & Solomatine, 2019). Observations 142 

cannot be calibrated, respondents may interpret observations differently, and dates and times are more 143 

difficult to recall as time passes after a catastrophic event. Uncertainty can propagate with inaccurate 144 

human perception and memory, small sample sizes, and with high variability in responses. Personal 145 

biases in data collection and interpretation further amplify uncertainty. However, using traditional 146 

methods alone produce high temporal uncertainty of local flood discharge, including peak discharge, 147 

when compared to community-based observations or when these methods are combined (Starkey et al., 148 

2017). 149 

Immediately after extreme flood events, post-event surveys from directly impacted individuals could 150 

provide detailed estimates on flood duration, flood stage, flow paths, geomorphic impacts, and increase 151 

confidence in Qmax estimates (Gaume & Borga, 2008; Marchi et al., 2009; Blaškovičová et al., 2011; 152 

Pekárová et al., 2012; Walker et al., 2016; Starkey et al., 2017; Etter et al., 2020). Furthermore, these data 153 

can be quantified, averaged, and used – in conjunction with other data sources – to create hydrographs. 154 

For example, post-event surveys can estimate the lag time and shape of flood hydrographs that would 155 

otherwise be unavailable in short-term records or ungauged catchments (Hlavcova et al., 2016). 156 

Additionally, affected locals can create new knowledge about impacts and flow paths (Rollason et al., 157 

2018). 158 

2. Case Study: the Ostional catchment in the Rivas Provence of Nicaragua 159 

The study area lies within the Pacific Coastal Plain of Nicaragua bounded to the west by the Pacific 160 

Ocean and by Lake Nicaragua to the east (Figure 1). Twelve ephemeral-to-seasonal, mid-sized Pacific 161 

coastal catchments, oriented northeast to southwest, extend south of Managua to Nicaragua’s southern 162 

border and have associated groundwater aquifers and coastal mangroves. The underlying geology is the 163 
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sedimentary Brito Formation, with elevations ranging from sea level to approximately 230 m.a.s.l. 164 

(Arengi and Hodgson, 2000; Calderón, 2015). The mean annual precipitation is at least 1,000 mm and 165 

mean monthly temperatures above 20°C (WMO, 1983). Seasonally, this region experiences a dry season 166 

from November through April followed by a wet season from May through October. A canícula, or dry 167 

interval, interrupts the wet season from late July through early August. The dominant land cover types in 168 

this region are tropical wet/dry forest and agricultural lands. 169 

 170 

Figure 1: Study Location of the Ostional Catchment in Rivas, Nicaragua. 171 

The Ostional catchment was selected due to its degree of similarity to other Pacific Coastal 172 

catchments, the relatively unmodified landscape, limited hydrometeorological information, and a recent 173 

extreme flood event. The Ostional catchment is approximately 10 km long with 40 km2 area. At the 174 

lowest channel reach less than 1 km away from the coast, the Ostional River flows seasonally, is 175 

influenced by groundwater, and has a mangrove estuary (Calderón, 2015). A small fishing community, 176 

Ostional, exists near the main channel outlet, with a bridge that crosses the channel to provide town 177 

access. Approximately 5.2 km from the coast, the Ostional River runs ephemerally through the rural 178 

community of Monte Cristo. Here, the ephemeral channel narrows and deepens near the base of the hilly 179 
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landscape above sandstone bedrock and alluvium at elevations greater than 50 m.a.s.l., The rural 180 

community of San Antonio is located near the headwaters, approximately 6.8 km from the coastline at an 181 

elevation exceeding 70 m.a.s.l. 182 

2.1 Overview of Tropical Storm Nate (October 2017) 183 

In October 2017, a tropical depression developed off the Caribbean coast of Costa Rica and 184 

intensified into Tropical Storm Nate as it moved north over the Nicaraguan coastline. Tropical Storm 185 

Nate formed on October 3, and had well defined circulation as a tropical depression by October 4. The 186 

depression was upgraded to a tropical storm and made landfall in NE Nicaragua at 12:00 PM UTC on 187 

October 5 (NHC, 2018). The regional meteorological phenomenon is critical to understanding why the 188 

Pacific Coastal Plain is severely impacted by tropical cyclones that form in the Caribbean. Development 189 

of Tropical Storm Nate in the Caribbean pulled moisture and winds across the low-lying, narrow plain 190 

and Lake Nicaragua, which caused Pacific coastal storm surge, extreme rain, and flooding (Figure 2). 191 

Tropical Storm Nate caused extreme precipitation and flooding which devastated local communities and 192 

led to 16 deaths in Nicaragua (NASA, 2017). 193 

 194 

Figure 2: Map of strong pacific winds moving across Nicaragua on October 5, 2017. Reprinted with 195 

permission from Windy.com. 196 
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3. Methods 197 

3.1 Paleohydrology proxy measures 198 

In the study area, paleohydrology proxy evidence is preserved for several months due to infrequent 199 

extreme floods and ephemeral flow. Paleoproxy evidence of the 2017 extreme flood was visible during 200 

the 2018 - 2019 field surveys (Figure 3). Channel cross-sections were collected using a terrestrial laser 201 

scanner in river reaches near all three communities to determine in-channel hydraulic properties. Multiple 202 

proxy measures, such as height of debris lines and boulder bar measurements, were also recorded to 203 

estimate flood stage. 204 

 205 

Figure 3: a) Paleoproxy evidence of large-magnitude flooding and b) boulder bar measurements 206 
within the Ostional River, Nicaragua. 207 

The average maximum flow velocity was reconstructed from a velocity equation of the minimum 208 

critical discharge required for floodwaters to entrain and transport the largest boulders within a channel 209 

reach. The B-axis measurements of the five largest boulders in each boulder bar were collected and 210 

averaged for the competent-depth equation (Costa, 1983):     211 

ῡ = 0.18 dI
0.4587                         (1) 212 
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Equation 1 computes the average velocity (ῡ) of a flood in steep channels using the average B-axis of 213 

the five largest boulders (dI) moved by the flood. A standard coefficient is based on particle sizes. The 214 

0.4587 exponent is between the 2.6 power law (Nevin, 1946; Fahnestock, 1963) and “sixth power law” 215 

(Brahms, 1753; Sternberg, 1875) exponents of average velocity thresholds of particle movement in water. 216 

The average depth is estimated from an equation by Costa (1983) that rearranges the Manning formula 217 

(Williams, 1983) to solve for average depth (D): 218 

D = [ῡ n/√S]0.5              (2) 219 

Flow was assumed to be steady and uniform. S is the average channel slope at the river reach and the 220 

Manning’s roughness value (n) was estimated based on channel roughness and bedload grain size and 221 

shape (Barnes, 1967). 222 

Sixteen cross-sections – nine in San Antonio, four in Monte Cristo, and three in Ostional – were 223 

averaged for each reach to estimate the maximum flood velocity, stage, and discharge. Average slope was 224 

calculated by subtracting the minimum channel elevation of the lowest cross-section divided by the 225 

distance between the first and last cross-section within each reach. The mean reach depth and average 226 

channel width were determined by averaging the mean depth and width of cross-sections within a reach. 227 

The minimum critical discharge, determined from the critical-depth equation, was used as an 228 

estimation of peak discharge. To determine peak discharge in cubic meters per second (cms), the 229 

continuity equation (Equation 3) was used: 230 

Q = A*v      (3) 231 

Q is peak discharge. A is the cross-sectional area of width times the mean depth in m2. The average 232 

streamflow velocity (v) is in meters per second (m/s) (Jarrett, 1987). The critical velocity equation 233 

(Equation 4) is derived from the Froude Number equation of critical flow in open channels based on the 234 

ratio of inertial and gravitational forces (Trivino, 2018). Critical flow was assumed to equal one. If the 235 

slope between two cross-sections was less than 0.01, v was multiplied by a constant of 0.85, assumed to 236 

be sub-critical flow (Trivino, 2018): 237 

v = √𝑔 ∗ 𝑑      (4) 238 

Critical velocity is v, g is the acceleration due to gravity (9.81 m/s2), and d is the mean flow depth 239 

(m). The flood depth and peak discharge for every cross-section was averaged for each reach, along with 240 
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the average bankfull discharge. Paleoflood estimates were compared to qualitative survey peak flood 241 

depth estimates in Table 4 (Results). 242 

3.2 Household survey data 243 

Between 2018 and 2019, 32 non-random household surveys were conducted within the three towns in 244 

the Ostional catchment. This study survey was distributed to households directly impacted by the October 245 

2017 flood located within 50 meters of the Ostional River and was exempt from Institutional Review 246 

Board approval (IRB Exemption No. 1402793-2). There are more than 30 households in Ostional, while 247 

the other two communities each have less than 20 households. Thus, a sample size greater than 30 was 248 

appropriate. Surveys were conducted and recorded in Spanish in a private setting with a native Spanish 249 

translator present. Informed consent was orally obtained from all study participants, participation was 250 

voluntary, and identifying information was anonymized. Survey responses were transcribed with 251 

annotations, translated into English, and converted into a quantitative format. 252 

Because memories of the extreme Tropical Storm Nate flood were fresh, survey responses provide 253 

first-hand observational data. Survey questions included 1) date the rainfall began, 2) the hour rainfall 254 

began, 3) the date the rainfall ended, 4) the hour the rainfall ended, 5) the date the flood began, 6) the 255 

hour the flood began, 7) the hour the flood peaked, 8) the peak flood stage, 9) flood duration, 10) the 256 

flood end date, and 11) whether any previous storms had a similar or greater magnitude than Tropical 257 

Storm Nate. The flood duration and flood end date were asked separately to distinguish between when the 258 

water receded back into the channel (flood duration) and when the flow conditions returned to normal 259 

(flood end). For peak flood stage, respondents provided height estimates based on flood lines in houses 260 

from the ground (Figure 4).  261 

To analyze and convert survey data into hydrographs, respondents were cataloged by row and 262 

responses to each question were converted into qualitative values and placed into columns. 263 

Inconsistencies and responses that could not be converted into quantitative values were identified and 264 

removed. To estimate peak flood stage for comparison to paleoflood data and to use for hydrographs, 265 

survey estimated heights were added to the average depth of channel reaches determined from channel 266 

cross-sections. To estimate velocity from survey data, the critical velocity equation was used. 267 
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 268 

Figure 4: Photo evidence of flood peak stage from a) household surveys, b) indoor water stains, and c) 269 
flood water marks on houses. 270 

3.3 Statistical analysis 271 

Central tendencies were measured and assessed for each survey question – start of rainfall, flood start, 272 

peak flood stage, end of rainfall, flood duration in hours, and flood end date – to produce descriptive 273 

statistics of all surveyed households (Jansen, 2010). An ANOVA univariate variance t-test determined 274 

deviations from a normal distribution and confidence interval for each question within the sample 275 

(Creswell, 2014). The mean timing of rainfall and flooding, the height of peak flooding, and flood duration 276 

were also analyzed based on location (Ostional, Monte Cristo, and San Antonio). The sample mean flood 277 

variables for each town were averaged and compared to the sample mean to determine the z-score for a 278 

95% confidence level (P-value = 0.05).  279 

3.4 Hydrograph variables 280 

Flood hydrographs were reconstructed for all three Ostional River reaches. Time values were created 281 

by combining the mean date and hour values from Table 3 for rain start, flood start, flood peak, flood 282 

duration, and flood end. Discharge values were derived from cross-sectional areas and average in-channel 283 

flow depths for pre-event baseflow, bankfull discharge, peak flood discharge, and post-event baseflow. 284 

The average depth and cross-sectional area of hypothetical low flows were used for pre-event baseflows. 285 

Average bankfull discharges, used for the flood start and flood end discharge values, were estimated from 286 



 

13 

 

the average depth and cross-sectional area of each reach. Peak flood discharges were determined from 287 

Table 4. Post-event discharges were estimated to represent a velocity between bankfull and pre-event 288 

discharge. 289 

4. Results 290 

4.1 Household surveys 291 

Survey results are generally consistent with the National Hurricane Center (2018) timing and duration 292 

of rainfall and flooding from Tropical Storm Nate. Table 2 shows the descriptive statistics of surveyed 293 

households. Of the 32 surveyed households, 68% of respondents were female and 32% were male, likely 294 

due to men working outside of the home. The mean respondent age was 42.6 years old, with the oldest 295 

being 81 years old and the youngest being 17. The mean household size was 4.7 people, with the highest 296 

mean at 5.4 people per household (pph) in San Antonio, followed by Monte Cristo (5.1 pph), and the lowest 297 

in Ostional (3.3 pph). 298 

Table 2: Descriptive statistics of surveyed households. 299 

Variable 
Ostional 

(n=9) 
Monte Cristo 

(n=9) 
San Antonio 

(n=14) 
Full Sample 

(n=32) 
Mean Age of Head of Household 48.8 44.3 38.8 42.6 

Mean Household Size 3.3 5.1 5.4 4.7 

Number of Male Respondents 2 2 5 9 

Number of Female Respondents 7 7 9 23 

Table 3 shows the sample statistics for each question for all 32 household surveys. The mean rain 300 

start of October 4 at 9:07 PM is significant and differs by less than an hour from the median and mode. 301 

The mean flood start of October 4 at 11:56 PM is within 1 hour of the median and mode. The mean flood 302 

peak of October 5 at 11:05 AM is more than 10 hours after the median and mean. The large difference 303 

between the mean and other central tendencies for the peak flood value is due to the range of responses 304 

between October 4 and October 7 and a positive skewness. Furthermore, two outliers of November 4 and 305 

5 were excluded due to their inconsistency with dates provided for other questions and were likely errors. 306 

The mean rain end of October 5 at 11:20 PM differs from the median of October 6 at 2:00 AM, which 307 

differs by less than 3 hours. There is no value for the mode, since all values differed from each other. The 308 

2.9 m mean peak flood stage above the floodplain ground is 0.9 m greater than the median and mode. The 309 

mean flood duration of 20.6 hours 3.4 hours earlier than the mode, but is larger than the median of 9 310 
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hours, indicating a large range and variance in responses. The mean flood end of October 8 at 6:00 PM is 311 

similar to the median but is 2.75 days later than the mode. 312 

Table 3: Sample statistics (s=32) of October 2017 flood information. 313 

 Rain Start 
DD:HH 

Flood Start 
DD:HH 

Flood Peak 
DD:HH 

Rain End 
DD:HH 

Flood 
Duration 

(Hrs) 

Flood recede  
DD:HH 

Flood 
Height 
(m) a 

Mean 10/4 9:07 PM 10/4 11:56 PM 10/5 11:05 AM 10/5 11:20 PM 20.6 10/8/17 6:00 PM 2.9 

Median 10/4 9:30 PM 10/5 12:00 AM 10/5 1:00 AM 10/6 2:00 AM 9 10/8/2017 12:00 AM 2 

Mode 10/4 10:00 PM 10/5 12:00 AM 10/5 12:00 AM #N/A 24 10/6/2017 12:00 AM 2 
Sample 

Variance 
0.85 0.13 0.68 0.29 343.97 13.78 2.78 

Kurtosis 1.38 7.98 0.22 0.22 -0.49 0.78 -0.98 

Skewness 0.01 0.02 0.74 -1.18 0.82 0.99 0.40 

Range 3.9 2 3.0 1.5 59 15 5.7 

Count 14 17 15 9 27 20 19 
Standard 
Deviation 

0.92 0.38 0.82 0.54 18.55 3.71 1.67 

Confidence 
Level (95%) 

+/-0.53 +/-0.18 +/-0.46 +/-0.41 +/-7.34 +/-1.74 +/-0.80 

α ≤ 0.05 aFlood height represents flood level above floodplain ground 314 

The statistical patterns of survey response data are shown in Figure 5. The temporal trend of survey 315 

responses in Figure 5a are generally consistent with an expected timeline of a flood event. The flood start 316 

had the least variability in responses, indicating this information is likely the most crucial for survey 317 

respondents. The flood recede data show the largest skewed distribution of time, with an outlier of 318 

October 18. There was a large range for peak flood height, although ~30% of respondents indicated a 319 

height of 2 meters. The flood duration is bimodal with 5 responses indicating a duration of 6 hours and 5 320 

responses indicating 24 hours. The flood peak, flood recede, flood height, and flood duration data are 321 

positively skewed. The flood duration has a large distribution. An extreme outlier of 624 hours was 322 

removed from the dataset. The flood recede date also has a bimodal distribution of October 7 and October 323 

9, with a possible outlier of October 18. 324 

Interestingly, inhabitants consistently indicated that the 2017 flood was the most devastating in recent 325 

history. Of the 31 responses, 93.5% (29) indicated the Tropical Storm Nate flood was unprecedented. One 326 

respondent indicated that Hurricane Mitch (1998) and Tropical Storm Juana (2004) were similar, but Nate 327 

was stronger and worse. This is remarkable since all respondents lived in multi-generational households 328 

in the Ostional catchment their whole lives and experienced Hurricane Mitch, deemed the deadliest 329 

hurricane to hit Central America in more than 200 years. 330 
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 331 
Figure 5: Statistical distribution of sample survey data for the a) event timeline b) peak flood height c) 332 

flood duration in hours for the Tropical Storm Nate flood. Each box plot has an X indicating the median, 333 
the bottom and upper quartile equally distributed around this value, the mean indicated as a line, the upper 334 

and lower extremes indicated by T-bars, and outliers shown as single data points outside of the T-bars.   335 

The mean flood information was also analyzed for each reach (Table 4). All three mean rain start 336 

dates matched the sample mean (October 4), with the start hour varying by approximately two hours 337 

between reaches. The flood start mean between reaches are all within two hours of the sample mean. 338 

Interestingly, the data shows the flood starts earliest in San Antonio, then in Ostional and Monte Cristo, 339 

respectively. Although the average means between towns are similar, the value in Monte Cristo was 340 

interpolated since only times were provided and there were very few survey responses in Ostional. The 341 

comparison of peak flood means between reaches indicates the flood peaked before midnight in San 342 

Antonio and after midnight in Ostional and Monte Cristo. The rain ended later upstream in San Antonio 343 

compared to in Monte Cristo and Ostional. The only mean variable that was not 344 

The upstream San Antonio reach had an estimated high flood stage of 2.6 m above the bank, while 345 

the flood stage was 1.6 m in the lower and flatter Ostional reach, which likely indicates spatial variability. 346 

Monte Cristo had highest mean flood stage (3.8 m) and had a longer mean flood recede date (10/11) 347 

compared to the other towns. In Ostional, the mean flood duration was quicker than in San Antonio and 348 
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Monte Cristo by 11.2 hours and 12.2 hours, respectively. When analyzing the variability across the 349 

watershed, it is likely that the flood was flashier and more severe upstream compared to downstream.   350 

Table 4: October 2017 mean flood variables for each town. 351 

 Rain Start 
DD:HH 

Flood Start 
DD:HH 

Flood Peak 
DD:HH 

Rain End 
DD:HH 

Flood Length 
(Hrs) 

Flood 
Recede Date 

Flood 
Height (m) 

Ostional 10/4 8:20 PM 10/4 10:15 PM 10/5 1:45 AM 10/5 7:30 AM 12.25 10/7 1.6 

Monte Cristo 10/4 10:30 PM 10/4 10:51 PM 10/5 1:00 AM 10/5 1:30 AM 23.50 10/11 3.8 

San Antonio 10/4 9:31 PM 10/4 10:10 PM 10/4 11:48 PM 10/6 3:22 AM 24.45 10/8 2.6 

Full Sample 10/4 9:07 PM 10/4 11:56 PM 10/4 11:05 AM 10/6 2:15 AM 20.56 10/8 2.9 

4.2 Paleohydrology 352 

The alignment of paleoproxy and household survey results indicate the October 2017 extreme 353 

flood is likely the largest magnitude flood that has occurred in at least 75 years in the catchment. The 354 

paleoflood estimates for each reach in the Ostional River are shown in Table 5. Although the channel 355 

elevation drops significantly between the three reaches, the average slopes at each reach were relatively 356 

flat and straight. For all cross-sections, the channel width variance was 6.7 m from the mean (x̄ = 5.7 m). 357 

The mean channel depth is greatest at Monte Cristo (2.5 m), but all mean reach depths are within a 0.5 m 358 

range (0.1 m variance). The average cross-sectional areas are also similar, but have a greater variance of 359 

37.1 m. The paleo velocity calculations are lowest in the San Antonio reach (4.2 m/s) and highest mid-360 

catchment in Monte Cristo (4.8 m/s), both of which correlate with channel slope and channel roughness. 361 

The estimated paleoflood stage is extreme, with all three reaches exceeding five meters. The estimated 362 

maximum flood discharge was highest in Monte Cristo (599 cms), followed by 520 cms in Ostional, and 363 

511 cms in San Antonio. The variance was 4688 cms and the standard deviation was 68.5 cms. 364 

Table 5: Paleohydrology Flood Estimates of the October 2017 Storm Event in Ostional. 365 

River 
Reach 

Distance 
from 
Coast 
(km) 

Minimum 
Channel 

Elevation 
(m) 

Average 
Slope 
(m/m) 

Manning’s 
n 

Average 
Channel 

Width (m) 

Mean 
Depth 

(m) 

Average 
Cross-

Sectional 
Area (m²) 

Paleo 
Velocity 

(m/s) 

Paleo 
Flood 
Stage 
(m) 

Max Q 
Estimate 

(cms) 

San 
Antonio 

6.9 70.9 0.01 0.58 57.5 2.0 119.5 4.2 5.1 511 

Monte 
Cristo 

5.2 51.3 0.01 0.70 52.2 2.5 122.5 4.8 5.6 599 

Ostional 0.7 11.2 0.00 0.30 54.7 2.3 120.4 4.3 8.6 520 
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The estimated peak flood depth and velocity from the competent-depth method, boulder bar 366 

estimates, and household survey responses are shown in Table 6. The flood depths from all three methods 367 

show an upstream to downstream trend, apart from human observations in Ostional. In Ostional, the flood 368 

depths had a sample variance of 5.2, with the largest % difference between the Ostional household survey 369 

estimate and the competent-depth estimate (18.1%) and boulder bar estimate (11%), respectively. The 370 

larger difference in human observed flood stage estimates to paleoflood estimates is likely due to both 371 

fewer and wider range of survey responses. The Ostional boulder bar and competent depth estimates 372 

differ by 7.6%. The estimated depths varied the least in the San Antonio reach (0.2 variance), with the 373 

human observed estimate differing by 0.8% from the competent-depth estimate and 3.9% from the 374 

boulder bar estimate. The boulder bar and competent-depth estimates in San Antonio differed by 2.7%. In 375 

Monte Cristo, the estimated flood stage also had a variance of 0.2, with a 1.3% difference between the 376 

competent-depth and human observation estimates, a 2.7% difference between the boulder bar and 377 

competent-depth estimates, and a 4% difference between the boulder bar estimates and human 378 

observations.  379 

Table 6: Comparison of Peak Flood Estimates of the October 2017 Storm Event. 380 

 Competent-Depth Boulder Bar Human Observations 

River Reach Velocity (m/s) Depth (m) Velocity (m/s) Depth (m) Velocity (m/s) Depth (m) 

San Antonio 4.2 5.1 3.1 4.5 6.6 5.2 

Monte Cristo 4.8 5.6 3.9 5.0 7.0 5.9 

Ostional 4.3 8.6 1.7 6.3 5.8 4.0 

The human observed peak flood velocities were consistently the highest, while the boulder bar 381 

estimates were consistently the lowest, primarily due to different equations. Human observations provided 382 

a depth estimate; thus, the velocity was determined using the critical velocity equation. Furthermore, both 383 

the boulder bar and competent-depth estimates represent lower-limit velocity thresholds. In the Ostional 384 

reach, the boulder bar estimated velocity is significantly less than the estimated velocities from the 385 

competent-depth method (21.8% difference) and human observations (27.3% difference). The boulder bar 386 

velocity is directly proportional to the average b-axes of the largest boulders and is greatly influenced by 387 

slope. The b-axes were significantly smaller in the Ostional reach than upstream; however, the Ostional 388 

reach has a very flat slope (0.1%) that requires a greater flow depth to have adequate force to entrain the 389 

boulders. 390 
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4.3 Storm hydrographs 391 

Flood hydrographs were reconstructed for each reach within the Ostional catchment (Figure 6). In 392 

San Antonio, the storm began on October 4 at 9:31 PM with a pre-event baseflow of 55 cms. The flood 393 

began at 10:10 PM with a discharge estimated at 256 cms. An hour and a half later, the flood peaked at 394 

511 cms. The flood, lasting 24.5 hours, receded into the channel at approximately 12:18 AM on October 395 

7. The estimated post-event flow was 140 cms on October 8. Monte Cristo, the ‘flashiest’ hydrograph, 396 

had the highest estimated flood stage and discharge, and the slowest retreat of flow. The rain began on 397 

October 4 at 10:30 PM with a pre-event baseflow of 28 cms. Discharge exceeded bankfull (161 cms) by 398 

10:51 PM on October 5 and quickly peaked at 1:00 AM (599 cms) the next morning. The discharge 399 

receded below bankfull 23.5 hours later, and the post-event flow (95 cms) occurred on October 11. The 400 

Ostional hydrograph is similar to the San Antonio hydrograph with the rain beginning on October 4 at 401 

8:20 PM and a pre-event baseflow of 38 cms. At 10:15 PM, the flow exceeded bankfull discharge (333 402 

cms) and peaked at 1:45 AM on October 5 with a discharge of 520 cms. The discharge was quickest to 403 

recede (12.3 hours later) and became post-storm flow (163 cms) on October 7. Peak flooding in Ostional 404 

occurred when tides were low, indicating that the tides did not substantially affect coastal flooding, but 405 

provides reasonable explanation for why the flood receded faster in Ostional than further upstream 406 

(Supplemental Data). 407 

 408 

Figure 6: Reconstructed October 2017 flood hydrographs for all three reaches. 409 
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5. Discussion 410 

5.1 Mixed methods 411 

This study demonstrates the feasibility of using mixed paleohydrology and qualitative survey 412 

methods to produce reliable storm hydrographs of an extreme flood event in data-limited areas. Prior to 413 

the study, there was not much traditional data and flood characterization in the Ostional catchment. 414 

Combined, the paleoproxy measures, household survey data, and storm hydrographs provide robust flood 415 

information in a representative ungauged catchment.  416 

The limited measures of flow and event records led to several assumptions. First, we assumed the 417 

October 2017 flood was the most extreme in the study catchment. Since paleoflood estimates help 418 

determine the maximum flood and not identify a specific event, there could have been a more extreme 419 

previous flood. However, evidence – such as height of flood debris, lack of in-channel vegetation, and 420 

survey responses – all indicated the Tropical Storm Nate flood was the most recent extreme flood. 421 

Estimates of flood stage and peak discharge varied between the boulder bar, survey, and competent-422 

depth methods. Results show boulder bar estimates of flood stage and discharge were typically lower than 423 

the competent-depth and survey estimates. However, boulder bar estimates describe the lower limit of 424 

flooding with up to 20% inaccuracy; thus, these estimates likely correspond to the minimum flood stage 425 

and discharge that occurred during the flood. Paleoflood calculations from average slope, roughness, and 426 

cross-sectional geometry contribute to uncertainty and remain an important challenge for applying this 427 

method (Brázdil et al., 2006; Davis et al., 2019). When paleoflood calculations were combined with 428 

descriptive data, water stage estimates ranged from 0.8% to 4% difference in the San Antonio and Monte 429 

Cristo reaches. Thus, indicating that mixed methods are considerably useful to verify and improve the 430 

accuracy of paleoflood peak flow estimates (Brázdil et al., 2006). 431 

Survey results demonstrate the reliability of qualitative methods to provide crucial spatial and 432 

temporal aspects of the flood. Memories of the 2017 extreme flood were recent enough to provide 433 

consistent post-flood timing and duration data (Rollason et al., 2018). Interestingly, the most consistent 434 

survey responses were the time of peak flooding and that the 2017 flood was more severe than past 435 

floods, which is useful for extreme flood recurrence in the Ostional catchment. It is likely that the most 436 

recent and traumatic flood could have skewed perception of past floods. However, 93% of survey 437 
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responses is a strong indicator of validity that the 2017 flood was the most devastating in the past 40 to 80 438 

years, based on median and oldest age of surveyed population, and likely even longer. 439 

Results demonstrate central tendencies of flood variables are useful to assess inconsistency in survey 440 

responses and to establish a general timeline of local flooding. However, converting qualitative data into 441 

quantitative values is challenging. Not every survey question was answered, nor respondents may not 442 

have understood or responded in the intended way, which affects the sample statistical patterns and error 443 

estimations. Unanswered questions or responses that could not be converted into a numerical format, such 444 

as days of the week or “it rained all month,” were excluded. The flood end date had the most widely 445 

variable responses, likely due to multiple factors, such as survey question design, respondents’ 446 

interpretation of the question, and the ambiguity of defining the end of a flood. Consideration should also 447 

be given when interpreting the data. Since the dates and hours were combined in this study, this likely 448 

affected statistical measures. Measures of central tendency provide precise flood information for most 449 

survey responses but were not as effective for questions with very few responses or with non-Gaussian 450 

data. Other methods, such as cluster analyses and cross-tabulation, may provide additional information. 451 

Although it is not possible to distinguish between spatial and human uncertainty, results highlight the 452 

variability in the timing and duration of rainfall and flooding within the upper, middle, and lower river 453 

reaches that was not previously identified. The variation of mean flood duration and flood end dates 454 

between the three reaches could indicate differences in topography and microclimates between the coast 455 

and upstream. The flood may have receded quickest in Ostional due to the retreat of coastal storm surge 456 

to allow floodwaters to drain seaward. The longer flood in Monte Cristo is likely due to the narrowing 457 

and deepening of the channel to funnel and concentrate floodwaters where the slope begins to flatten. 458 

This information is highly valuable to improve understanding of extreme and flash flood events not 459 

typically captured using traditional monitoring methods. 460 

The knowledge and experiences of local communities of past floods is an invaluable data source that 461 

provides a more holistic understanding of flood pathways and timeline in an ungauged basin compared to 462 

traditional data (Blue & Brierley, 2015; Lane, 2017; Rollason et al., 2018). Respondents provided 463 

additional information on channel erosion and movement, property damage and loss, secondary health 464 

effects, flood response and aid, and personal narratives. Although these data were not analyzed in the 465 

study, they are invaluable to understand how local communities were affected, the local flood perception 466 

and risk, and the flood response and management structure. As ‘knowledge holders,’ locals provide 467 
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understanding of landscape and flooding beyond traditional data sources and help provide narrative and 468 

alternative viewpoints seldomly incorporated in flood management (Stocking, 1995; Starkey et al., 2017). 469 

5.2 Hydrographs 470 

Storm hydrographs are commonly derived from a single-point continuous measure of flood stage or 471 

discharge to determine the timing, duration, and severity of flooding within a catchment. However, 472 

instrumental records often do not distinguish flood information in different reaches nor can be used to 473 

develop storm hydrographs in ungauged catchments. Based on an extensive literature review, this study is 474 

likely the first to combine household surveys and paleoproxy data to reconstruct extreme flood 475 

hydrographs in an ungauged catchment. Human observations provide daily and hourly flood estimates for 476 

five requisite points of lag time, rising limbs, and falling limbs critical to construct hydrographs. These 477 

data also provide a better understand the rainfall-runoff relationship to construct the hydrographs. 478 

The anecdotal and paleohydrology methods and results of this study provide evidence of how 479 

floodwaters moved downstream and how changes across the Ostional channel affected this movement. 480 

Results indicate that the Monte Cristo reach had the flashiest hydrograph, which aligns with measured 481 

morphometric properties of the reach. Furthermore, the flood in the Ostional reach receded approximately 482 

12 hours faster. These findings diverge from the general understanding of flow behavior of higher 483 

discharge as the channel widens in the lower reaches of a catchment. However, flood discharge can vary 484 

drastically in different parts of the channel due to multiple factors, such as land cover, geomorphic 485 

properties, and infiltration rates. We theorize that a break in channel gradient caused floodwaters to 486 

concentrate in Monte Cristo and likely caused channel incision, erosion, and migration. 487 

Determining the accuracy of the hydrographs is challenging since there was no information on 488 

baseflow conditions, field measurements were averaged, and peak values were estimated. Despite the 489 

likelihood of hydrograph components being overestimated or underestimated, they are valuable for 490 

critical infrastructure to withstand extreme floods, to improve flood management, and to prepare for more 491 

variable and extreme events (Bouleau, 2014; Ashmore, 2015; Lane, 2017). When data from multiple 492 

sources indicate similar outputs, ambiguity is reduced, and confidence increases. Collectively, the 493 

paleoproxy and household survey data provide a robust estimate of the timing and duration of 494 

precipitation and discharge from Tropical Storm Nate, decrease uncertainty from paleostage indicators, 495 

and more accurately calculate the rising limb, falling limb, and peak stage of the storm hydrographs. 496 
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6. Conclusion 497 

This study is one of the first aimed at integrating mixed paleoproxy measures and household survey 498 

data to provide reliable estimates of the largest floods expected in an ungauged catchment in a data-499 

limited region. The methods provide reasonable estimates of the duration, magnitude, and upper limits of 500 

extreme flooding that are also useful in gauged catchments, as many systematic instrumental records fail 501 

to provide relevant information on the magnitude of catastrophic events (Brázdil et al., 2006). Household 502 

surveys can suitably estimate the timing and duration of a recent extreme flood event and can be verified 503 

from historical records. When combined with paleoflood data, uncertainty in peak discharge can be 504 

reduced. Moreover, these data can identify spatio-temporal variability of rain and flooding between the 505 

upper, middle, and lower river reaches. Combined, these data can provide daily-to-hourly extreme flood 506 

information that can be used to reconstruct extreme storm hydrographs. Five data points provide 507 

sufficient information on the hydrograph’s shape, lag-time, peak discharge volume, and receding time to 508 

better understand flow response from large storm events. 509 

This study provides a baseline assessment of an extreme flood to improve local flood management 510 

and infrastructure development and can be adapted for any catchment. Furthermore, this study provides 511 

circumstantial evidence of flood recurrence and how more intense flooding could occur in the future, 512 

since respondents indicated that this extreme flood, produced from a tropical storm, was similar, but more 513 

intense, than flooding from past hurricanes. To conclude, the benefits gained from engaging with and 514 

involving local communities, such as enhancing community resilience and management, improving data 515 

availability, and reducing data uncertainty are invaluable (Johnson et al., 2002; Starkey et al., 2017). 516 

Thus, incorporating local observational data enhances understanding of the local flood context and 517 

community structure to improve research and water resource management that benefit those most 518 

vulnerable to flooding.  519 
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