REFERENCES
Almajmaie, A., Hardie, M., Doyle, R., Birch, C., & Acuna, T. (2017). Influence of soil properties on the aggregate stability of cultivated sandy clay loams. Journal of Soils and Sediments , 17 (3), 800–809. https://doi.org/10.1007/s11368-016-1568-1
Aravena, J. E., Berli, M., Ghezzehei, T. A., & Tyler, S. W. (2011). Effects of Root-Induced Compaction on Rhizosphere Hydraulic Properties—X-ray Microtomography Imaging and Numerical Simulations.Environmental Science & Technology , 45 (2), 425–431. https://doi.org/10.1021/es102566j
Bantralexis, K. E., Markou, I. N., & Zografos, G. I. (2023). Use of sand pore-size distribution to predict cement suspension groutability.Developments in the Built Environment , 14 , 100138. https://doi.org/10.1016/j.dibe.2023.100138
Bazzoffi, P., Mbagwu, J. S. C., & Chukwu. W. I. E. (1995). Statistical models for predicting aggregate stability from intrinsic soil components. International Agrophysics , 9 .
Beare, R., Lowekamp, B., & Yaniv, Z. (2018). Image Segmentation, Registration and Characterization in R with SimpleITK. Journal of Statistical Software , 86 , 8. https://doi.org/10.18637/jss.v086.i08
Bengough, A. G., Bransby, M. F., Hans, J., McKenna, S. J., Roberts, T. J., & Valentine, T. A. (2006). Root responses to soil physical conditions; growth dynamics from field to cell. Journal of Experimental Botany , 57 (2), 437–447. https://doi.org/10.1093/jxb/erj003
Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., … Kreshuk, A. (2019). ilastik: Interactive machine learning for (bio)image analysis. Nature Methods , 16 (12), 1226–1232. https://doi.org/10.1038/s41592-019-0582-9
Bodner, G., Leitner, D., & Kaul, H.-P. (2014). Coarse and fine root plants affect pore size distributions differently. Plant and Soil , 380 (1–2), 133–151. https://doi.org/10.1007/s11104-014-2079-8
Bouckaert, L., Sleutel, S., Van Loo, D., Brabant, L., Cnudde, V., Van Hoorebeke, L., & De Neve, S. (2013). Carbon mineralisation and pore size classes in undisturbed soil cores. Soil Research ,51 (1), 14–22. Scopus. https://doi.org/10.1071/SR12116
Buades, A., Coll, B., & Morel, J.-M. (2011). Non-Local Means Denoising.Image Processing On Line , 1 , 208–212. https://doi.org/10.5201/ipol.2011.bcm_nlm
Buhmann, C., Rapp, I., & Laker, M. (1996). Differences in mineral ratios between disaggregated and original clay fractions in some South African soils as affected by amendments. Soil Research ,34 (6), 909. https://doi.org/10.1071/SR9960909
Croser, C., Bengough, A. G., & Pritchard, J. (1999). The effect of mechanical impedance on root growth in pea (Pisum sativum). I. Rates of cell flux, mitosis, and strain during recovery. Physiologia Plantarum , 107 (3), 277–286. https://doi.org/10.1034/j.1399-3054.1999.100304.x
Darbon, J., Cunha, A., Chan, T. F., Osher, S., & Jensen, G. J. (2008). Fast nonlocal filtering applied to electron cryomicroscopy. 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro , 1331–1334. Paris, France: IEEE. https://doi.org/10.1109/ISBI.2008.4541250
De Gryze, S., Jassogne, L., Six, J., Bossuyt, H., Wevers, M., & Merckx, R. (2006). Pore structure changes during decomposition of fresh residue: X-ray tomography analyses. Geoderma , 134 (1), 82–96. https://doi.org/10.1016/j.geoderma.2005.09.002
Ding, D., Zhao, Y., Feng, H., Peng, X., & Si, B. (2016). Using the double-exponential water retention equation to determine how soil pore-size distribution is linked to soil texture. (National Agricultural Library).
Dodd, M. B., & Lauenroth, W. K. (1997). The influence of soil texture on the soil water dynamics and vegetation structure of a shortgrass steppe ecosystem. Plant Ecology , 133 (1), 13–28. https://doi.org/10.1023/A:1009759421640
Fan, Z., Hu, C., Zhu, Q., Jia, Y., Zuo, D., & Duan, Z. (2021). Three-dimensional pore characteristics and permeability properties of calcareous sand with different particle sizes. Bulletin of Engineering Geology and the Environment , 80 (3), 2659–2670. https://doi.org/10.1007/s10064-020-02078-1
Franklin, S. M., Kravchenko, A. N., Vargas, R., Vasilas, B., Fuhrmann, J. J., & Jin, Y. (2021). The unexplored role of preferential flow in soil carbon dynamics. Soil Biology and Biochemistry , 161 , 108398. https://doi.org/10.1016/j.soilbio.2021.108398
Gaillard, V., Chenu, C., Recous, S., & Richard, G. (1999). Carbon, nitrogen and microbial gradients induced by plant residues decomposing in soil. European Journal of Soil Science , 50 (4), 567–578. https://doi.org/10.1046/j.1365-2389.1999.00266.x
Gee, G. W., & Or, D. (2002). 2.4 Particle-Size Analysis. InMethods of Soil Analysis (pp. 255–293). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssabookser5.4.c12
Haddix, M. L., Gregorich, E. G., Helgason, B. L., Janzen, H., Ellert, B. H., & Francesca Cotrufo, M. (2020). Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma ,363 , 114160. https://doi.org/10.1016/j.geoderma.2019.114160
Hairiah, K., Widianto, W., Suprayogo, D., & Van Noordwijk, M. (2020). Tree Roots Anchoring and Binding Soil: Reducing Landslide Risk in Indonesian Agroforestry. Land , 9 (8), 256. https://doi.org/10.3390/land9080256
Helliwell, J. R., Sturrock, C. J., Mairhofer, S., Craigon, J., Ashton, R. W., Miller, A. J., … Mooney, S. J. (2017). The emergent rhizosphere: Imaging the development of the porous architecture at the root-soil interface. Scientific Reports , 7 (1), 14875. https://doi.org/10.1038/s41598-017-14904-w
Helliwell, Jon R., Sturrock, C. J., Miller, A. J., Whalley, W. R., & Mooney, S. J. (2019). The role of plant species and soil condition in the structural development of the rhizosphere. Plant, Cell & Environment , 42 (6), 1974–1986. https://doi.org/10.1111/pce.13529
Hildebrand, T., & Rüegsegger, P. (1997). A new method for the model‐independent assessment of thickness in three‐dimensional images.Journal of Microscopy , 185 (1), 67–75. https://doi.org/10.1046/j.1365-2818.1997.1340694.x
Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science ,58 (3), 523–546. https://doi.org/10.1111/j.1365-2389.2007.00915.x
Jesus, E. da C., Liang, C., Quensen, J. F., Susilawati, E., Jackson, R. D., Balser, T. C., & Tiedje, J. M. (2016). Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. GCB Bioenergy ,8 (2), 481–494. https://doi.org/10.1111/gcbb.12289
Juyal, A., Guber, A., Oerther, M., Quigley, M., & Kravchenko, A. N. (2021). Pore architecture and particulate organic matter in soils under monoculture switchgrass and restored prairie in contrasting topography.Scientific Reports , 11 (1), 21998. https://doi.org/10.1038/s41598-021-01533-7
Kaiser, E. A., Mueller, T., Joergensen, R. G., Insam, H., & Heinemeyer, O. (1992). Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biology and Biochemistry , 24 (7), 675–683. https://doi.org/10.1016/0038-0717(92)90046-Z
Kasmerchak, C. S., & Schaetzl, R. (2018). Soils of the GLBRC Marginal Land Expeirment (MLE) Sites . https://doi.org/10.5281/ZENODO.2578238
Kim, K., Guber, A. K., Rivers, M., & Kravchenko, A. N. (2020). Contribution of decomposing plant roots to N2O emissions by water absorption. Geoderma , 375 , 114506. https://doi.org/10.1016/j.geoderma.2020.114506
Koebernick, N., Schlüter, S., Blaser, S. R. G. A., & Vetterlein, D. (2018). Root-soil contact dynamics of Vicia faba in sand. Plant and Soil , 431 (1), 417–431. https://doi.org/10.1007/s11104-018-3769-4
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., … Leinweber, P. (2008). Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science , 171 (1), 61–82. https://doi.org/10.1002/jpln.200700048
Kravchenko, A. N., Guber, A. K., Razavi, B. S., Koestel, J., Blagodatskaya, E. V., & Kuzyakov, Y. (2019). Spatial patterns of extracellular enzymes: Combining X-ray computed micro-tomography and 2D zymography. Soil Biology and Biochemistry , 135 , 411–419. https://doi.org/10.1016/j.soilbio.2019.06.002
Kravchenko, A. N., Guber, A. K., Razavi, B. S., Koestel, J., Quigley, M. Y., Robertson, G. P., & Kuzyakov, Y. (2019). Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications , 10 (1), 3121. https://doi.org/10.1038/s41467-019-11057-4
Kravchenko, A. N., & Guber, A. K. (2017). Soil pores and their contributions to soil carbon processes. Geoderma , 287 , 31–39. https://doi.org/10.1016/j.geoderma.2016.06.027
Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry , 83 , 184–199. https://doi.org/10.1016/j.soilbio.2015.01.025
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., … Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications , 6 (1), 6707. https://doi.org/10.1038/ncomms7707
Lee, J. H., Lucas, M., Guber, A. K., Li, X., & Kravchenko, A. N. (2023). Interactions among soil texture, pore structure, and labile carbon influence soil carbon gains. Geoderma , 439 , 116675. https://doi.org/10.1016/j.geoderma.2023.116675
Li, X., Petipas, R. H., Antoch, A. A., Liu, Y., Stel, H. V., Bell-Dereske, L., … Friesen, M. L. (2022). Switchgrass cropping systems affect soil carbon and nitrogen and microbial diversity and activity on marginal lands. GCB Bioenergy , 14 (8), 918–940. https://doi.org/10.1111/gcbb.12949
Liu, Y.-F., Meng, L.-C., Huang, Z., Shi, Z.-H., & Wu, G.-L. (2022). Contribution of fine roots mechanical property of Poaceae grasses to soil erosion resistance on the Loess Plateau. Geoderma ,426 , 116122. https://doi.org/10.1016/j.geoderma.2022.116122
Lucas, M. (2022). Perspectives from the Fritz‐Scheffer Awardee 2020—The mutual interactions between roots and soil structure and how these affect rhizosphere processes #. Journal of Plant Nutrition and Soil Science , 185 (1), 8–18. https://doi.org/10.1002/jpln.202100385
Lucas, M., Nguyen, L. T. T., Guber, A., & Kravchenko, A. N. (2022). Cover crop influence on pore size distribution and biopore dynamics: Enumerating root and soil faunal effects. Frontiers in Plant Science , 13 , 928569. https://doi.org/10.3389/fpls.2022.928569
Lucas, M., Santiago, J. P., Chen, J., Guber, A., & Kravchenko, A. N. (2023). The soil pore structure encountered by roots affects plant-derived carbon inputs and fate. New Phytologist ,240 (2), 515–528. https://doi.org/10.1111/nph.19159
Lucas, M., Schlüter, S., Vogel, H.-J., & Vetterlein, D. (2019a). Roots compact the surrounding soil depending on the structures they encounter.Scientific Reports , 9 (1), 16236. https://doi.org/10.1038/s41598-019-52665-w
Lucas, M., Schlüter, S., Vogel, H.-J., & Vetterlein, D. (2019b). Soil structure formation along an agricultural chronosequence.Geoderma , 350 , 61–72. https://doi.org/10.1016/j.geoderma.2019.04.041
Lucas, M., Vetterlein, D., Vogel, H.-J., & Schlüter, S. (2021). Revealing pore connectivity across scales and resolutions with X‐ray CT. (National Agricultural Library).
Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. InFundamentals of Soil Behavior . John Wiley and Sons, Inc.
Neaman, A., Singer, A., & Stahr, K. (1999). Clay mineralogy as affecting disaggregation in some palygorskite containing soils of the Jordan and Bet-She’an Valleys. Soil Research , 37 (5), 913. https://doi.org/10.1071/SR98118
Negassa, W. C., Guber, A. K., Kravchenko, A. N., Marsh, T. L., Hildebrandt, B., & Rivers, M. L. (2015). Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria. PLOS ONE , 10 (4), e0123999. https://doi.org/10.1371/journal.pone.0123999
Nimmo, J. R. (2013). Porosity and Pore Size Distribution. InReference Module in Earth Systems and Environmental Sciences (p. B9780124095489052659). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.05265-9
North, G. B., & Nobel, P. S. (1997). Root–soil contact for the desert succulent Agave deserti in wet and drying soil. The New Phytologist , 135 (1), 21–29. https://doi.org/10.1046/j.1469-8137.1997.00620.x
Odgaard, A., & Gundersen, H. J. G. (1993). Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone , 14 (2), 173–182. https://doi.org/10.1016/8756-3282(93)90245-6
Phalempin, M., Landl, M., Wu, G.-M., Schnepf, A., Vetterlein, D., & Schlüter, S. (2022). Maize root-induced biopores do not influence root growth of subsequently grown maize plants in well aerated, fertilized and repacked soil columns. Soil and Tillage Research , 221 , 105398. https://doi.org/10.1016/j.still.2022.105398
Phalempin, M., Lippold, E., Vetterlein, D., & Schlüter, S. (2021a). An improved method for the segmentation of roots from X-ray computed tomography 3D images: Rootine v.2. Plant Methods , 17 (1), 39. https://doi.org/10.1186/s13007-021-00735-4
Phalempin, M., Lippold, E., Vetterlein, D., & Schlüter, S. (2021b). Soil texture and structure heterogeneity predominantly governs bulk density gradients around roots. Vadose Zone Journal ,20 (5). https://doi.org/10.1002/vzj2.20147
Rabbi, S. M. F., Daniel, H., Lockwood, P. V., Macdonald, C., Pereg, L., Tighe, M., … Young, I. M. (2016). Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Scientific Reports , 6 (1), 33012. https://doi.org/10.1038/srep33012
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H.-J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma ,314 , 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
Rivera, J. I., & Bonilla, C. A. (2020). Predicting soil aggregate stability using readily available soil properties and machine learning techniques. CATENA , 187 , 104408. https://doi.org/10.1016/j.catena.2019.104408
Sainju, U. M., Allen, B. L., Lenssen, A. W., & Ghimire, R. P. (2017). Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates. Field Crops Research ,210 , 183–191. https://doi.org/10.1016/j.fcr.2017.05.029
Sanford, G. R. (2014). Perennial Grasslands Are Essential for Long Term SOC Storage in the Mollisols of the North Central USA. In A. E. Hartemink & K. McSweeney (Eds.), Soil Carbon (pp. 281–288). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-04084-4_29
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods ,9 (7), 676–682. https://doi.org/10.1038/nmeth.2019
Schrader, S., & Zhang, H. (1997). Earthworm casting: Stabilization or destabilization of soil structure? Soil Biology and Biochemistry ,29 (3), 469–475. https://doi.org/10.1016/S0038-0717(96)00103-4
Six, J., Elliott, E. T., & Paustian, K. (2000). Soil Structure and Soil Organic Matter II. A Normalized Stability Index and the Effect of Mineralogy. Soil Science Society of America Journal ,64 (3), 1042–1049. https://doi.org/10.2136/sssaj2000.6431042x
Smith, D. J., Wynn-Thompson, T. M., Williams, M. A., & Seiler, J. R. (2021). Do roots bind soil? Comparing the physical and biological role of plant roots in fluvial streambank erosion: A mini-JET study.Geomorphology , 375 , 107523. https://doi.org/10.1016/j.geomorph.2020.107523
Sokol, N. W., Kuebbing, S. E., Karlsen-Ayala, E., & Bradford, M. A. (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist ,221 (1), 233–246. https://doi.org/10.1111/nph.15361
Sprunger, C. D., & Robertson, G. P. (2018). Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma , 318 , 42–51. https://doi.org/10.1016/j.geoderma.2017.11.040
Strong, D. T., Wever, H. D., Merckx, R., & Recous, S. (2004). Spatial location of carbon decomposition in the soil pore system: Spatial location of carbon decomposition. European Journal of Soil Science , 55 (4), 739–750. https://doi.org/10.1111/j.1365-2389.2004.00639.x
Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K., & Christensen, B. T. (1999). Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma , 89 (3), 199–218. https://doi.org/10.1016/S0016-7061(98)00084-6
Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A., & Boeuf-Tremblay, V. (2000). Effect of root mucilage and modelled root exudates on soil structure. European Journal of Soil Science ,51 (4), 575–581. https://doi.org/10.1111/j.1365-2389.2000.00348.x
Védère, C., Vieublé Gonod, L., Pouteau, V., Girardin, C., & Chenu, C. (2020). Spatial and temporal evolution of detritusphere hotspots at different soil moistures. Soil Biology and Biochemistry ,150 , 107975. https://doi.org/10.1016/j.soilbio.2020.107975
Vogel, H.-J. (2002). Topological Characterization of Porous Media. In K. Mecke & D. Stoyan (Eds.), Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems (pp. 75–92). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45782-8_3
Vogel, H.-J., & Roth, K. (2001). Quantitative morphology and network representation of soil pore structure. Advances in Water Resources , 24 (3–4), 233–242. https://doi.org/10.1016/S0309-1708(00)00055-5
Vogel, H.-J., Weller, U., & Schlüter, S. (2010). Quantification of soil structure based on Minkowski functions. Computers & Geosciences ,36 (10), 1236–1245. https://doi.org/10.1016/j.cageo.2010.03.007
Wakindiki, I. I. C., & Ben-Hur, M. (2002). Soil Mineralogy and Texture Effects on Crust Micromorphology, Infiltration, and Erosion. Soil Science Society of America Journal , 66 (3), 897–905. https://doi.org/10.2136/sssaj2002.8970
Walt, S. van der, Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., … Yu, T. (2014). scikit-image: Image processing in Python. PeerJ , 2 , e453. https://doi.org/10.7717/peerj.453