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S1. PREFACE

This document provides supplementary materials for the
paper “A novel fit-flexible fluorescence imager: Tri-sensing
of intensity, fall-time, and life profile”. Different sections here
provide details of the cross-references in the main paper. These
sections also refer to the paper body where required.

S2. MEAN LIFETIME FOR INFINITE-EXPONENTIAL DECAY

Consider the most general infinite-exponential decay as:

vptq “

8
ÿ

i“1

Aie
´ t

τi . (S1)

We define A fi
ř8

i“1 Ai. Dividing (S1) by A gives:

vptq “ A
8
ÿ

i“1

αie
´ t

τi , (S2)

where αi fi Ai

A , 0 ă αi ă 1, @i, and
ř8

i“1 αi “ 1. In
fluorescence lifetime imaging microscopy (FLIM), the time
of arriving the first photon can be considered as a random
variable; hence, the histogram of photon-count arrivals will
be a non-normalised approximation of probability density
function of the temporal random variable. Consider T as
the random variable of photon arrival time, for which the
probability density function of T is calculated from:

fT ptq “
vptq

ş8

´8
vptqdt

. (S3)

Define the denominator in (S3) as a constant as d fi
ş8

´8
vptqdt, where it is:

d “ A
8
ÿ

i“1

αi

ż 8

0

e
´ t

τi dt
looooomooooon

“τi

“ A
8
ÿ

i“1

αiτi. (S4)
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The expected value of T gives mean lifetime as:

EpT q “

ż 8

´8

tfT ptqdt “
A

d

8
ÿ

i“1

αi

ż 8

0

te
´ t

τi dt
looooomooooon

“τ2
i

. (S5)

By replacing d, solving the integral from integration by parts,
and simplifying, the mean lifetime is finally determined by:

τmean “

ř8

i“1 αiτ
2
i

ř8

i“1 αiτi
. (S6)

Mono- and bi-exponential decays are both spacial cases
of (S2). Consequently, one can simply show that the mean
lifetime for the famous mono- and bi-exponential models are
respectively as:

τmean “ τ, (S7)

τmean “
ατ21 ` p1 ´ αqτ22
ατ1 ` p1 ´ αqτ2

. (S8)

S3. LIFE MODELS

A. Mono-exponential life model

If in the equivalent RLC circuit of Fig. 1 (a) the winding
resistance approaches Rw Ñ 8, a mono-exponential RC
circuit will be determined as shown in Table II. This circuit is
a LTI system. The time constant of a RC circuit is defined as
τRC fi RˆC, where for the life circuit, it is τRC “ τ ˆ1 “ τ .
This reveals the fact that the concept of the time constant and
the average fluorescence lifetime is the same.

Theorem 1 (Mono-exponential life model): Consider the
mono-exponential circuit shown in Table II. The response of
the circuit leads to mono-exponential life model (Mo-xp).

Proof: KCL in the mono-exponential circuit from Table
II gives:

C
dvptq

dt
`

vptq

R
“ iptq. (S9)

Substituting components R “ τ and C “ 1, and taking
bilateral Laplace transform from both sides of (S9) yields:

sV psq `
1

τ
V psq “ Ipsq, (S10)

where Ipsq “ A
K

řK´1
k“0 e´skT . If T Ñ 0, then Ipsq « A. By

substituting the value of Ipsq in (S10), we have V psq “ A
s` 1

τ

.

Taking inverse Laplace transform results in vptq “ Ae´ 1
τ tuptq,

where A and τ denote amplitude and lifetime, respectively.
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B. Rayleigh life model

Equivalent circuit of Rayleigh life model is shown in Table
II. This circuit is a LTV system. The resistor r2ptq acts as
a negative resistance1, as a natural property of fluorescent
lamps2 or molecules here.

Theorem 2 (Rayleigh life model): Assume the Rayleigh
circuit shown in Table II. The response of the circuit leads
to Rayleigh life model (Rayl.).

Proof: Starting from the Weibull circuit in Table II, KCL
in it yields:

C
dvptq

dt
`

„

1

r1ptq
`

1

r2ptq

ȷ

vptq “ iptq. (S11)

Its corresponding homogeneous equation by substituting
Weibull circuit’ components will be:

dvptq

dt
`

„

btb´1

τ
`

p1 ´ bq

t

ȷ

vptq “ 0. (S12)

By separating variables, we have:

dvptq

vptq
“

„

pb ´ 1q

t
´

btb´1

τ

ȷ

dt, (S13)

where integrating from both sides of it gives ln rvptqs “

ln
`

tb´1
˘

´ 1
τ t

b ` c, in which c is an integration con-
stant. Finally, taking exponential of that results in vptq “

Atb´1e´ 1
τ tbuptq. Repeating the above proof for b “ 2 obtains

Rayleigh model.

C. Weibull life model

Equivalent circuit of Weibull life model is shown in Table
II. In this LTV circuit, the variable b P R` is defined as
a flexible shape parameter. For the special case of b “ 1,
the equivalent circuit of Weibull life model is simplified to
the mono-exponential equivalent circuit. Also, if b “ 2, the
circuit is exactly converted to the equivalent circuit of Rayleigh
model. The same property is held for the system response, as
shown in Table II.

Theorem 3 (Weibull life model): Assume the Weibull circuit
shown in Table II. The response of the circuit leads to Weibull
life model (Weib.).

Proof: See Theorem 2.

D. Bi-exponential life model

A bi-exponential function contains two different fluores-
cence lifetimes. These fluorophores are modelled in the load
of our proposed RLC circuit as two distinct parallel light
bulbs. Table II portrays equivalent circuit of bi-exponential
life model.

Theorem 4 (Bi-exponential life model): Assume the bi-
exponential circuit shown in Table II. The response of the
circuit leads to bi-exponential life model (Bi-xp).

1D. K. Roy, “Tunnelling and negative resistance phenomena in semicon-
ductors,” 2014.

2W. Elenbaas, Fluorescent lamps. Macmillan International Higher Educa-
tion, 1971.

Proof: KCL in the bi-exponential circuit from Table II
gives:

C
dvptq

dt
`

ˆ

1

R1
`

1

R2

˙

vptq `
1

L

ż t

´8

vpλqdλ “ iptq. (S14)

Components’ substitution and derivative from both sides yield:

d2vptq

dt2
`

ˆ

1

τ1
`

1

τ2

˙

dvptq

dt
`

vptq

τ1τ2
“

diptq

dt
. (S15)

Taking bilateral Laplace transform obtains:

s2V psq `

ˆ

1

τ1
`

1

τ2

˙

sV psq `
1

τ1τ2
V psq “ sIpsq, (S16)

where Ipsq “ A
K

řK´1
k“0 e´skT ` A

s

´

α
τ2

` 1´α
τ1

¯

. If T Ñ

0, then Ipsq « A ` A
s

”

α
τ2

`
p1´αq

τ1

ı

. By substituting the
function Ipsq in (S16) and after simplifications, we rewrite

V psq “ A

„

α
s` 1

τ1

`
p1´αq

s` 1
τ2

ȷ

. Inverse Laplace transform results

in vptq “ A
”

αe´ 1
τ1

t
` p1 ´ αqe´ 1

τ2
t
ı

uptq, where A P R`,
0 ă α ă 1, τ1 P R` and τ2 P R` signify initial ampli-
tude, pre-exponential factor, short lifetime and long lifetime,
respectively.

E. Critically-damped life model

If the two light bulbs in Bi-xp circuit are identical, i.e.,
τ1 “ τ2 fi τ , the equivalent circuit of critically-damped life
model is determined. It is shown in Table II.

Theorem 5 (Critically-damped life model): Assume the
circuit shown in Table II. The response of the circuit leads
to critically-damped life model (C-dmp).

Proof: KCL in the critically-damped circuit from Table
II gives:

C
dvptq

dt
`

vptq

R
`

1

L

ż t

´8

vpλqdλ “ iptq. (S17)

Components’ substitution and derivative from both sides yield:

d2vptq

dt2
`

2

τ

dvptq

dt
`

vptq

τ2
“

diptq

dt
. (S18)

By taking bilateral Laplace transform, we have:

s2V psq `
2

τ
sV psq `

1

τ2
V psq “ sIpsq, (S19)

where Ipsq “ A
s . By substituting the function Ipsq in (S19)

and after simplification, we obtain V psq “ A

ps` 1
τ q

2 . Inverse

Laplace transform results in a critically-damped response as
vptq “ Ate´ 1

τ tuptq.

F. Under-damped life model

With the same light bulbs, the equivalent circuit of under-
damped life model is described in Table II.

Theorem 6 (Under-damped life model): Assume the under-
damped circuit shown in Table II. The response of the circuit
leads to under-damped life model (U-dmp).
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Proof: KCL in the under-damped circuit from Table II
gives:

C
dvptq

dt
`

vptq

R
`

ˆ

1

L1
`

1

L2

˙
ż t

´8

vpλqdλ “ iptq. (S20)

Components’ substitution and derivative from both sides yield:

d2vptq

dt2
`

2

τ

dvptq

dt
`

ˆ

1

τ2
` ω2

˙

vptq “
diptq

dt
. (S21)

Applying bilateral Laplace transform determines:

s2V psq `
2

τ
sV psq `

ˆ

1

τ2
` ω2

˙

V psq “ sIpsq, (S22)

in which Ipsq “ Aω
s . By substituting the function Ipsq in (S22)

and simplifying, we have V psq “ Aω

ps` 1
τ q

2
`ω2

. The response

is obtained by taking inverse Laplace transform as vptq “

Ae´ 1
τ t sin pωtquptq, where ω signifies the natural frequency.

S4. LOWER BOUND OF FALL-TIME FOR BI-EXPONENTIAL

Consider the model of bi-exponential decay as a spacial
case of (S2) as:

vptq “ A

»

—

–

α1
loomoon

fiα

e´ t
τ1 ` α2

loomoon

fip1´αq

e´ t
τ2

fi

ffi

fl

. (S23)

At the time t “ τf , we have vptq “ A
e . substituting this and

simplifying yield:

1

e
“ αe´

τf
τ1 ` p1 ´ αqe´

τf
τ2 . (S24)

Solving (S24) requires the mathematical task of isolating τf .
This can be realised by Maclaurin series approximation of
ex “ 1`x` x2

2! ` x3

3! ` ¨ ¨ ¨ . For all x, there exists ex ě 1`x.
Hence, we can rewrite (S24) by ignoring the higher order terms
as:

1

e
ě αp1 ´

τf
τ1

q ` p1 ´ αqp1 ´
τf
τ2

q. (S25)

By using some simplification, we will:

τf ě
p1 ´ 1

e qτ1τ2

p1 ´ αqτ1 ` ατ2
. (S26)

S5. DIFFERENT CASES IN FALL-TIME DETERMINATION

Below lists five main possible cases which may occur in
real fitting scenarios:

‚ A strictly monotonic decreasing function, which is a
normal case such a mono-exponential decaying function.

‚ A strictly monotonic growth function, which shows an
unstable behaviour with a negative lifetime. For such an
exception, any fall does not exist; therefore, we truncate
τ̂f “ 0.

‚ A function with first growth and then decay trend, e.g.,
Rayleigh life model, as that shown in the curve of Fig. 1
(b).

‚ A curve with first decay and then growth trend. This case
may happen in combination of two different decay and

growth exponential terms in a bi-exponential model due
to some specific estimated parameters. In such a case, we
consider falling edge of the response but not its rising
edge and correspondingly measure the fluorescence fall-
time.

‚ A flat fit without any rise or fall. In this case, we set the
span value as τ̂f “ ∆N .

S6. PENALISING RULES

Important rules are as follows:
‚ By identifying the control-theoretic property of the dom-

inant pole between two real poles on the left side of s-
plane from a stable system, we can ignore the effect of
the farther pole than the imaginary axis and basically
reduce a bi-xp model to a mono-xp counterpart. So, if
j‹ “ 4 ^

minps1,s2q

maxps1,s2q
ě RDP, then assign ϕr,c Ð 1. In

implementations, we considered the ratio RDP “ 10.
‚ If the absolute value of the imaginary part of complex-

conjugate poles in a detected U-dmp model is negligible,
it can be replaced by a C-dmp model. So, if j‹ “ 6^ω ď

ϵ, then ϕr,c Ð 5. We set ϵ “ 0.1.
‚ A detected Weibul model with b « 1 is assigned to a

mono-xp model. So, if j‹ “ 3 ^ 1 ´ δ1 ď b ď 1 ` δ1,
then ϕr,c Ð 1. We set δ1 “ 0.05.

‚ A detected Weibul model with b « 2 is singled out as an
individual non-fractional Rayleigh. So, if j‹ “ 3 ^ 2 ´

δ2 ď b ď 2 ` δ2, then ϕr,c Ð 2. We set δ2 “ 0.2.

S7. UNKNOWN CLASS ASSIGNMENT

In practical scenarios, a process may encounter with some
unknown inputs that demand appropriate handling. In our
problem, examples that can take an unknown label are: 1)
an undefined life outside the already defined normal range
of life model set; 2) fitting error at a location exceeds a
tolerable threshold; 3) intensity of a pixel is below or above
a predefined value; and 4) an uninformative content related
to scene background. To be responsible in such situations, we
define an extra unknown class #7 in the life pattern map. In
Algorithm 1, a passive function is considered, where user can
configure if-then rules and activate it if required. As a result,
the user can take further notices and actions on unknown
labels.

Figures S1 and S2 show results of Frame 5, Band 1 of
Sample C1 before and after an unknown class assignment,
respectively. In Fig. S2, we assigned both Classes 5 and 6
mainly related to background lung tissue as the unknown class
to be able to more clearly visualise and single out potential
microbeads.

S8. SETTING THE NUMBER OF PHOTONS PER HISTOGRAM

In generating synthesised data, we desire the number of
photons per histogram (or equivalently the number of photons
per pixel) remains constant for all pixels related to a given
model before adding any noise. We determine the amplitude
of the given model to meet the target. To do this, consider the
deterministic life model of jth as:

vjrns “ Ajfjrns,@j “ 1, 2, . . . ,M. (S27)
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Fig. S1: Original results of Frame 5, Band 1 from Sample C1 before assigning unknown class in comparison to Fig. S2 having
unknown class assignment.

Fig. S2: Results of Frame 5, Band 1 from Sample C1 after assigning Classes 5 and 6 as unknown class to visualise foreground
microbeads.
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Fig. S3: Error map of the experiment related to The Parameters
Set 1.

Taking summation on all bins from both sides of (S27) gives:

Aj “

řN´1
n“0 vjrns

řN´1
n“0 fjrns

fi
Np

řN´1
n“0 fjrns

, (S28)

where the constant Np means the photons per histogram which
is set by user.

S9. INFORMATION OF THE PARAMETERS SETS 1 TO 4

Figure S3 shows error map from the experiment related to
The Parameters Set 1.

Figures S4, S5, S6 and S7 provide detailed information
about The Parameters Set 2, which include: life profiles,
visualised results of the proposed imager, confusion matrix
and Misfit error map, respectively. Similarly, Figs. S8, S9,
S10 and S11 show the information for The Parameters Set 3,
and Figs. S12, S13, S14 and S15 for The Parameters Set 4,
too.

S10. OUR IMAGING RAW DATA FORMAT

Figure S16 depicts a false-colour data format of the utilised
imaging system represented as a 5D tensor arrangement con-
sisting of a matrix of cubes as px, y; t;λ; iq. The dimensions
along px; yq, t, λ, and i denote spatial coordinate, time,
wavelength, and frame sequence index, respectively.
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Fig. S4: Life profiles related to The Parameters Set 2.
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Fig. S5: GUI related to The Parameters Set 2.
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Fig. S6: Confusion matrix related to The Parameters Set 2.
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Fig. S7: Error map of the experiment related to The Parameters
Set 2.
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Fig. S8: Life profiles related to The Parameters Set 3.
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Fig. S9: GUI related to The Parameters Set 3.
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Fig. S10: Confusion matrix related to The Parameters Set 3.
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Fig. S11: Error map of the experiment related to The Param-
eters Set 3.
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Fig. S12: Life profiles related to The Parameters Set 4.
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Fig. S13: GUI related to The Parameters Set 4.
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Fig. S14: Confusion matrix related to The Parameters Set 4.
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Fig. S15: Error map of the experiment related to The Param-
eters Set 4.
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Fig. S16: Tensor data formatting of our multi-spectral fluo-
rescence imaging system. The dimensions along px; yq, t, λ,
and i represent spatial coordinate, time, wavelength, and frame
sequence index, respectively.
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