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Abstract

In the last years, substantial attention has been paid to the use of radar systems in health monitoring,
thanks to the availability of both low cost radar devices and computationally efficient algorithms for
processing their measurements. In this manuscript, a tutorial overview of radar-based monitoring of
vital signs is provided. More specifically, we first focus on the available radar technologies and on the
signal processing algorithms developed for the estimation of vital signs. Then, we illustrate various
specific applications of radar systems to health monitoring and some relevant research trends in this
field. Finally, we provide some useful guidelines that should be followed in the selection of radar devices
for vital sign monitoring and in their use.

Index terms— Radar, signal processing, MIMO, health monitoring, vital signs.

I. Introduction

Monitoring human vital signs, like heart and respiration rates, represents a routine practice to detect patient
deterioration. Changes in vital signs can reveal the existence of serious medical problems; for this reason,
early identification of these changes can improve survival rates in several conditions [1]. Vital sign monitoring
is often accomplished by means of wearable health devices [2]; this is due to the fact that these devices
enable continuous monitoring during daily activities. However, in various situations, like in the case of
infected patients, or of patients suffering from mental illness or affected by severe burns or injuries, the use
of wearable sensors is not possible or recommended. In such cases, the use of non-contact monitoring devices,
like radar systems, can help healthcare professionals by providing critical information about patient state [3].
The application of radar devices to this field and, in particular, to the estimation of the heart and respiration
rates, has become an active research area in recent years [4,5]. Actually, the first experimental results in
this field date back to 1975, when the use of short-range radar technology was proposed to non-invasively
acquire respiratory information by comparing a microwave signal with its echo reflected from the chest of
a patient [6]. In the following years, the possibility of employing radar systems for the wireless detection
of the physiological movements due to both heartbeat and respiration has been shown [7-10]. This has
motivated the investigation of the use of this technology in a number of medical applications, including adult
and neonatal sleep monitoring [11], [12], disaster medicine (e.g., in the detection of human vital signs under
rubbles after earthquakes [13]) and lung cancer radiotherapy [14].

In the last two decades, few review articles about radar-based monitoring of vital signs have been pub-
lished [10,15-18]; however, they have a limited scope since they concern the use of specific technologies. In
fact, on the one hand, [10,15,16] and [17] focus on continuous wave (CW) Doppler radars, ultra-wide band
(UWB) and radars equipped with a single transmit/receive antenna (i.e., single-input single-output, SISO,
radars), respectively. On the other hand, [18] takes into consideration radars equipped with antenna arrays
(i.e., multiple-input multiple-output, MIMO, radars) and illustrates the advantages they offer with respect to



their SISO counterparts. This has motivated the writing of this manuscript, that aims at offering a tutorial
overview of radar-based monitoring of vital signs and at providing some essential tips for its use in a research
laboratory. More specifically, in the remaining part of the manuscript, we first provide essential informa-
tion about radar-based monitoring, cardiovascular and respiration physiology, and the modelling of chest
displacement. Then, we focus on the available radar technologies, and describe various radar architectures
and signal processing methods developed for radar-based estimation of vital signs; in our description, all the
available options are taken into consideration, and their pros and cons are illustrated. The study of these
topics allows us to lay the foundations for understanding specific applications of radar-based monitoring
and relevant research trends in this field. Our discussion on this issues is followed by various considerations
formulated in the light of the experience acquired in our experimental activities on radar-based monitoring;
such considerations concern the essential technical requirements that radar devices employed in this field
should have and some essential guidelines to be followed in conducting experimental campaigns.

This manuscript is organized as follows. In Section II. the basic principles, challenges and objectives
of radar-based monitoring of vital signs are illustrated. In Section III. the physiological fundamentals of
human cardiovascular and respiration activities are provided and simple mathematical models describing
the dynamics of chest displacement due to these activities are described. Section IV. is devoted to the
four radar technologies employed in radar-based monitoring of vital signs, and to SISO and MIMO radar
architectures; for each architecture, simple mathematical models are provided for the samples of the baseband
signal received in the presence of a single point target. An overview of the most important deterministic and
learning-based signal processing techniques employed for vital signs monitoring is offered in Section V.. The
application of these techniques to heart and breath rate estimation, heart sound monitoring and heart rate
variability estimation is discussed in Section VI.. Current research trends on radar-based monitoring of vital
signs are illustrated in Section VII., whereas some basic guidelines to be followed in conducting experimental
activities in this field are given in Section VIII.. Finally, some conclusions are offered in Section IX..

A list of the acronyms employed throughout the manuscript is provided in Table 1.

II. Radars for Vital Sign Monitoring: Basic Principles, Objectives
and Challenges

A system for radio detection and ranging (i.e., briefly, a radar system) is an electronic system designed to
estimate the spatial coordinates (i.e., the distance and the angular coordinates) and/or the velocity of objects
(called targets), that, thanks to their electrical conductivity, are able to reflect back the electromagnetic waves
it generates. Any radar system consists of a transmitter and a receiver which, in the applications considered
in this manuscript, are integrated in the same electronic device. The transmitter generates radio waves with
known properties and radiates them along a predetermined direction using a single transmit antenna or
multiple transmit antennas (i.e., an antenna array), whereas the receiver captures the waves reflected back
by the above mentioned targets.

The measurement of the distance (i.e., of the range) of any target from a given radar system is based
on the estimation of the propagation delay of the received waves, whereas that of its velocity on some
structural changes in such waves; for instance, if a target is approaching the radar or is moving away from
it, a variation in the frequency of the received radio waves is observed because of the Doppler effect. Target
range and velocity can be estimated by radar systems equipped with a single transmit (TX) and single
receive (RX) antenna. The measurement of the angular coordinates of any target requires, instead, the
availability of at least two RX antennas, that is of an antenna array at the receive side, since it is equivalent
to the estimation of the direction of arrival (DOA) of the electromagnetic waves impinging on the radar
receiver; note that, in general, the use of a larger number of antenna elements forming the RX array results
in a better angular resolution, i.e. in more accurate estimates of the angular coordinates of the surrounding
targets (and, consequently, in more detailed radar images). Modern radars, and especially those employed for
vital signs monitoring, are quite small and compact in size, since they operate at very high frequencies and,
in particular, in the microwave spectrum!. The basic components of these devices are a digital control board
and a radio frequency (RF) front-end, whose implementation is usually based on a monolithic microwave

1This portion of electromagnetic spectrum is often defined as interval of frequencies ranging from 1 GHz to 100 GHz
(corresponding to wavelengths between 0.3 m and 3 mm).



Table 1: Table of the acronyms defined in the manuscript.

ADC Analog to Digital Converter LDA Linear Discriminant Analysis

AD Arctangent Demodulation LNA Low Noise Amplifier

Al Artificial Intelligence LO Local Oscillator

ANC Adaptive Noise Cancellation LS Least Square

API Application Programming Interface LSTM Long Short Term Memory

ASIC Applied Specific Integrated Circuit MAE Mean Absolute Error

AWGN Additive White Gaussian Noise MEMS Micro Electro-Mechanical System
BR Breath rate MF Matched Filter

BPF Band Pass Filtering MIMO Multiple Input Multiple Output
CFAR Constant False Alarm Rate ML Machine Learning

CV Correlation of Variation MMIC Monolithic Microwave Integrated Circuit
CNN Convolutional Neural Network NN Normal to Normal

CSD Complex Signal Demodulation P2G Position To Go

CPU Central Processing Unit PA Power Amplifier

CW Continuous Wave PAE Peak Absolute Error

CWT Continuous Wavelet Transform PRI Pulse Repetition Interval

DACM Differentiate And Cross Multiplier RADAR Radio Detection And Ranging

DC Direct Current RBM Random Body Movement

DFT Discrete Fourier Transform RF Radio Frequency

DSP Digital Signal Processor RHS Right Hand Side

DL Deep Learning RMSE Root Mean Square Error

DOA Direction of Arrival RMSSD Root Mean Square Successive Difference
DT Decision Tree RX Receive

ECG Electrocardiogram SDNN Standard Deviation of Normal to Normal
EMD Empirical Mode Decomposition SFCW Stepped Frequency Continuous Wave
FMCW Frequency Modulated Continuous Wave SISO Single Input Single Output

FOV Field of View SNR Signal-to-Noise Ratio

FPGA Field Programmable Gate Array SVM Support Vector Machine

FFT Fast Fourier Transform TDM Time Division Multiplexing

GPU Graphic Processing Unit TI Texas Instrument

HR Heart Rate X Transmit

HRV Heart Rate Variability ULA Uniform Linear Array

IDFT Inverse DFT URA Uniform Rectangular Array

IFFT Inverse FF'T UWB Ultra-wideband

IMF Intrinsic Mode Function VA Virtual Antenna

IR-UWB Impulse Radio Ultra-Wideband VGA Voltage Gain Amplifier

ISM Industrial Scientific and Medical vVCO Voltage Controlled Oscillator

IWR Industrial mmWave Radar VHSIC Very High Speed Integrated Circuit
K-NN K - Nearest Neighbour TRI Triangular Index

LB Leaning Based




integrated circuit (MMIC) and small-sized patch antennas [19]. If microwave frequencies are used, small size
TX and RX antennas are implemented and electromagnetic signals characterized by a very large bandwidth
and small wavelength are radiated; the last features make it possible to achieve an excellent range solution
and detect small movements.

Radar-based monitoring of vital signs is based on the idea that the chest-wall of human bodies reflects
the electromagnetic waves generated by a radar placed in front of it and that its quasi periodic vibrations,
resulting from respiration and heartbeat, modulate such waves. Therefore, in principle, essential information
about vital signs, i.e. heart and breath rates, can be extracted from the reflected electromagnetic waves
[20-22] and a fundamental objective, namely contactless monitoring of vital signs, can be achieved. Note
also that, compared with traditional methods, such as pneumotachography and electrocardiography, radar
systems make continuous and timely breath rate (BR) and heart rate (HR) monitoring possible without
entailing an additional work load for nurses. For these reasons, radars represent a favourable option for
hospital monitoring, especially in the case of severe burn or infectious disease patients, sudden infant death
syndrome monitoring, sleep apnoea monitoring, elderly home healthcare and psychology studies. Moreover,
radar signals can be processed to extract more refined medical information and, in particular, to detect
anomalous alterations in the sequence of heart beats.

Even if the usefulness of radar systems in vital sign monitoring is now globally recognized and a wide
literature about such systems is available, various challenges concerning signal processing techniques for vital
signs extraction are still open in this research field; here, we limit to mention:

a) The estimation of heart rate — As illustrated in Paragraph II1.B., the vibrations due to heartbeat are
significantly weaker than those originating from respiration. For this reason, the contribution of the first
phenomenon to the radar signal may be hidden by that related to the second (and much stronger) one. This
makes the task of estimating HR much harder than that estimating BR; additional details about this issue
can be found in Paragraphs VI.A. and VIIL.C..

b) The identification of anomalous alterations of heart beats — This challenge concerns the possibility of
estimating HR variability (HRV) and detecting heart sounds; these issues are discussed in Paragraphs VI.C.
and VII.C., respectively.

c) The simultaneous observation of the vital signs of multiple people — In principle, MIMO radar systems
can be exploited to detect and estimate the vital signs of multiple people located in a restricted area (e.g.,
in the same room; see Paragraph V.B. for further details). However, experimental results supporting the
feasibility of this idea and involving a significant number of people are still missing in the technical literature
(e.g., see [18, Table I, Sect. IV]).

Finally, it is worth mentioning that the experimental results available in the technical literature about
radar-based monitoring of vital signs concern heterogeneous radar technologies and that there is not a broad
consensus on the best technology to be adopted in real world systems. For this reason, it is important to
analyse the prons and cons of each option available on the market; this issue is discussed in Section IV..

III. Physiological Fundamentals and Mathematical Modelling

In this section we first provide readers with the physiological fundamentals of heart and lung functions. Then,
we concentrate on the movements of the chest surface in human beings and illustrate some mathematical
models describing them.

ITII.A. Basics of cardiovascular and respiration physiology

The human heart is made of two separated systems, called left and right sides. Each side consists of two
chambers, namely an atrium and a ventricle, which are separated and connected by an atrioventricular valve.
The main function of the left side is to pump oxygenated blood through the aorta and the other arteries to
peripheral tissues and organs. The right side, instead, is in charge of pumping deoxygenated blood through
pulmonary arteries to lungs. Each side is connected to arteries through the so called semilunar valves.

The cardiac cycle consists of a rhythmic sequence of contractions (systoles) and relaxations (diastoles) of
the heart; this events occur simultaneously in the left and right sides. During each cardiac cycle, sounds are
generated by the action of the heart muscle and the vibrations of the cardiac valves. In the case of an healthy
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Figure 1: Representation of: a) a computer generated chest displacement (multiple periods of the breathing
activity are considered); b) a computer generated chest displacement (a couple of consecutive periods of the
breathing activity are considered); c¢) the contributions due to the breathing activity; d) the contributions
due to the heart activity. In all these figures, a blue (red) line is used to identify the signals generated on
the basis of (1) ((6)).

adult heart, two heart sounds are detected. The first one is caused by the contraction of the ventricular
muscle during systoles and the closing of atrioventricular valves. The second heart sound, instead, is due
to the closure of aortic and pulmonary valves. Hemodynamic properties and HR can be determined by
recording heart sounds. As a matter of fact, such sounds can help the physician in diagnosis of potential
cardiovascular diseases [23,24]. The physiologic HR at rest is 60 beats per min (bpm) up to 100 bpm; values
below this range (above it) characterise the so called bradycardia (tachycardia).

A breathing cycle consists of two consecutive phases, known as inspiration and expiration. In the first
phase, thanks to the contraction of the diaphragm and of the intercostal muscles, the thoracic volume
increases; this results in a sub-atmospheric pressure that allows air to flow through the airways into the
lungs. Then, air oxygen is absorbed into the blood and carbon dioxide is transferred from the blood to the
inhaled air through the alveolar-capillary membrane. Expiration, instead, is caused by the elastic recoil of
the lungs and relaxing muscles. In this phase, the deoxygenated air can flow out of the lungs by increased
pressure [25,26]. The physiologic BR at rest is 12 up to 25 acts per minute, whereas values below this range
(above it) characterise the so called bradypnea (tachypnoea).



II1.B. Modelling of chest displacement

Let us focus now on the problem of modelling the chest displacement of an arbitrary patient. As illustrated
in the previous paragraph, his/her inspiration (expiration) phase produces an expansion (compression) of
the thoracic wall. Moreover, the vibrations due to his/her heart beat overlap with the thoracic breathing
movement. In principle, the time evolution of both the thoracic breathing movement and the cardiac vibra-
tions of the considered patient can be measured by a radar system placed in front of his/her chest at a fixed
distance. In the absence of random and large-scale body movements, the displacement AR (t) of the chest
surface measured by the radar system at the instant ¢ can be modelled as [27]

AR(t) = R(t) = Ro = 0 (t) + on (1), (1)

where R(t) (Ryp) is the radar-chest distance at time ¢ (distance in the absence of respiration) and d,(¢) (05 (¢))
represents the breath (heart) contribution to AR(t). It is important to stress that:

a) the displacement 8 (t) (5 (t)) is usually assumed to be periodic with period Tgr (Tur), with Tgr >
THR;

b) the contribution of 4y, (t) to the displacement AR (t) is usually small with respect to that due to
0p (t); in fact, if dp pr (9p,ar) denotes the maximum absolute value of d(t) (0p(t)), it is known that
2<0pp <5cmand 5 <Oy <15 mm [28,29].

An accurate model of the breath displacement d,(¢) within each period has been proposed in [30]; ac-
cording to this model, the displacement in the inspiration phase is described by the parabolic profile

By(t) = — DM (1 gy 4 S TBR (e @)
T:T.

with ¢ € [tg,to + T;), whereas that in the expiration phase by the exponential profile

Sp(t) = W {eXp (—W) - 1} ; (3)

with t € [to + T}, to + Tgr); here, tg is the initial instant of the considered breathing period, T; (T¢) is the
duration of the inspiration (expiration) phase, 7 is the time constant of the expiratory profile; note that
Tgr = T; + T.. The displacement due to the cardiac activity, instead, can be modelled as [27]

51(0) = a0 cos st — 1) + () exp (L1202 ()
with
Yr(t) = aq sin (wa(t — 1)) (5)

and t € [t1,t1 + Tur); here, t; is the initial instant of the considered heart beat, {ax; k = 1, 2, 3} and {wy;
I = 1 and 2} are tunable and fixed parameters, respectively. Note that this model allows to account for
heart rate variability (HRV) through the function v (¢), i.e. for the changes in the time interval between
consecutive beats?.

The chest displacement generated on the basis of (1)—(4) is exemplified by Fig. 1, where the contributions
due to breathing and cardiac activities are also shown. In this case, the following values of the model
parameters have been selected: Tgg = 0.3 s, Tyr = 1 s, T; = 0.518R, Tc = T3, Spir = 1.1 cm, 7 = T,
a; = /16, ag = 0.5, ag = 0.8, dp s = 0.11 cm, wy = 27/Tyg rad, wy = we = 27/TpR rad/s. Moreover, in
(2)—(5), to = (ks—1)TBR, (t1 = (kn—1)Thr), with ky = 0,1, ..., Ny—1 (k, = 0,1,..., N, —1), N, = | Tr /TR
(Np, = |Tr/Tur]) and T is the duration of the whole observation interval.

Although the models illustrated above are accurate, a simpler representation of the heart and breathing
profile has been adopted by various researchers [21,31,32]. More specifically, if T; is assumed to be equal T,
the approximate model

AR(t) = AR(t) = 6(t) + 6n(1), (6)

2 Additional details about HRV are available in Par. VII.C..




with

5(t) & 5béM [ — cos(wpt)] (7)
and -
§h(t) é 6h,M cos(wht)7 (8)

can be employed in place of that expressed by (1); here, wy, = 27/Tpr (wp = 27/Tur) represents the
HR (BR). An example of chest displacement generated according to (6) is provided in Fig. 1, where the
contributions due to breathing and cardiac activities are also shown. From this figure it can be easily inferred
that the results obtained on the basis of the models (1) and (6) are not so different; however, we should
not forget that the model (6) is unable to account for the presence of both HRV and all the frequency
components® observed in the spectrum of the received signal.

Finally, it is worth mentioning that various sensors, such as pressure belts, fiber Bragg gratings and
inertial sensors, can be exploited to monitor surface chest motion (some examples of commercial wearable
sensors are described in Paragraph VIIL.B.); however, all these sensors require to be worn by the patient
under test. In a measurement campaign for radar-based monitoring, one of these sensors can be used as
reference; this allows to separate the cardiac activity from the dominant breathing dynamics. In fact, as
already mentioned above, the contribution of heart beats to surface chest motion is relatively small with
respect to the that due to respiration. Moreover, the spectral components of heart motion may overlap
with the respiratory harmonics; this makes separating the former contribution from the latter one really
challenging.

IV. Radar Systems: Technologies and Architectures

In this section, after providing a classification of the radar technologies employed for vital sign monitoring,
some architectures of radar systems equipped with single and multiple TX/RX antennas are illustrated.

IV.A. Radar technologies and classification

Radar systems can be divided into two categories on the basis of the mechanism according to which the
waveform they radiate is generated; more specifically, the first category if made of the continuous wave
(CW) radars, whereas the second one of the so called pulsed radars. In a CW radar, the radiated signal is
transmitted continuously, whereas, in a pulsed radar, it is sent over short periods of time. In both cases the
transmitted signal can be modulated or unmodulated; for this reason, radar systems can be also classified
on the basis of the modulating waveform. In the technical literature on vital sign estimation, the use of
the following types of radar systems have been investigated: a) CW Doppler radar; b) frequency-modulated
continuous wave (FMCW) radar; ¢) stepped-frequency continuous wave (SFCW) radar; d) impulse radio
ultra-wideband (IR-UWB) radar. In the remaining part of this paragraph, a brief description of each type is
provided.

Continuous wave Doppler radars radiate a continuous wave radio signal, characterized by a known stable
frequency, and are commonly employed for their hardware simplicity. In these radar systems, the chest
displacement due to the heart and breathing activities results in a variation of the phase of the received
signal. Such a variation is inversely proportional to the wavelength of the signal; therefore, reducing the
wavelength of the transmitted wave (i.e., increasing its frequency) results in larger changes in the observed
phase and, consequently, allows to detect smaller displacements. One of the main limitations of these radar
systems is represented by the fact that they are not able to measure the frontal distance, i.e. the range
between the radar and any subject detected by it.

Frequency-modulated continuous-wave radars and stepped-frequency continuous-wave radars radiate wide-
band frequency modulated signals. The main difference between these systems is represented by the fact that,
in the former case, the frequency of the transmitted wave evolves over time in a linear manner, whereas, in
the latter one, it changes in a stepwise manner. However, in both systems, the propagation delay is extracted
from the phase variations observed in the received signal.

3The spectral contribution due to respiration is represented by a few relevant harmonics, as evidenced by our numerical
results shown in Paragraph VIII.C..



Impulse radio ultra-wideband radars radiate wideband frequency modulated signals. In these systems,
the chest distance is estimated by assessing the delay experienced by sub-nanosecond pulses, being this delay
proportional to the distance between the radar and any detected subject. Such pulses can be radiated at an
high power level if vital signs need to be estimated through walls or behind obstacles.

The above mentioned radar systems can be also classified on the basis of their wavelength or their
maximum measurable range. In fact, in the first case, they are divided into micro-wave radars, characterized
by a wavelength of few centimetres, and mm-wave radars, if their central frequency is equal to 77 GHz or, in
general, greater than 30 GHz [33]. In the second case, instead, they can be divided in: a) short range radars,
that are able to measure a maximum range of about 30 m; b) medium range radars, that are characterized
by a maximum range of about 100 m; c) long range radars, that achieve the largest maximum range (of the
order 250 m).

Each of the considered radar systems is endowed with a single antenna or an antenna array at its TX
and/or RX sides. A SISO radar system employs a single antenna at both its sides; note that most of the CW
and IR-UWB radars considered in technical literature on the monitoring of human vital signs are of SISO
type. Multiple-input multiple-output radar systems, instead, employ antenna arrays in their transmission
and reception; various FMCW and SFCW radars of this type are already available on the market and their
use in vital sign monitoring is currently being investigated. It is also important to keep in mind that a SISO
radar can estimate the range and/or the distance of a single/multiple targets, whereas a MIMO radar makes
the estimation of its/their angular coordinates possible.

Multiple-input multiple-output radar systems can be divided into statistical (or bistatic) radars [34, 35],
and colocated radars [36], [37] on the basis of the distance between their transmit and receive arrays. In
practice, the transmit and receive antennas of statistical radar systems belonging to the first class are widely
separated. On the contrary, the transmit antennas of colocated radar systems are close to the receive ones
and, in particular, are usually placed on the same shield. The last feature allows to develop compact devices;
this explains why all the MIMO radars currently being considered for vital sign monitoring are of this type.

In a MIMO radar system, the signals radiated by distinct TX antennas are orthogonal. The simplest
strategy to synthesize orthogonal waveforms is represented by time division multiplexing (TDM) [38]. Adopt-
ing this strategy means that distinct transmit antennas are activated over disjoint time intervals, so that the
signals they radiate do not overlap in the time domain.

The most relevant features of the above mentioned radar types are listed in Table 2, where the adjectives
low, medium and high are represented by the letters L, M, and H, respectively. For each type, the following
distinct technical features are taken into consideration: a) its ability to detect targets at long distance;
b) its ability to achieve accurate estimation; c) its ability to detect multiple subjects; d) the simplicity of
its architecture (and of the corresponding implementation); e) its cost; f) its robustness, i.e. its ability to
operate at a low signal-to-noise ratio (SNR). From the contents of this table it can be easily inferred that
FMCW, SFCW and UWB-IR radars are more complicated and costly than CW Doppler radars, but may
perform significantly better; in practice, they allow to achieve a good trade-off between cost/complexity and
estimation accuracy in vital sign monitoring.

IV.B. Architecture of single-input single-output radar systems

In this paragraph, a brief description of the architecture of the radar systems employed for vital signs
monitoring is provided. All the considered systems are equipped with single TX and RX antenna. Moreover,
in illustrating their baseband processing at the receive side, it is always assumed that the chest of the
monitored subject, that is placed in front of the radar system, can be represented as a single point target
for simplicity?.

1) Continuous wave radars

Let us focus first on CW radar systems. The architecture of a radar system of this type is represented
in Fig. 2. In its transmitter, the RF signal produced by a waveform generator (and characterised by

4As a matter of fact, the chest of the monitored subject is usually much larger than the resolution of the employed radar
sensor. For this reason, based on the multiple measurements it generates in response to the radar signal, it should be represented
as a cloud of point targets. Note also that all this effects are ignored for the estimation of vital signs.



Table 2: Ranking of the considered types of radar systems in terms of different features.

Features CW FMCW SFCW UWB-IR
Long distance SISO L M M M
detection MIMO L H H H
SISO L M M M
Accuracy R
MIMO L H H H
Detection of SISO L M M M
multiple subjects MIMO M H H H
Simplicity 78180 H M L M
MIMO M L L L
Cost SISO L M M M
MIMO L H H H
Robustness 78180 L M M M
MIMO M H H H
TX
)))
Waveform Lo -
Generator ' ; N ‘a
I samples ‘ 1 \

Q samples

/Q Demodulator

Figure 2: Block diagram of a CW radar.

the carrier frequency fo) feeds a power amplifier (PA), whose response is applied to the TX antenna; this
antenna is placed in front of the chest of a human being. The received signal is amplified by a low noise
amplifier (LNA), whose response undergoes frequency downconversion to extract its in-phase and quadrature
components, denoted x;(t) and z(t), respectively; this task is accomplished by a couple of mixers, each
followed by the cascade of a low-pass filter (LPF) with a variable gain amplifier (VGA). The output of each
VGA is sampled by an analog-to-digital converter (ADC), operating at the frequency fs = 1/Ts, where T}
is the sampling period. The n-th sample of x;(t) (vq(t)) is denoted x; [n] £ z1 (nTs) (zq [n] £ zg (nTs));
note that its expression depends on the transmitted waveform. Further mathematical details are provided
in the following for each of the three types of CW radars introduced in Paragraph IV.A..

Continuous wave Doppler radar In this case, the waveform generator appearing in Fig. 2 consists in
a local oscillator (LO) generating a tone at the frequency f.. The n-th sample of z;(¢) and xzg(t) can be
expressed as (e.g., see [39, Sect. II, egs. (1)-(2)])

zr [n] = acos(y [n]) +wr [n] (9)
and

zqg [n] = asin(y [n]) + wg [n], (10)
respectively, with n = 0, 1, ..., N — 1; here, n is the fast time index, N represents the overall number

of samples acquired in the considered observation interval, a represents the amplitude of the useful signal



component, wr[n] (wgln]) is the contribution of the additive white Gaussian noise (AWGN) affecting the
in-phase (quadrature) component,

P[n] £ o + Adp[nl, (11)
o = 47% (12)

is a constant phase shift due to the (fixed) distance Ry between the chest of the considered subject and the
radar®, and

4
Avln] = S AR[] (13)
is the phase variation due to the chest displacement AR(t) (see (1)); here, AR[n] £ AR(t = nT}), A = fo/c
is the wavelength of the radiated signal and c is the speed of light. From the mathematical results illustrated
above it can be easily inferred that the chest displacement can be assessed by estimating the phase variations

over consecutive samples of the complex sequence {z[n]; n =0, 1, ..., N — 1}, where
2 (1] £ 27 [n] + jq ] = aexp(iv [n]) +wln] (14)
and
w[n] £ wr [n] + jwq [n] (15)

is the noise contribution to z[n] (14).

Frequency modulated continuous wave radar The waveform generator employed in the transmitter
of an FMCW radar (and appearing in Fig. 2) consists in a voltage controlled oscillator (VCO), characterised
by the free running frequency fy and fed by a periodic ramp generator. The frequency of the transmitted
signal evolves periodically and, within each period, changes linearly; this linear frequency sweep is known
as chirp. The evolution of the instantaneous frequency over a frame consisting of N, consecutive chirps is
shown in Fig. 3; here Ty, T and T'i represent the chirp duration, the ramp time period and the reset time,
respectively, so that

To =T + Tk, (16)

and the overall duration of the frame is Tr = N.Ty. Note that each chirp is characterised by the chirp slope
w = B/T, where B is the width of the swept frequency interval (i.e., the radar bandwidth).

The k-th sample of the in-phase and quadrature components acquired in the n-th chirp interval can be
expressed as (e.g., see [40, Sect. 2.1.2; eq. (5)])

x5 [k,n] = acos 21k f,Ts + 1 [n]) +wy [k, n] (17)
and
zq [k, n] = asin 2k f,Ts + ¢ [n]) + wg [k, n], (18)

respectively, with k=0, 1, ..., N—1land n=0, 1, ..., N. — 1; here, k (n) denotes the fast time (slow time)
index, wy[k,n] (wglk,n]) is the contribution of the AWGN affecting the in-phase (quadrature) component
of the useful signal, a represents the amplitude of the useful signal component,

fn £ HTn (].9)
is a frequency proportional to the delay
2R,
T , (20)
c

R, is the distance of the radar system from the chest (i.e., the target range) in the n-th chirp interval. Note
that the phase term 1 [n] appearing in the right hand side (RHS) of (17) and (18) is assumed constant within
a single chirp and, therefore, it is still expressed by (11).

5The phase shift 1 is called direct current (DC) offset. In vital sign monitoring, this quantity depends on the distance
between the employed radar and the chest wall in front of it; however, this term may be influenced by other factors, such as
the reflections from stationary targets or from other parts of the human body, and the noise of electronic components.
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Figure 3: Representation of the instantaneous frequency of the RF signal transmitted in an FMCW radar
system.
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Figure 4: Representation of the instantaneous frequency of the RF signal transmitted by an SFCW radar
system.

In the considered radar system, the complex sequence

T [k,’fl] = T [k’n] +ij[kan]
= a exp (j 2rkfuTs + ¢ [n])) + wlk,n], (21)

is processed to generate an estimate of the frequency f,, from which an estimate of the target range R,
is easily computed on the basis of (19)—(20); here, w[k,n] = w;lk,n] + jwglk,n]. Consequently, range
estimation is equivalent to the estimation of the normalised frequency

F, = f,Ts (22)

of a complex exponential sequence.

Stepped frequency continuous wave radar The transmitter of an SFCW radar is similar to that of an
FMCW radar, the only difference being represented by the fact that the ramp generator of the last system is
replaced by a staircase waveform generator. Therefore, the instantaneous frequency of the signal generated
by the VCO employed in an SFCW radar changes in a step-wise manner within each radiated frequency
sweep. The time evolution of the instantaneous frequency of the signal generated by the VCO over a single
frame is shown in Fig. 4. In this figure, Ty, T' and Tk represent the frequency sweep duration, the sampling
time and the reset time, respectively, whereas N and Af represents the overall number and the width of
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each frequency step, respectively. Note that, if V. denotes the overall number of frequency sweeps forming
a single frame, each frame lasts Tp = N1 s.

If we assume that the sampling interval T is equal to the duration of each frequency step (i.e., that the
sampling frequency fs = 1/T5s is equal to Af), a single complex sample is acquired at the RX side within each
single frequency step. Moreover, in this case, the k-th sample of the in-phase and quadrature components
available in the n-th frequency sweep interval can be expressed as (e.g., see [41, Sect. IL.B, eq. (13)])

xrlk,n] = acos(2rkA fr, + ¥[n]) + wrk,n] (23)

and
zglk,n] = —asin(2rkA fr, + ¢¥[n]) + wglk,n], (24)

respectively; here, k, n, a, ¥[n|, 7,, wilk,n], wg[k,n] and N have the same meaning as the one illustrated
for the corresponding terms appearing in (17)—(18).
In the considered radar system, the complex sequence {z[k,n]; k=0, 1, ..., N — 1}, where

z[k,n] 2z [k,n) + jxglk,n]
=aqa exp (—j 2nkAfr, + ¢ [n])) + w [k, n] (25)

for any n, is processed to generate an estimate of the normalised delay
F, & Afr,. (26)

Since the last quantity can be also interpreted as the normalised frequency of a complex exponential sequence,
the frequency estimation algorithms developed for FMCW radar systems can be also employed in SFCW
systems; in doing so, we must keep in mind that the only difference between (21) and (25) is represented by
the sign of the argument of complex exponential appearing in their RHSs. Finally, it is worth stressing that
this similarity can be considered as a form of time-frequency duality [42]; from this viewpoint, an SFCW
radar system can be seen as the dual of an FMCW radar system, as evidenced in [43].

2) Impulse radio ultra-wideband radar

The architecture of an IR-UWB radar is represented in Fig. 5. At the TX side, a square wave generator
(SWG) is used to trigger a tunable Gaussian pulse generator, whose (baseband) output signal s(¢) can be
expressed as

s(t) =S p(t—nTy): (27)

here, p (t — nTp) represents the n-th transmitted pulse and Ty is the pulse repetition interval (PRI). Note
that, if 7' denotes the duration of each pulse®, the interval Ty is expressed by (16), where T is the so called
reset time. The time evolution of s(t) is exemplified by Fig. 6, where N, consecutive pulses are represented;
such pulses form a transmission frame, whose duration is Tr = N1 s.

The signal s(¢) (27) undergoes frequency upconversion (accomplished by means of a mixer and a LO
operating at the frequency’ fy) and power amplification before its transmission.

Since the pulses forming s(t) (27) are not overlapped, we can focus our attention on the echo generated
by the chest in response to the k-th pulse. At the RX side, the RF signal conveying this pulse is amplified by
an LNA and downconverted® to extract its in-phase and quadrature components. Then, these components
undergo analog-to-digital conversion at the frequency f; = 1/Ts, where T is the sampling period. If 7,
denotes the delay experienced by the considered pulse, the k-th sample of the in-phase and quadrature
components associated with it can be expressed as (e.g., see [44, Sect. II, eq. (4)])

ar [k,n] = ap[k,n] cos (¢[n]) + wr [k, 1] (28)

and
CCQ[k,’I”L] =ap [kvn] sin (w[n]]) +wq [k’n] ’ (29)

6In practice, T is on the order of hundreds of ps;
"This frequency usually belongs to the industrial, scientific and medical (ISM) band.
8The downconversion scheme is the same as that illustrated in Fig. 2.
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Figure 5: Block diagram of an IR-UWB radar.
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Figure 6: Example of the baseband signal s(¢) (27) produced by the pulse generator of the IR-UWB radar
system represented in Fig. 5.

Table 3: Received signal model and range formulas for the considered radar systems.

Radar type Waveform Received signal model Target range
Sine wave z [n] = aexp(j¢ [n]) unavailable
Continuous wave Linear frequency modulation z[k,n] =aexp(j 2rkfnTs + 1 [n])) R, = fn- ¢/(2p)
Stepped frequency modulation x [k,n] = a exp (—j 27kAfrn +¢¥[n])) Rn=7n-c/2
Impulse-radio Gaussian pulse z [k,n] = ap[k,n]exp (j¥[n]) R, =7n-c/2
i-th target ® TX antenna
A ® RX antenna ® TX antenna
i Virtual channel ® RX antenna
Virtual channel
R
6
“j;igs‘i“—‘"” '
Lo \dsin®)
D S D > X
2d
a) 1<—~a rrrrr >! X b) 0 <

Figure 7: Representation of: a) an ULA; b) an URA. In both cases the physical array and the associated
virtual array are considered.
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respectively, with k=0, 1, ..., N—1land n =0, 1, ..., N, — 1; here, a represents the amplitude of the useful
signal component,

p[ka Tl] £ p (ka — Tn — nTO) ’ (30)

n, k,¥[n] have the same meaning as the one illustrated for the corresponding terms appearing in (17)-
(18), wr[k,n] and wqlk,n] represent noise contributions (they correspond to the samples w;[n] and wg[n]
contained in the RHS of (9) and (13), respectively), and N is the overall number of samples acquired over
each PRI (briefly, of fast time samples). Each of the sequences {z[k,n|} and {xg[k,n]} feeds a digital
matched filter (MF), that is a digital filter whose impulse response is the sequence {p (T — kTs); k = 0, 1,
..., N = 1}; the responses of the MFs fed by the in-phase and quadrature components are denoted {zZ; [k, n|;
k=0,1, .., N—1} and {&g[k,n]; k=0, 1, ..., N — 1}, respectively. If the chest displacement AR(t) is
approximately constant within a single PRI, i.e.

for k=0, 1, ..., N—1 and any n, matched filtering allows to maximise the output SNR, i.e. the ratio between
the energy of the useful component available at the MF output and the average power of the noise component
affecting it. The target delay 7., is estimated by identifying the position of the main peak appearing in the
MF response.

Finally, it is useful to point out that (28)—(29) can be condensed in the complex signal model

Z [kvn] £ T [kan] +]xQ[k7n}
=aplk,n]exp (j¥[n]) + w [k, n], (32)

where wk,n] £ w[k,n] + jwglk, n] is the noise component. In an UWB-IR radar systems, the presence of
clutter, i.e. of reflections from other stationary targets, may affect the estimation of vital signs. The presence
of clutter in the received signal can be modelled as DC offset or small amplitude variations in the slow time
dimension in (28) and (29).

The received signal models and range formulas provided above for the different types of radar systems
are summarized in Table 3.

IV.C. Architecture of multiple-input multiple-output radar systems

A MIMO radar system is equipped with a TX and an RX antenna array, consisting of Ny and Ng elements,
respectively. In a colocated MIMO radar, TX antennas are close to the RX ones and are usually placed on
the same shield. It is important to keep in mind that:

a) The elements of the TX array are employed to radiate orthogonal waveforms, whereas the RX elements
to receive distinct replicas of the electromagnetic echoes generated by multiple targets.

b) In these conditions, any couple of physical TX and RX antennas generates independent measurements;
for this reason, each of the
Ny £ Ny - Ng (33)

couples of TX/RX antennas can be replaced by a single virtual antenna (VA) of an equivalent SISO
radar. The abscissa x, and the ordinate y, of the v-th VA element associated with the p-th TX antenna
and the ¢-th RX antenna (briefly, the (p,q) VA) are computed as (e.g., see [45, Par. IL.A, eq. (1)])

Ty = Tp £ g (34)
2
and u+y
Yo = L 2 q’ (35)

respectively, with p=0,1, ..., Np —1,¢=0,1, ..., Np —1and v =0, 1, ..., Ny — 1; thus, a physical
array characterized by Ny (Ng) TX (RX) elements is equivalent to a virtual array constituted by Ny
channels.
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Two physical arrays and the associated virtual arrays are shown in Figs. 7-a) and b). More specifically,
in Fig. 7-a), the one-dimensional (1D) virtual array associated with the given physical array is a uniform
linear array (ULA), since it consists of Ny = 1-4 = 4 equally spaced and aligned virtual elements (see (33));
note that, in this case, y, = 0 (see (35)), because of the geometry of the physical array and the selected
reference systems, and that the distance between two adjacent VAs is equal to d. Putting together multiple
parallel ULAs leads to the 2D uniform rectangular array (URA), like the one shown in Fig. 7-b). The last
array is made of Ny = 5.7 = 35 VAs (see (33)) or, equivalently, of Nyyra =5 (Ngyra = 7) horizontal
(vertical) ULAs (one of them is highlighted by a black dashed rectangle), each composed by seven (five) VAs.
Note also that, in Fig. 7, the distance between two adjacent horizontally-aligned (vertically-aligned) VAs is
denoted dyy (dyv) and that dyg = dyv is assumed. The distance between two adjacent physical elements
is usually equal to A\/2, where X\ is the wavelength characterizing the radiated waveforms; consequently, the
distances d, dyv and dyp are all equal to A/4.

Let us focus now on a radar system employing the ULA represented in Fig. 7-a) and assume that: a) L
point targets are detected by this system; b) the position of the i-th target (with ¢ =0, 1, ..., L — 1) can be
deemed constant in the frame interval in which it is detected (i.e., over an interval lasting T s). In this case,
the useful component of the received signal consists of the superposition of L contributions, each associated
with a different target. More specifically, the contribution given by i-th target is given by

7"l = o exp (i n), (36)
for the CW radar system described in paragraph 1) (see (14)),
2" [k,n) = af” exp(i(2nk £ T, + 0" ), (37)
for the FMCW radar system described in Paragraph 1) (see (21)),
2k, n] = of") exp(—j(2mkr{V Af + v [n])), (38)
for the SFCW radar system described in Paragraph 1) (see (25)) and
2 [k, n) = 0 p(RT, — 7" — nTo) exp(jo (" n]) (39)
for the IR-UWB radar system described in Paragraph 2) (see (32)). In (36)—(39) it is assumed that:
a) The integer v denotes the index of the selected VA (we assume that v =0, 1, ..., Ny — 1).

b) The positive real az(-v) is the amplitude of the contribution due to the i-th target and observed on the
v-th VA.

¢) The phase wgv) [n] can be expressed as

¥ n] = ) + Agiln], (40)
where 4
(()Z) = Tﬂ- (RO,i =+ ’l)dSln(el)) B (41)

A;[n] is still expressed by (13), ; is the azimuth of the i-th target and Ry ; is the range of the i-th
target assuming zero chest displacement.

d) The frequency fi(v) is given by
1 =, (42)

whereas the delay 7 can be approximated as

%

K2

)~ % (Ro.; + vdsin(6;)), (43)

if we assume that Ry ; is much larger that the maximum range variations AR(t) experienced by the
i-th target in the considered frame interval (see (1 in Par. IIL.B.).
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Finally, it is important to point out that, in CW and IR-UWB radar systems, the azimuth of a given
target influences the phase of the received signal component associated with it, whereas in FMCW (SFCW)
radar systems, it influences also the normalised frequency (normalised delay) characterising that component.
However, in any case, an estimate of the direction of arrival (DOA) of the electromagnetic echo originating
from a given target is computed on the basis of the phases referring to that target and observed over multiple
antennas.

V. Signal Processing Algorithms for Vital Sign Monitoring

In this section, we first describe the most important deterministic and learning-based processing methods
that can be employed to extract vital signs from the measurements provided by the SISO radar systems
described in the previous section. Then, we provide essential information about the processing accomplished
in colocated FMCW and SFCW MIMO radars for estimating the vital signs of multiple people. Finally, we
illustrate some numerical results generated by applying some of the considered methods to a synthetically
generated dataset.

V.A. Deterministic detection and estimation algorithms for single-input single-
output radars

The majority of the radar-based methods for vital sign monitoring appeared in literature have the following
features: a) they are deterministic (i.e., model-based), since their derivation is based on our prior knowledge
about the structure of radar echoes; b) they extract vital signs from the phase of the received signal. As far
as the last point is concerned, it is useful to focus first on a SISO CW Doppler radar for simplicity and to
reconsider the phase expression

Y] £ o + Ayn] (44)
provided in Paragraph 1) for the n-th received signal sample (where n denotes the fast time index). As
already illustrated in that paragraph, the constant 1y appearing in the last equation represents the so called
DC offset, whereas (see (13))

Awmzﬁ%ARm (45)
is a time-varying term related to the body movement induced by breath and cardiac activities and, con-
sequently, conveys the information we are interested in. This explains why the first step accomplished by
the deterministic methods developed for CW Doppler radars consists in extracting the phase of the received
signal sequence {z[n]}, as shown in Fig. 8, where a block diagram is represented to describe the overall
processing they accomplish. As shown in this figure, phase extraction is carried out by the first block, that
generates the N,.-dimensional vector

127 £ [1/;[0]77[)[1]7 71[)[Nr - 1”T (46)

on the basis of {z[n]}; here, N, is the overall number of measurements and ¢)[n] represents an estimate of
¥[n] (44), i.e. of the phase of the complex sample x[n]| (which is expressed by (14) in the case of a single point
target). Given the vector 12), estimates of the BR and of the HR can be evaluated by applying the so called
periodogram method [46], i.e. by identifying dominant frequency components in the amplitude spectrum of
{4)[n]}. In fact, it is known that: a) the highest peak in the above mentioned spectrum is found at the breath
frequency in normal respiration conditions; b) the HR is higher than the BR (at least more than two times
higher). For these reasons, an estimate f, of the BR f, (expressed in acts/s) can be computed as

fo=bfr, (47)
where R
b=arg  max |Y13 , (48)
be{0,1,...,No/2}
1 Nt
R . _ -
Y; £ oA nz:% ¥[n] exp (—jQﬂ'nb/N0> , (49)
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No 2 M N,, (50)
M is the oversampling factor and
1
fr &

" NoT
for the CW Doppler radar system described in Paragraph IV.B.. Note that: a) Y; (49) represents the b-th
element of an Ny order Discrete Fourier Transform (DFT) of ¢ (46) and can be efficiently computed by
adopting a Fast Fourier Transform (FFT) algorithm of the same order, as shown in Fig. 8; b) the stragey
expressed by (48) aims at identifying the dominant spectral component in the spectrum of the sequence
{[n]}-

A similar procedure can be employed for estimating the HR fj,. However, in this case, FFT processing is
preceded by bandpass filtering (BPF) to cancel all the spectral components whose frequency falls outside the
interval in which the heart frequency is expected (see Fig. 8). Then, an estimate f;, of f; can be evaluated
as

(51)

fu=0f (52)
where 1
oA
Ft o (53)
h=arg  max | Z;,| (54)

hefo0,1,...,No/2}
and Z;, (49) represents the h-th element of an
No £ M N, (55)

order DFT of the BPF output vector, having size of length N,. (M denotes the adopted oversampling factor).
It is worth pointing out that:

a) Since some prior knowledge about the minimum and maximum BRs to be detected is usually available,
the search interval in the RHS of (48) can be restricted to reduce the overall computational cost of the
search for the maximum over the set {|Y;|}. Similar considerations hold for (54), since {|Z; |} takes on
significant values in a restricted frequency range because of the employed bandpass filtering.

b) Various options are available for the bandpass filter topology and order, depending on the required
selectivity. However, the main problem is represented by the selection of its passband, since we must
avoid that the BR (HR) falls inside (out of) it. In general, the lower limit f; and upper limit fy
of its passband should be selected in a way that fr > 2/TBR and fy < 3/THR, where Tgr (Tur) is
the breath (heart) period expressed in seconds. Typical values of Tpr (Thr) at rest are given in Par.
IL.A..

c¢) Generally speaking, the evaluation of an FFT of order Ny (Np) in BR (HR) estimation leads to
partitioning the frequency interval in Ny (Ny) frequency bins, all having the same size. The quantity
b (48) (h (54)) represents an estimate of the index of frequency bin inside which the fundamental
frequency of respiration (heart) signal falls, whereas f. (51) (f. (53)) is the bin size. Reducing this
size (i.e., increasing the FFT order) improves the resolution in frequency estimation at the price of an

higher computational load.

d) Since the phase vector 1& is real, the FFT outupt vectors Y and Z are Hermitian symmetric; this
explains why only a portion of its elements is involved in the search required by (48) and (54), respec-
tively.

Let us focus now on the extraction of phase information in CW Doppler radars. This is usually accom-
plished by means of the arctangent demodulation (AD) technique. This means that the n-th element of the
vector 1 (46) is evaluated as”

ﬁﬂzmﬁw(“mg, (56)

xr[n]

9The arctan(-) operator can be also replaced by the arctan2(-) operator in order to extend the codomain from (—7 /2, 7/2)
to (—m, m).
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for n=0,1,...,N, — 1. If z1[n] or zg[n] are equal to zero, the last equation is replaced by

and

Y[n] = arcsin (zg[n]) (57)

¥[n] = arccos (z7[n]) (58)

respectively. It is important to point out that:

2)

The contribution of DC offset and strong low frequency components to the received signal phase can
be mitigated by exploiting the method illustrated in [47] and based on polynomial fitting. This method
allows to capture the slow temporal variations of that phase and to subtract them from it. Other
techniques for DC offset removal have been proposed in [48], and are based on a least-square (LS)
approach and Kalman filtering.

The estimated phase sequence {1/3[71]} may exhibit some discontinuities. In fact, a discontinuity appears
in the extracted phase whenever the condition!® (see eq. (45))

Adniin 2 [9ln+1] = 3l = S ARy > 2m (59)

is met; here, AR, 11, 2 |R[n+ 1] — R[n]|. This means that, whenever the range variation AR, 11,
observed over two consecutive sampling epochs exceeds half a wavelength, the value of the estimated
phase becomes ambiguous. Note that this problem becomes more relevant as the frequency fy of the
radiated signal increases (for instance, if fo = 77 GHz, any displacement exceeding 2 mm produces a
phase ambiguity).

The phase sequence {lﬁ[n]} always undergoes a transformation known as unwrapping; unwrapping aims
at ensuring that the variation between two consecutive elements of this sequence does not exceed .
In practice, this result is achieved by adding a multiple of 27 to some of the elements of the sequence
{z/?[n] }. However, the use of unwrapping may introduce errors in the presence of abrupt phase variations.
In this case, the extended differentiate and cross-multiply (DACM) algorithm proposed in [49] should
be employed to achieve precise phase unwrapping.

Finally, it is worth mentioning that an alternative to the arctangent method is represented by the complex
signal demodulation (CSD) technique. This technique is based on the idea that the received signal can be
seen as a frequency modulated waveform (see eq. (6) and (45)). Therefore, an approximate model, based
on the first order Bessel functions, can be derived for it [50]. This allows to separate the contribution due
to the periodic movement of the chest from the one associated with the position of the body (i.e., with the
term 1p; see (12)). In particular, Fourier analysis can be directly applied to the sequence {z[n]} (see (14))
to estimate both BR and HR.

The architecture of the deterministic methods developed for FMCW, SEFWC and IR-UWB radars can
be also represented through the block diagram in Fig. 8. However, in these cases, the following changes are
made:

a)

b)

The parameter Ty appearing in the RHSs of (51) and (53) is replaced by the PRI T}, in the case of
IR-UWB radar system and by chirp (frequency sweep) duration T} in the case of an FMCW (SFCW)
radar system.

The algorithm for extracting phase estimation (i.e., for generating the vector 1 (46)) is more compli-
cated.

As far as the last point is concerned, further details are provided in the following two paragraphs.

10Tn the derivation of the following result, the arctan2(-) operator is assumed in place of the simpler arctan(-).
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Figure 8: Representation of the signal processing chain characterising various deterministic methods for vital
sign estimation.

1)

Frequency modulated and stepped frequency continuous wave radars

Let us concentrate first on the simplest method that can be adopted in an FMCW radar system for the
extraction of the above mentioned phase information. This method processes the received signal samples
acquired over a single transmission frame (made of N, consecutive chirps; see Paragraph IV.B.) and consists
of the following steps:

1.

It

The N§ x N, complex matrix X = [X[l,n]] is computed; here,

N—
1 .
N E z[k,n] exp (—j2mnl/N{) , (60)

with [ =0,1,..., Ny —1and n=0,1,...,N. — 1 . Note that X[, n] represents the I-th coefficient of an
N/ order DFT of the signal samples acquired over the n-th chirp of the considered transmission frame.

The index of the frequency bin
12 arg max ‘X[i, n]) , (61)
1e{0.1,...,N;—1}
associated with the target (i.e., with the chest of the subject under test) is identified.

Phase extraction is accomplished through the AD method (followed by phase unwrapping), but does
not involve the time domain samples of the received signal (i.e., the samples {z[k,n]}). In fact, the
samples z7[n] and zq[n] are replaced by R{X[l,n]} and S{X[l,n]}, respectively, in (56)~(58) (here,
R{x} and I{z} denote the real part and the imaginary part of x, respectively).

is important to point out that:

The procedure described above generates, as a by product, an estimate of the range of the target, i.e.
of the distance between the radar and the chest wall of the subject under test. In fact, given { (61),
such an an estimate is given by Ry = [K,,, where

N c

Kn2 2
2N T, (62)

is the bin-to-meters conversion factor.

Some methods, similar to the ones described above for CW Doppler radars, are available for the
compensation of a DC offset or of large movements; in fact, they are based on filtering techniques or
on polynomial fitting [17,47,51].

If the distance between the chest wall and the radar is known with a certain accuracy (e.g., when the
radar is employed for monitoring the vital signs of a patient in a bed), a procedure for reducing the
region of interest (ROI) can be implemented to simplify the estimation of [. In particular, [ can be
searched in the ordered set {l,,,l;m + 1, ..., Iar}, made of Iy — I, + 1 elements; here, 1,, = Ry /Ko,
Iy = Ry /Ky and Ry, (Rpg) is the minimum (maximum) expected range.
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Figure 9: Representation of the signal processing described in Paragraph V.B. and employed for estimating
the position (range and azimuth) and the vital signs (HR and BR) of multiple people by means of a colocated
FMCW MIMO radar.

The method illustrated above for an FMCW radar system can be also employed for an SFCW radar
system because of the duality relating such systems (see Paragraph 1)). The only difference is represented
by the fact the definition (60) is replaced by

N—1
1 .
X[tn) & & ;0 wlk, n] exp (j2mnl /Ng) , (63)
with 1 =0,1,...., N —1and n=0,1,..., N, — 1. This means that an Ny DFT is replaced by an inverse DFT
(IDFT) of the same order, which is efficiently evaluated through an inverse FFT (IFFT).

2) Impulse radio ultra-wideband radars

The AD method described in Par. V.A. can be also employed for phase extraction in IR-UWB radar systems.
In this case, however, the samples z;[n] and xg[n] appearing in the RHS of (56) are replaced by z;[k,n] and
xQ[l;:, n] (see (28) and (29)), respectively, with n = 0,1, ..., N, — 1; here, k denotes the value of the fast time
index k corresponding to the main peak detected at the MF response!!. Note also that phase estimation is
followed by phase unwrapping and that, given l%, an estimate 7 of the detected target can easily computed;
this allows to evaluate the estimate RO = 7 ¢/2 of the distance Ry between the radar and the chest of subject
under test (see (12)).
Finally, it is worth mentioning that:

a) The clutter contribution to the samples {z[k, n]} can be removed by applying this sequence to an high-
pass filter. However, if the clutter produces small fluctuations along the slow-time axis, algorithms
based on polynomial fitting can be employed for its removal [51].

b) The SNR of the received signal can be also improved by resorting to noise reduction techniques. An
example of such techniques is provided in [52, Sect. 3.2], where the empirical mode decomposition
(EMD) is exploited for noise mitigation. In this case, the sequence {z[k,n|} is decomposed into a
superposition of intrinsic sub-signals, defined at precise instantaneous frequencies and called intrinsic
mode functions (IMFs). This method allows to retain only the most important frequency components
of the input signal and filter out the oscillations associated with noise components.

Some alternatives to the FFT-based estimation method described in Paragraph V.A. are also available in
the technical literature. These are based on the evaluation of a fourth order cumulant [53] or of a continuous
wavelet transform (CWT); note that the use of the CWT in place of the FFT allows to analyse how the
frequency components of the received signal phase evolve over time [52].

V.B. Estimation of vital signs of multiple subjects through multiple-input multiple-
output radars

In the last few years, increasing attention is being paid to MIMO radar systems, mainly because they make
range and DOA estimation of multiple targets possible. The use of MIMO FMCW, IR-UWB and CW radar

1Tt is assumed that k does not change in the considered frame interval for simplicity.
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systems for the monitoring of vital signs has been investigated in [54-58], [59,60] and [61] respectively. More
specifically, the use of MIMO FMCW radars operating at 77 GHz and at 120 GHz has been studied in [54-56]
and [58], respectively, whereas the simultaneous use of two FMCW radars, each endowed with single ULA,
but one operating at 24 GHz and the other one at 77 GHz, has been investigated in [57]. Reference [61],
instead, focus on the use of beamforming in MIMO CW radar systems.

Let us illustrate now some key concepts that are useful to understand the processing accomplished at the
RX side of a MIMO radar system. To begin, we focus on a FMCW MIMO radar equipped with N7 TX and
Nr RX antennas (and, consequently, with Ny, = Ny N VAs; see (33)). Under the assumptions illustrated
in Paragraph IV.C., the signal samples acquired in a single frame through the Ny VAs can be collected in
N x Ny x N, matrix x £ {z(*)[k,n]}, where

L—1
2 [k,n] & Z AEUJ exp <j27rk FL(Z)) + wW[k,n), (64)

i=0
with k¥ =0,1,.. N—-1,n=0,1, ..., No—1and v =0, 1, ..., Ny — 1; here, L is the overall number of
targets, and AEUTE (Fl(fl) = fi(f:l)fg) is the complex amplitude (the normalised version of the frequency fi(f:l))
characterising the i-th target observed on the v-th VA in the n-th chirp interval. A processing method that
can be adopted in this case to estimate the range, the DOA and the vital signs of multiple people in the
considered radar system is described by the block diagram represented in Fig. 9. Such a method consists in
the four steps listed below.

1. Computation of the range-azimuth map - A size N) x N4y 2D-FFT of the N x Ny input matrix
x[n] = [®[k,n]] (with v = 0,1,..., Ny — 1 and k = 0,1,..., N — 1) is computed in the n-th chirp
interval (with n = 0,1, ..., N, — 1); this produces the Nj x N4 matrix

X, = [XOm]] (65)

with | = 0,1,..., Nj — 1 (see Paragraph 1)) and m = —N4/2, —Na/2+1, ..., Na/2 — 1. Then, the
n-th range-azimuth map is evaluated as

J[n] 2 wa [l,m]H (66)

with n =0,1,..., N, — 1.

2. Peak detection - The peaks appearing in the n-th range-azimuth map J[n] are detected by means
of a proper method (for instance, the so called constant false alarm rate, CFAR, method can be
adopted [62]), since each of them reveals the presence of a potential target. Let us assume that,
independently of n, L peaks are detected in the azimuth map and that the position of the i-th peak (with
1=0,1, ...,f)—l) in the n-th map J [n] is identified by the couple (l} [n], Ti[n]) (withn =0,1,..., N.—1).
Then, estimates of the range and of the azimuth of the target associated with the i-th peak can be
evaluated as

Ri[n] = K, l; [n] (67)

and R
0;[n] = arcsin(ri;[n] fr), (68)

n]
respectively; here, K, is expressed by (62) and f, = 2/N4 (see egs. (19)—(20) and (51)). Given the
set {(l; [n], ms[n]); i =0,1,...,L — 1}, the L x N, matrix

X = [X[i,n]] (69)

is generated; here, - .
X[i,n) = X [n], 1ni[n]) (70)

withi=0,1,..,L—1and n=0,1,..,N. — 1.
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3. Arctangent demodulation and phase unwrapping - In this step, the i-th row of the matrix X (69)

undergoes AD followed by phase unwrapping (with ¢ =0, 1, ..., L — 1); this produces the phase vector
P, 2 [if0], if1], ..o, s [Ne — 1)) (71)

4. Breath and heart rate estimation - The phase vector 1[)2 undergoes FFT processing (with i = 0,1, ..., L—
1); this produces the N,,-dimensional spectrum Y'; (whose b-th element is expressed by (49)). Then,
an estimate b,[i] (h.[i]) of the BR (HR) associated with the i-th target is evaluated on the basis of

(48) ((54)).

At the end of the procedure described above, the range estimate

1 N.—1
¢ n=0
and the azimuth estimate
. 1 NeZt

can be computed for the i-th target by averaging the corresponding estimates evaluated over each of the N,
chirps forming the considered transmission frame (with i = 0,1, ..., L— 1).

Finally, it is important to point out that the procedure illustrated above for a MIMO FMCW radar
system can be easily adapted to MIMO IR-UWB and SFCW radars; in the last case, FFTs must be replaced

by IFFTs.

V.C. Numerical results

In this paragraph, we show some numerical results generated by applying various estimation methods illus-
trated above to a set of synthetically generated data. We first focus on a SISO FMCW radar and a SISO
SFCW radar, both placed in front of the chest of a single subject at the distance d = 0.5 m. The following
assumptions have been made in generating our dataset:

a) The model described by (1)—(4) is adopted for the chest displacement of the subject (modelled as a
single point target for simplicity); its parameters are the same as those listed in Par. 1I1.B.).

b) The FMCW and SFCW radars are characterised by the following parameters: a) carrier frequency
fo = 77 GHz (the corresponding wavelenght is A = ¢/fo = 3.9 mm); b) bandwidth B = 2 GHgz; ¢)
number of samples N = 256 (in the time domain for each chirp of the FMCW radar, in the frequency
domain for each frequency modulated pulse of the SFCW radar); d) chirp (pulse) repetition period
Ty = 0.06 s for the FMCW (SFCW) radar; e) number of chirp/frame (pulses/frame) N, = 1034 for
the FMCW (SFCW) radar; f) ADC sampling frequency f, = 9 MHz (f, = 7.8 MHz) for the FMCW
(SFCW) radar. Moreover, the ramp parameters of the FMCW are: a) reset time Tr = 0; b) ramp
time T'= N/ fs = 28us; c) chirp slope p = 70.312 MHz/is.

¢) In both systems the frame duration is Tr = N.Tp = 60 s; this parameter represents also the duration
of our observation interval.

d) The real and imaginary part of the AWGN noise samples {w[k,n|} appearing in the RHS of (21) and
(25) have zero mean and variance o2 = 0.1.

Our synthetically generated data have been processed by means of the deterministic method described in
Par. V.A. and its overall architecture is represented in Fig. 8. The AD method followed by phase unwrapping
has been used for phase estimation and the following choices have been made: a) DFT orders Njj = 512 and
Ng = Ny = MN, = 4-1034; b) K,, = 31 (bin-to-meters conversion factor; see (62)); c) the bandpass filter
employed in HR estimation is a fourth-order Butterworth filter and the lower (upper) limit of its passband
is fr =50/60 = 0.83 Hz (fy = 100/60 = 1.7 Hz), so that its bandwidth is Bgp = fy — fr = 0.83 Hz.
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Figure 10: Representation of the elements of the phase vector 1,@ (46) resulting from synthetically generated
measurements. Both FMCW and SFCW radar systems are considered.

The elements of the phase vector 1[1 (46) obtained for the FMCW and the SFCW radar systems are
represented in Fig. 10. The amplitude spectrum obtained at the output of the slow-time FFT (IFFT)
executed for phase estimation in the FMCW (SFCW) radar system is shown in Fig. 11, whereas the
amplitude spectrum evaluated after BPF of the phase vector is shown in Fig. 12. The results obtained for
the considered radar systems are similar and deserve the following comments:

a) The phase signal does provide information about the dynamics of chest displacement; in fact, comparing
Fig. 10 with Fig. 1 leads to the conclusion that its evolution is similar to that characterising the chest
displacement in the considered scenario.

b) The peaks appearing in the amplitude spectrum shown in Fig. 11 are associated not only with the BR
and the HR, but also with the harmonics of the BR. Note, in particular, that the third harmonic falls
inside the passband of the filter and that its presence may lead to a wrong estimate of the HR.

¢) Based on the available spectra, the estimates by = 17.9 acts /min and h, = 58.8 acts /min evaluated for
the BR and the HR, respectively are very accurate since the exact values of these rates are b, = 18
acts/min and h, = 60 acts/min, respectively.

Let us focus now on a MIMO FMCW radar system placed in front of the chest of three static subjects
(the i-th subject is denoted P;, with ¢ = 1, 2 and 3), whose range (R), azimuth (0), HR (h,) and BR (b,)
are listed in Table 4. In this case, the following assumptions have been made in synthetically generating our
dataset:

a) The chest displacement characterising each person is modelled by (1)—(4); moreover, the values of all
the model parameters are the same as those employed in paragraphs III.B. and V.A..

b) The values of the parameters fo, B, N, Ty, N., fs, Tr, p of the employed MIMO radar are the same
as those listed for the SISO FMCW radar considered above. Moreover, the MIMO radar is endowed
with a virtual ULA like the one shown in Fig. 7-b); the overall number of VAs forming this array is
Ny = 16, wheras the distance between adjacent virtual elements is d = \/4.

Our data have been processed by the deterministic algorithm illustrated in Paragraph V.B.. The range-
azimuth map J[0] generated on the basis of the measurements acquired through the MIMO radar in the
first chirp interval is represented in Fig. 13. The peaks detected by the CFAR algorithm are indicated by
small circles, whereas black crosses are used to identify the centroids'? of each cluster of adjacent peaks.

12Note that each centroid represents the position estimated for one of the subjects.
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Figure 11: Representation of the amplitude spectrum referring to the the phase vector ’IZJ (46). Both FMCW
and SFCW radar systems are considered.
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Figure 12: Representation of the amplitude spectrum of the sequence generated through bandpass filtering
of the phase vector ¢» (46). Both FMCW and SFCW radar systems are considered.
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Figure 13: Range-azimuth map generated on the basis of our synthetically generated data referring to a
MIMO radar system. The peaks detected by the CFAR algorithm are identified by small circles, whereas
black crosses indicate the centroid of each cluster of peaks.

Table 4: Exact values and corresponding estimates of the following parameters (referring to three distinct
subjects): range (R), azimuth (), breath rate (b,) and heart rate (h,.).

R 6 6 b b h b
(m) (°) acts/min acts/min

Py 0.60 061 -30 -30.5 14.0 138 70 66.8
Py 1.00 1.01 30 303 17 169 66.0 63.1
P3 140 139 5 49 20.0 198 57.0 556

Person

The elements of the phase vector 1[; (46) and of its amplitude spectrum in correspondence of the centroid
obtained for the first (closest to the radar) target are shown in Fig. 14-a) and 14-b), respectively, whereas
the estimates of the positions of the three subjects together with the estimates of their BR and HR are listed
in Table 4. From these results the following conclusions can be easily inferred:

a) The range-azimuth map allows to detect all the subjects and estimate their position.

b) The phase vector associated with each centroid provides important information about the dynamic of
the chest displacement of the subject associated with it.

¢) The position and vital signs estimated for each subject are reasonably accurate.

V.D. Detection and estimation algorithms based on artificial intelligence

Various deterministic algorithms may fail in complex, highly dynamic and time varying scenarios [41]. In
such cases, learning methods, based on artificial intelligence (Al), may be extremely useful, since they are
able to: a) learn the regularities characterizing the raw data acquired by radar systems; b) automatically
extract information from them. These methods are divided in machine learning (ML) and deep learning
(DL) techniques [63]. On the one hand, the former class of techniques exploits a customized set of features,
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Figure 14: Representation of: a) the elements of a phase vector generated on the basis of the measurements
acquired through a MIMO FMCW radar during a single chirp interval; b) its amplitude spectrum. The
target closest to the radar is considered.
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Figure 15: Block diagram representing the signal processing chain of a radar-based system employing a
learning method for vital sign monitoring.

manually extracted from the available raw data by means of different processing techniques. On the other
hand, the latter class can learn specific data patterns and extract useful information directly from the same
data through the use of neural networks; this approach requires limited expertise on signal analysis in
radar systems. Each class of methods includes supervised and unsupervised learning technique. Generally
speaking, supervised techniques, mainly used for solving classification or regression problems, are based on
the idea of exploiting a labelled dataset for learning from them through a specific procedure, called training.
Training aims at the identification of the model, i.e. at estimating of the probability density function (also
called predictive distribution) on the basis of which the available dataset has been generated. Given the
model learnt during training (i.e., the predictor), the label associated with a completely new observation
or the value of a continuous variable related to it can be predicted in a way that a specific loss (known as
generalisation loss) is minimised; such tasks are known as classification and regression, respectively. Well
known ML methods for classification are the K-nearest neighbours (K-NN), the support vector machine
(SVM) and the ensemble classifier [64].

Unsupervised methods, instead, do not require a labelled dataset and deal with learning some specific
properties of the mechanism on which the generation of the considered dataset is based. They can be
exploited to solve specific technical problems, like data clustering, dimensionality reduction and feature
selection. In practice, data clustering aims at partitioning the available dataset in a number of groups
such that data points in the same group are dissimilar from the data points belonging to all the other
groups. Dimensionality reduction is employed to generate a reduced dimensionality representation of the
observations, whereas feature selection consists in deriving a vector valued function that produces a useful
and lower-dimensional representation of the available feature.

In general, the dataset employed to train a specific method contains N; couples, each of which consists of
a D,-dimensional real vector of features and a D;-dimensional real vector of labels. The size Ny of the dataset
can be reasonably small in the case of ML (say, between a few dozen and a few hundred), but is substantially
larger in the case of DL (say, at least one thousand). In the case of radar-based monitoring of vital signs,
a vector of customized features can be obtained from the phase vector 1& (46) through a procedure called
feature extraction and can be processed for classification purposes. For instance, different breathing diseases
could be recognised on the basis of several features, such as the breathing frequency, the chest displacement
and the variability of the breathing frequency in short and long observation time. Generally speaking, for all
the radar topologies, the extracted features can be grouped in three different classes, namely time, short-term
and time-frequency domain features. Time features are represented by various characteristics of the evolution
of the elements of the phase vector 1[1, such as their average (or maximum) peak amplitude, the variability of
their amplitude and the number of peaks. Short-time features (time-frequency domain features'?), instead,
allow to monitor how the energy (the spectral content) of the elements of the phase vector 1/3 evolves. The
above mentioned features can be employed for both classification and regression, as exemplified by Fig. 15,
where the overall signal processing chain of a radar system employing a ML method is illustrated.

An alternative to ML methods is provided by DL methods. In the last case, feature extraction is
automatically accomplished by a neural network and, if classification is required, a softmax layer is employed
to evaluate the probability that a certain observation is associated with one of the given classes.

A limited literature on the use of ML and DL methods in radar-based monitoring of vital signs is available.

13The CWT can be employed to extract these features.
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The use of ML methods in CW Doppler radar systems for vital sign monitoring has been investigated
in [65-68], while an unsupervised method for DC offset and clutter suppression using FMCW radars has
been investigated in [69]. Moreover, an HR estimation technique based on a convolutional neural network
(CNN) has been developed in [70] for an IR-UWB radar system. In particular, supervised methods have been
exploited for classifying breathing disorders, for heart sound classification and for removing the high order
harmonics from the phase vector ¢ (46) in [66], [68] and [65], respectively. An artificial neural network (ANN)
for reliable detection of heartbeats through a CW Doppler radar has been proposed in [67]. The adopted
ANN is composed by a cascade of multiple layers with different number of neurons and its architecture is
quite simple; its main drawback is represented by its inability to cope with time series, i.e. to extract features
related to the time evolution of the observed signal.

VI. Applications of the Radar Technology to Vital Sign Monitoring

In this section, we propose a synopsis of the technical literature concerning the following specific issues: a)
the monitoring of HR and BR; b) the experimental setups adopted in vital sign montoring; c) the monitoring
of heart sounds.

VI.A. Heart rate and breath rate monitoring

The use of radar systems for monitoring HR and BR has been investigated by several research groups, whose
work has allowed to assess the performance achieved by different radar prototypes operating at distinct
frequencies and radiating heterogeneous signals. As far as the use of the radar technologies described in
Paragraph IV.A. is concerned, it is worth mentioning that:

a) Continuous wave Doppler radars operating at 2.4 GHz, at 5.8 GHz and at 24 GHz have been em-
ployed to measure respiration, heartbeat, or motion activity in [3,12,71,72], in [73] and in [20,67,74],
respectively.

b) Frequency modulated continuous wave radars operating in the C and X bands, at 24 GHz, at 77 GHz,
and at 122 GHz have been used to simultaneously estimate of the the vital parameters of multiple
people in [22,75], in [76,77], in [31,51] and in [78], respectively.

¢) Stepped frequency continuous wave radars operating at frequencies lower than 3 GHz and in the X band
are have been exploited for the estimation of the vital signs parameters of single or multiple people
in [79,80] and in [81,82], respectively.

d) Impulse radio UWB radars operating in the C, X and E bands and having large bandwidths (2 — 3
GHz) have been employed to measure vital parameters with high accuracy in [21,52,70,83-85].

Model-based (MB) or learning-based (LB) methods have been employed for the processing of the measure-
ments provided by the above mentioned radar systems; moreover, such measurements have been acquired
over population of different sizes. Essential information about the adopted processing methods and the size
of the involved population are summarised in Table 5; note that, in this table, the size NN, of the population
(low, L, medium, M, or high, H) on which it has been tested have been specified!?. Some details about the
most important processing methods and the main results achieved through their use are provided below.

Continuous wave Doppler radars - Three novel deterministic techniques for estimating vital signs have
been developed in [71], where a radar system operating at 2.4 GHz has been tested on a (single) human
subject located at a fixed distance. These techniques are based on: a) the FFT processing of the time-
domain phase signal estimated through AD (see the block diagram represented in Fig. 8 and in Par. V.A.);
b) the computation of the autocorrelation of the phase vector ¥ (46) to estimate the period of the time-
domain phase signal; ¢) the FFT processing of the above mentioned autocorrelation. The last two techniques
are shown to achieve a better accuracy than the first one. Other interesting results are offered by [3], in

141n this table, the population size is low, medium or high if 1 < N, < 10, 10 < N, < 20 or N, > 20, respectively.
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Table 5: Classification of the references cited in Paragraphs VI.A. and VI.B. on the basis of: a) the size of
thw acquired dataset; b) the position of the subject/subjects under test; ¢) the employed radar technology;
d) the category of the adopted signal processing method.

Work no. Dataset Position of the involved subjects Radar technology Freq. Signal proc.
size sitting lying other CW FMCW SFCW UWB GHz MB LB
down
[71] H v v 2.4 v
[73] H v v 5.8 v
[3] L v v 2.4 v
[72] M v v 2.4 v
[67] M v v 24 v
[74] M v v 24 v
[20] L v v 24 v
[12] L v v 2.4 v
[76] L v v 24 v
[78] L v v v 122 v
[51] L v v 7 v
[22] L v v 5.8 v
[77] M v v 24 v
[75] L v v 10 v
[79] M v v 0.3-1.3 Vv
[80] M v v 2.4 v
[81] L v 9.0 v
[82] L v 5.8 v
[31] L v v v 7 v
[52,83] L v v 6.8 v
[84] L v v v 4.3 v
[85] H v v 94 v
[21] H v v 7.25 v
[70] H v v 79 v
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which a deterministic method based on the block diagram appearing in Fig. 8 is adopted to process the
measurements acquired through a mmwave Doppler radar. In that manuscript it is shown that the HR
estimated on the basis of an electrocardiogram (ECG) is highly correlated with that estimated on the basis
of the measurements acquired through the devised radar system.

Some potential benefits originating from the use of ML methods are illustrated in [72], where the problem
of recognizing and classifying breathing disorders of various patients during their sleep is investigated. Five
ML techniques, namely, SVM, linear discriminant analysis (LDA), K-NN, decision tree (DT) and ensemble
learning techniques, trained on a manually selected set of features are tested; the obtained results evidence
that all the considered techniques are able to achieve an high accuracy in the classification of breathing
disorders.

Frequency modulated continuous wave radars - In [76] the BR and HR of a single person have been
measured through an FMCW radar and an ECG; moreover, a video camera has been also used to inspect
the chest dynamics of the patient under test. A dataset composed by the measurements acquired from six
different people has been used for validating the adopted signal processing methods. Two different methods
have been tested, one based on the FFT (similar to the one described by Fig. 8 and in Par. 1)), the
other one based on the computation of the autocorrelation of the phase vector 1,5 (46). The obtained results
have evidenced that: a) both BR and HR can be accurately extracted from radar measurements; b) the
estimation of HR in the presence of the respiration harmonics can be challenging. Methods similar to the
ones employed in [76] have been successfully exploited in [78] and in [77], for simultaneously estimating the
vital signs of multiple people and for identifying the vital parameters of ten subjects that experience different
sleep scenarios, respectively.

Stepped frequency continuous wave radars - An FFT-based estimation method, similar to the one de-
scribed in Paragraph V.A., has been employed in [79,80] to estimate the BR and HR of multiple subjects
in a room; these subjects have been sitting on a chair or lying down in a bed, and have been characterized
by different orientations. In [80], radar-based estimates have been compared with the HR and BR estimates
provided by a contact reference sensor. The employed radar system has been shown to achieve the best per-
formance when the chest of the subject under test is in front of it; however, even if this condition is not met,
radar-based estimates are still sufficiently accurate. In [79], the performance of radar-based monitoring in
scenarios in which obstacles, characterised by different shapes and materials (like walls), are placed between
the radar and the subject under test are evaluated. Finally, an SFCW radar system has been employed
in [81,82] to simultaneously estimate the vital signs of multiple people. It is also worth mentioning that
the estimation method devised in [82] consists in applying a CWT to the phase vector 1/3 (46) in order to
separate the breath contribution from the one due to heart.

Impulse radio UWB radars - An FFT-based estimator (similar to the one described by the block diagram
of Fig. 8 and in Par. 2)) and the estimator based on autocorrelation of the phase vector ¥ (46) have been
employed in [85] and [84], respectively, where the raw data acquired through an UWB radar system have
been processed to extract the vital signs of different subjects. The accuracy achieved by an IR-UWB radar
system in vital sign estimation has been compared with that of an FMCW radar system in [31]; the latter
system is shown to outperform the former one thanks to its ability to perform clutter suppression. Note
that, as shown in [83], noise and clutter affecting the measurement acquired through an IR-UWB radar can
be mitigated by means of Kalman filtering.

VI.B. Radar setup in real world scenarios

Radar systems can be potentially exploited for remote monitoring of vital signals as conveniently and as easily
as wearable devices. Readers should not forget, however, that essential requirements for their adoption in
real world applications are represented by their ease of use and accuracy. Various results about the accuracy
of radar systems for vital sign monitoring in the real world and often challenging scenarios can be found
in [20,22,51,75,77,86]; note that [51], [22] and [77] concern FMCW radar systems, whereas [20,75] and [86]
CW Doppler and IR-UWB radars, respectively. More specifically, the use of radar systems in an hospital for
measuring the vital signs of patients has been investigated in [20,22,51], whereas more challenging scenarios
have been taken into consideration in [75,77,86]. A brief description of the experimental setup adopted
in the measurement campaigns conducted by the authors of the manuscripts cited above and of the main
results extracted from their experimental data is provided below.
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a)

The use of a MIMO FMCW radar in an hospital bedroom has been investigated in [51]. The radar
device has been positioned on the ceiling of a room, in front of the bed on which a static patient was
lying down; moreover, the patient was facing up the radar during the data acquisition process, that
lasted 40 min. A good correlation between the BR and HR provided by a reference sensor and their
estimates provided by the radar system has been found.

An FMCW radar endowed with a custom array of antennas has been employed to estimate the vital
signs of a person sitting on a chair in [22]. The analysed measurements have been acquired on five
subjects (three males and two females), not suffering from any cardiac or respiratory pathology, and
whose age ranged from 25 to 63 years. These subjects have been positioned in front of the radar with
different orientations (their chest, their left, their back and right side facing the radar antenna). The
employed system has been able to accurately detect BR and HR, regardless of chests patient orientation
towards the radar antenna.

A custom-designed CW radar system placed under a bed mattresses has been employed in [20] to
continuously measure the vital parameters of various patients without restricting their movements.
The developed system has been able to detect the activity of each patient (i.e., entering the bed,
getting out of it, or moving inside it) and to continuously measure his/her vital signs in different
positions.

An FMCW radar has been employed for the estimation of the vital signs of a person experiencing
different sleep conditions in [77]. In this case, the radar device has been positioned on the ceiling
of a room in front of the bed on which a static patient was lying down in different positions or was
performing simple activities; this allowed to emulate real-life sleep conditions. The measurements
have been acquired on eleven patients (whose age ranged from 25 to 55 years); a good correlation has
been found between the radar-based estimates of vital signs and those provided by a reference device.
These results, together with those illustrated in [20], have evidenced that radar-based systems can be
very useful in various healthcare applications (e.g., in the study of sleep apnoea, in the monitoring of
bedridden patients and, more in general, in the monitoring of hospitalized patients).

The use of a dual-frequency'® CW microwave radar for vital sign estimation inside an ambulance has
been studied in [75]. The measurements have been acquired on eight healthy male subjects whose
age ranged from 21 to 24 years. Each of the subjects was lying down on a stretcher contained inside
an isolator; therefore, his respiratory and cardiac activities were monitored from outside the isolator.
The employed radar system has been able to measure HR and BR of the considered patient with good
accuracy, in both static and dynamic conditions of the ambulance. Note that the innovative method
proposed for vital sign detection could be very useful in other scenarios (e.g., in the monitoring of
infectious patients).

Various results about the use of an UWB radar system for monitoring the BR of six neonates'¢ in a
neonatal intensive care unit have been illustrated in [86]. In all the experiments, the employed radar
system has been covered with a white plastic cap and has been hung at the end of a specially designed
arm placed on the top of a tripod; moreover, it has been placed at a distance of 35 cm from the chest
of each subject. Each of the neonates has been placed in a supine position inside an open-air crib, and
his/her torso has been covered with a blanket. An high accuracy has been achieved, despite the small
movements of the babies under test.

VI.C. Heart sounds monitoring

Currently, the standard reference tool for continuous cardiac monitoring is electrocardiography; it requires
touch-based wiring of patient skin. In clinical practice, a series of pathological processes would certainly
benefit from contactless monitoring; these conditions may include patients with an infections or a sepsis

(e.g. infected by SARS CoV-2), or patients with mental disorders that do not allow conventional monitoring

15The considered radar system operated at both 10 GHz and 24 GHz.
161n this case, the subjects under test were two males and four females with a median gestational age of 38 weeks and a

median birth weight of 3100 g.
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according to cardiology settings. In cardiac intensive unit or intermediate care unit, continuous monitoring of
heartbeat is a common practice, because detection and prevention of critical states of health can lead to timely
therapeutic interventions, with the result of a better outcome. In fact, several cardiac conditions could be
immediately harmful and potentially fatal (e.g., cardiac arrhythmias, heart attacks, acute heart failure, and
stroke), thus requiring prompt detection of cardiac or respiratory anomalies. Recently, in the field of radar-
based systems for vital sign monitoring, an effort has been made to take a step forward and, in particular,
to detect heart sounds [87-89]. The classification of normal or abnormal heart sounds has been investigated
in [87]. In that manuscript, it has been shown that the heart signal recorded by a custom-designed CW
radar system is highly correlated with the signal registered by a phonocardiograph, used as reference. Based
on this correlation, each period of the recorded radar signal can be divided in the different temporal phases
of the cardiac activity, namely into systole and diastole (see Par. III.A.); this procedure is called heart sound
segmentation. After recognizing systole and diastole in the received radar signal, a reliable detection of
normal or abnormal heart sounds can be accomplished using an Long Short Time Memory (LSTM) network
for heart sound segmentation; this has been shown in [88], where an heterogeneous dataset of recorded heart
sounds and vital signs acquired through a CW Doppler radar has been used [89]. The measurements of this
dataset originate from multiple subjects in different positions of their bodies and in various conditions, such
as during breath-holding, during speaking and after post-exercise. The obtained results have evidenced that
more than 90% of the recordings were of high quality, and that the correlation between radar and ECG
signals was almost perfect. As far as the impact of body position is concerned, it has been found that, in
general, heart sounds can be detected in almost all the considered positions; however, the measurability
at a certain position changes from person to person. This is partly due to the fact body anatomy, and in
particular, heart position inside chest, may show some variations from person to person.

Further analysis should be performed to achieve solid results, as these represent only preliminary data
about the innovative radar-based detection of heart sounds. This technology could lead to a new way of non-
invasive cardiac monitoring and could be revolutionary in the cardiology settings. Currently, during medical
visits, cardiologists use a stethoscope for heart evaluation; this tool allows them to check for sounds which
may indicate pathological changes in the heart or the heart valves. However, the validity of the assessment
strongly depends on the experience of the physician. An objective, operator-independent and automated
analysis of heart sounds accomplished through radar technology would be very useful; note also that, in this
case, the availability of large datasets for big data analysis would be very useful.

VII. Current Trends

In this section, the most relevant trends in the ongoing research activities on radar systems for vital sign
monitoring are described. In particular, we focus on the development of novel digital platforms useful for
the implementation of signal processing techniques for radar systems and on the research activities related
to the techniques for compensation of random body movements (RBMs).

VII.A. Novel digital platforms usable for digital signal processing in vital sign
detection

The digital platforms usually employed in radar-based estimation of vital signs are central processing units
(CPUs), digital signal processors (DSPs), graphic processing units (GPU), application specific integrated
circuit (ASIC) based processors, and field programmable gate arrays (FPGAs) [90]. The selection of the
device on which specific signal processing techniques are executed determines the speed, cost and power
consumption of their implementation; for instance, DSP boards are usually more costly than FPGAs, which,
in turn, are cheaper than GPUs. Moreover, in choosing a specific platform, the following technical issues
must be carefully taken into account:

a) In medical applications, monitoring and estimating HR and BR continuously and, as much as possible,
in real-time, may represent a fundamental requirement. This occurs, for instance, when the monitoring
of vital parameters of a single person or multiple people need to be accomplished in an hospital room
or in a gym; in all these cases, we need to promptly react whenever the vital parameters of a person
change significantly and in an unexpected manner.
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b) The algorithms employed for estimating vital signs are expected to become more and more refined in
the next few years; it is very likely that their implementation will require hardware platforms able
to efficiently manage an higher computational complexity. The use of well known software languages
or tools, such as MATLAB, Python or LabVIEW, does not usually lead to computationally efficient
implementations. Readers should also keep in mind that, in such conditions, the use of a single
CPU may not allow to achieve high throughput, low latency, low resources utilization, and low power
consumption. For this reason, it is likely that, in the near future, techniques for estimating vital
parameters will be implemented on a dedicated hardware, such as ASICs or FPGAs. If the processing
is performed on an FPGA, hardware description languages, such as Verilog, are employed.

Taking into consideration various platforms or an hybrid combination of two heterogeneous platforms
is particularly important when, given an algorithm running differently on distinct platforms, multiple con-
straints need to be fulfilled. In fact, on the one hand, the reconfigurable nature of an FPGA offers a
multifunction implementation and a very high efficiency in managing the available computing resources. On
the other hand, ASIC-based processing platforms allow to achieve an higher computing speed than other
solutions. Thanks to their cost-efficiency and to the reconfigurability, FPGAs are the platforms preferred by
researchers for rapid prototyping [91]. For this reason, in the near future, the use of FPGAs is expected to
increase steadily in the area of radar systems.

VII.B. Compensation of random body movements

The random body movements (RBMs) of any person affect the estimate of vital signs provided by contact-
less devices. These movements, in fact, modulate the radar waveform both in its amplitude and frequency,
so distorting the received echoes. This may significantly affect the quality of the estimates of vital signs
generated by radar systems. Consequently, RBMs may represent an important obstacle to the adoption of
radar technology in certain scenarios.

Recently, two approaches to motion compensation have been proposed. The first approach is an hardware
RBM compensation acting at RF front-end level and, consequently, limiting the risks of saturating radar
transceivers in the presence of strong echoes [17]. The second one, instead, consists in accomplishing a digital
compensation after demodulation; this can be implemented more easily and lends itself to a more precise
control. For this reason, in the remaining part of this paragraph, we focus on the last approach only.

One of the easiest strategies to extract the (weak) vital sign components from the radar measurements
and removing the distortion due to RBMs is represented by digital filtering. However, this solution is optimal
only when the statistical characteristics of the filter input match prior information on which the design of the
filter is based; unluckily, such characteristics are normally unknown. For this reason, a more robust solution
has been proposed in [92], where an adaptive noise cancellation (ANC) recursive algorithm is employed, in
combination with polynomial fitting, in a CW Doppler radar system. It is important to point out that: a)
polynomial fitting is used to reconstruct the signal components due to RBMs and that must be subtracted
from the overall signal provided by the radar receiver; b) this strategy allows to achieve RBM compensation
when a single radar system is used and does not require additional sensors. The use of a multi-radar system
for cancelling RBMs have been proposed in [16]. In this case, two CW Doppler radar systems have been
put on opposite sides with respect to the body of a given subject; when his/her body was leaning towards
one of the radars, it moved away from the other one [16], so that the distance between each radar and the
body changed in an opposite manner. Based on this consideration, it has been shown that RBMs can be
cancelled by combining the measurements provided by the two radars. The main drawbacks of a multi-radar
approach consists in an increase of system complexity, cost and power consumption and in the need of a
larger room for the experimental setup. A different approach to RBM compensation relies on the use of an
hybrid system including radar and camera [93]. In this case, the information provided by the camera has
been used to compensate for the phase distortion due to body movements. Unluckily, this approach has been
shown to work well when body movements are regular and deterministic.

As its can be easily inferred from our previous analysis, RBM compensation should be considered as an
open research problem since few solutions are available in the technical literature.
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VII.C. Heart rate variability

The HR estimated by means of a radar system represents a measure of the overall number of heartbeats
observed over a given time interval (e.g., over one minute). However, we should not forget that, within
a certain observation interval, the temporal distance between two adjacent heartbeats may not remain
constant. This phenomenon, known as HRV, is related to heart-brain interactions and is regulated by
the autonomic nervous system [94,95]. More specifically, HRV reflects beat-to-beat changes in RR intervals,
which depend on the interrelation between sympathetic and vagal tones. In fact, the sinus node, the principal
heart’s pacemaker, has its own intrinsic activity; however, several external and internal stimuli altering the
autonomic balance influence the final HR [96].

Heart rate changes may originate from a variety of conditions such as mental or physical stress, cardiac
or noncardiac diseases, or pharmacological or invasive treatments; the respiration-related fluctuation of HR,
known as respiratory sinus arrhythmia, is probably the most commonly investigated component of HRV.

Autonomic nervous system imbalance with increased sympathetic and decreased vagal tone has been
proven to be associated with higher risk of cardiac mortality. Therefore, HRV has become an important and
recognized tool in identifying patients at risk of cardiovascular death [97], and can be considered as a indicator
for both physiological conditions and pathological processes, such as depression, diabetic neuropathy and
heart failure. Moreover, it can be exploited to monitor post-surgery and post-infarction patients in order
to assess the risk of ventricular tachyarrhythmias leading to sudden cardiac death. Nowadays, different
methods can be employed to measure HRV; these include a series of simple bedside reflex tests and more
advanced computer-based algorithms for detecting spontaneous RR interval changes. The accomplished
analysis is usually based on long-term (usually 24 hours) Holter ECG recordings or short-term (usually
few minutes) ECG recordings, and aims at avoiding any influence from external stimuli that could affect
autonomic nervous tone [98]. In general, an accurate analysis of HRV may require a long observation interval
in a clinical environment or in home-care scenarios. The assessment of this phenomenon is based on the
evaluation of various time-domain and frequency-domain features (see [77, Tab. 2, Par. 2.6]). Time domain
features aim at quantifying the variability in inter-beat intervals, also called normal to normal (NN) peak
intervals!” and include the standard deviation of normal to normal peak intervals (SDNN)
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here, N is the total number of beats detected in the heart signal, At(Y) is the duration of the time interval
between the (i 4+ 1)-th detected beat and the previous beat, and
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is the average duration of the interval between two consecutive beats. If an estimate of the probability
density function (in the form of a probability mass function, pmf) of the NN peak intervals is available, a

further meaningful feature is represented by the triangular index (TRI), defined as

N
TRI= — 77
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where Py N maqe is the maximum of the above mentioned pmf [94].
Frequency domain features are usually evaluated through FFT processing, and refer to the low frequency
or to the high frequency band. The former accounts for modulations whose period ranges from 7 s to 25 s,

I71f an ECG signal is considered, NN intervals are represented by the time intervals between adjacent peaks resulting from
sinus node depolarizations. In the case of a CW radar system, instead, these intervals can be defined as the temporal distance
between two consecutive maxima of the phase vector 1 available at the output of the bandpass filter shown in Fig. 8.
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whereas the latter band refer to shorter periods. The presence of a significant component in the HF band is
typically a symptom of stress or anxiety.

Radar-based estimation of HRV may represent an appealing and challenging alternative to ECG for
monitoring the physical and mental status of patients. However, as far as we know, this topic is addressed
by few manuscripts in the technical literature [3,12,77,78,99,100]. More specifically, various results about
the use of CW Doppler radars for analysing HRV and drowsiness can be found in [3,99] and [12], respectively.
The other manuscripts, instead, involve FMCW radars. In particular, an FMCW radar operating in the
K-band has been employed in [77] to monitor HRV in eleven patients of different ages during their sleep. The
obtained results evidence that the time and frequency features extracted from the radar signal are correlated
with those evaluated on the basis of the measurements acquired from a reference sensor. The effect of the
coupling between breathing and heartbeat signals on HRV has been investigated in [78]; in this case, an
FMCW radar operating at 122 GHz has been used. Finally, a completely novel approach based on deep
learning (and, in particular, on LSTM neural networks) has been proposed in [100] to accurately estimate
HRV, analysing data collected by a custom-designed, six-port, CW Doppler radar operating at 24 GHz.

VII.D. Vital sign-based authentication

The capability of radars to accurately estimate the vital signs of a person is attractive not only for monitoring
the health status of a patient and detect possible diseases, but also for user identity authentication. Nowadays,
many people are used to log-in in their own smartphones by simply looking at their camera or thanks to their
fingerprint. These approaches can be classified as what you are methods, since they make use of personal
traits (biometrics) that are hard to reproduce or mimic. Within this category, facial recognition represents
a less robust user authentication method with respect to other physiological biometrics, such as fingerprints
or iris scans [101,102|. Authentication methods exploiting radar-based identification of vital signs, instead,
are gaining attention because, unlike other physiological biometric-based approaches (e.g., ECG), they do
not require direct contact between the human body and the sensor. Moreover, an identity authentication
system based on the recognition of breath or heart traits may be sufficiently robust and reliable, since, as
evidenced by various studies, the respiratory personality is unique and is preserved over long periods in adult
humans at rest [103,104]. This can be related to the fact that the physiological structure (e.g., the strength
of the diaphragm and intercostal muscles and volume of the thoracic cavity) and the respiratory motions
associated with chest movements have specific characteristics for each person.

The use of a CW Doppler radar device for heart-based and breathing-based user authentication has been
investigated in [101] and [105-107], respectively. All the proposed methods make use of ML classification
algorithms fed by a set of features extracted from the phase vector (46). More specifically, in [105] three
different sets of features have been used. The most relevant features of the first set are the BR b, (see
Par. V.A.), the breathing depth, the average speed of exhale and the average speed of inhale. The other
two sets of features, instead, aim at monitoring the ratio of inhale and exhale breathing areas, and the
breathing mechanism right after and before the apex (full lung volume). Moreover, it has been shown that
a K-NN algorithm, trained over a dataset consisting of measurements lasting 60 s and acquired over six
different subjects, is able to recognize the breathing pattern of different people with a good classification
score. Better classification results can be obtained by means of a SVM classifier, as shown in [106,107].

Despite these positive results, respiratory-based identity authentication is far from being mature and
requires extensive analysis and investigation. In fact, people need to be authenticated under various mental
or physical states. Therefore, potential variations occurring in the normal breathing pattern of a person
must be taken into account; ignoring them could reduce the identification accuracy, as observed in [107].
For this reason, an heart-based authentication approach has been proposed in [101]. In this case, the heart
signal extracted from the phase vector 1,5 (46) has been segmented in different periods, each encompassing
a small number of cardiac cycles; within each period, a set of eight features has been manually extracted.
The results obtained through an SVM classifier trained on the data acquired over 78 different subjects have
confirmed that an authentication method based on radar-based recognition of cardiac motion may be really
feasible.
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VIII. Some Considerations on Radar Selection and on its Use in
Experimental Campaigns

In this section, we illustrate some important lessons that we have learnt from our experimental work con-
ducted on healthy volunteers in the laboratories of the Department of Engineering "Enzo Ferrari" and the
Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences at the University of Modena
and Reggio Emilia. First, we focus on the essential requirements that radar devices employed for vital signs
monitoring should meet. Then, we provide some guidelines for developing an experimental setup. Finally,
we discuss the difficulties encountered in extracting HR from radar measurements and comment on how to
assess estimation accuracy.

VIII.A. Fundamental requirements of radar devices

Nowadays, a number of compact radar devices, not explicitly developed for medical applications and op-
erating at mmwave, are available on the market at various prices. A radar system employed for vital sign
monitoring needs to satisfy various technical requirements, that are influenced by the environment in which
measurements are acquired [90]. These requirements concern: a) the maximum distance of the radar from
the body of the subject under test; b) its operating frequency; c) its displacement resolution; d) its angu-
lar resolution. Different values of the parameters mentioned above may have a substantial impact on the
achievable accuracy, as illustrated below.

The mazimum distance at which the radar should operate depends on the type of application. If long-
range detection is required, an high transmission power and/or highly directive antennas should be employed
[108]. If FMCW or SFCW radars are adopted, the maximum measurable distance R4, can be evaluated as

c

Rmam == @N, (78)

where c is the speed of light, B is the bandwidth of the radiated signal and N is the overall number of samples
acquired in a chirp interval (frequency sweep) by an FMCW (SFCW) radar. It is also worth mentioning
that the availability of an RX antenna array allows to increase the maximum detectable distance. In fact,
beamforming techniques can be used to constructively combine the signals made available by distinct RX
antennas, so improving the SNR of the resulting signal.

The operating frequency fo of the radar influences the phase resolution in a MIMO configuration (see eq.
(59)) and the penetration depth of the radiated EM waves through human tissues [17]. Readers should keep
in mind that: a) microwave signals are partially reflected and partially absorbed by the human skin [109];
b) the attenuation of the reflected EM field increases with its frequency; c¢) the penetration through human
skin, instead, decreases with frequency (for instance, the skin penetration depth is 2.7 mm at 10 GHz and
just 0.5 mm at 60 GHz [110,111]). Generally speaking, the wave reflection due to body tissues at higher
frequencies is stronger than that at lower frequencies. For these reason, it is reasonable to assume that, if
a mmwave radar is used, the BR and HR estimation is based on chest and skin displacement due to the
cardio-pulmonary activity.

The displacement resolution can be defined as the minimum measurable displacement over two consecutive
frames transmitted by the considered radar device (such frames are separated by a time interval lasting Ty
s; see Par. IV.B.). Based on (59), the displacement ARy41 j experienced by a point target between the k-th
frame and the subsequent frame (i.e., the (k + 1)-th frame) can be expressed as

A
ARpy1 = EAwk+1,k7 (79)

where A1 i is the phase variation observed in the electromagnetic echo. If we assume that the maximum
chest displacement due to breathing is d, ps (see Par. IIL.B.), the inequality

ARpy1 i S 20y M

To — Tsr

should be satisfied to achieve a sufficient resolution in detecting chest movements. The last inequality can
be rewritten as

(80)

T
Ty < %ﬂRkJrl,k (81)
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Figure 16: Photo of: a) the IWRxx43 radar front end; b) the Position2Go module.

or, equivalently, as
Ter A

2001 EAwkH,ka (82)

Ty <

thanks to (79). If we assume that the maximum displacement of the chest is about d; pr =~ 4\ (where \ = 4
mm, if the employed radar system operates at 77 GHz) and keep in mind that'® the inequality Avy41 5 < 27
must be satisfied to avoid any ambiguity, from (82) it is easily inferred that

T
T, < ~BR

N T (83)

so that the selected frame interval must be substantially smaller than the breathing period. Similar consid-
erations can be formulated for the displacement due to heart activity. Then, achieving sufficient accuracy in
the estimation of BR and HR requires the selection of a frame rate 1/Tj large enough with respect to the
values of these parameters.

Let us focus now on the angular resolution. This parameter plays an important role when a MIMO radar
is employed to detect the vital signs of multiple people, characterized by different angular coordinates. The
achievable angular resolution is strictly related to the number of virtual channels Ny made available by the
employed radar system. If this system is endowed with a single ULA characterized by Ny equally spaced
channels, the angular resolution Af can be evaluated as

B A 180°
~ 2d(Ny —1) 7w

N (84)

where d is the distance between two adjacent virtual elements; for instance, if d = A/4, the resolution is
equal to 2/(Ny — 1) rad.

In our measurement campaigns, two colocated FMCW radars, namely the IWRxx43 TT radar [112] and
the Position2go (P2G) FMCW radar'® [113| have been employed; the former device is manufactured by
Texas Instrument, the latter one by Infineon. The front-end of these devices is shown in Fig. 16. It is
important to note that in our application Tr = 60 s, i.e., the duration of each frame is equal to that of the
whole observation interval and the chirp duration Ty = T + Tg is characterised by a long reset time, since
T >T.

The TI radar operates at the frequency fo = 77 GHz and is endowed with an array composed by Np = 3
(Nr = 4) TX (RX) antennas (see Fig. 16-a)); therefore, it makes available a virtual array consisting of
Ny = 3-4 = 12 (virtual) antenna elements (see (33)); these elements form two different horizontal ULAs
composed by Ngpyra, = 8 and Ngyra, = 4 virtual channels; therefore, only Nypyra = 2 aligned channels
are available along the vertical direction. The horizontal (i.e., azimuthal) resolution and the vertical (i.e.,

18 This expression is valid if the arctan2(-) operator is employed, as illustrated in Par. V.A..
Detailed descriptions of these devices are available at https://www.ti.com/tool/IWR1843B00ST and at https://www.
infineon.com/cms/en/product/evaluation-boards/demo-position2go/, respectively.
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elevation) resolution are Af ~ 16.6° and A¢ = 45°, respectively (see eq. (84)). In our work, the following
values of the radar parameters have been selected: a) frequency slope u = 86 MHz/us; b) overall number of
samples per chirp N = 256; ¢) ADC sampling frequency fs =9 MHz; d) chirp duration T ~ 60 msec. This
choices entail that: 1) the bandwidth of the radiated signal is B = pT ~ 2.45 GHz, since the ramp up time
is T = N/fs = 18.4 us; 2) the maximum measurable distance is Ry,q, =~ 15.67 m (see (78)).

The P2G radar, instead, operates at the frequency fo = 24 GHz and is equipped with an array composed
by Nr = 1 and N = 2 transmit and receive antennas (see Fig. 16-b)). Therefore, a virtual array of
Ny =12 = 2 virtual elements (see (33)), forming an horizontal ULA, is available. In our work, the
following values of the radar parameters have been selected: a) u = 0.78 MHz/ms; b) overall number of
samples per chirp N = 256; ¢) ADC sampling frequency fs; = 1 MHz; d) chirp duration interval T ~ 60
msec. In this case, the ramp up time is T' = N/ f; = 256 us, the bandwidth of the radiated signal is B = 200
MHz and the maximum measurable distance is Ry,q, = 192 m. Therefore, this radar device can be employed
for long-range applications, but achieves a lower range resolution than the TT IWR1843 radar.

VIII.B. Data acquisition

The typical differences between the datasets analysed in the technical literature about radar-based monitoring
of vital signs concern (see Table 5): a) the overall number of subjects involved in the data acquisition
procedure; b) the position of the subjects with respect to the employed radar (e.g., sitting, lying down, etc.);
¢) the physical conditions of the involved subjects (e.g., in a rest condition, under strain, sleeping, etc.).

The overall number of subjects ranges from few units to a few dozens. Readers should keep in mind
that the analysis of deterministic and ML methods do not usually require a large number of measurements,
whereas that of DL techniques needs large and heterogeneous datasets. For instance, the measurements
analysed in [114] have been acquired from ten people (more precisely, six males and four females), whose
distance from the employed radar system ranged from 20 to 80 cm. On the contrary, a much larger dataset
was needed to train and test an LSTM network in [88]. In the last case, the overall acquisition time of the
whole dataset is equal to 18900 secs (corresponding to approximately five hours); moreover, the acquired
measurements refer to 30 different subjects.

The heterogeneity of the acquired dataset can be improved by observing the considered subjects in
different positions (e.g., in front of the radar with the chest facing towards the antennas, or on its left/right
side), but always at a fixed distance from the employed radar system, [22]. Subjects can also be placed at
different distances from radar systems, but, in this case, their angular coordinates should not change [114,
Sect. III].

The measurements analysed in most of the technical literature refer to people breathing at rest. However,
especially in last years, contactless systems based on radar technology have been employed for HR and BR
monitoring of subjects in different breathing conditions. For instance, the measurements of the dataset
employed in [89] have been acquired in apnea, during the Valsalva maneuver?® and in two different positions
(tilt-up and tilt-down).

The selection of proper reference sensors represents another important technical issue to be considered
before starting a measurement campaign. In fact, data collected from reference sensors are always required
for the validation of deterministic algorithms [115], [51], or for training learning-based methods [70]. In
the measurement campaigns described in the technical literature, various medical instruments, like electro-
cardiographs and wearable sensors, have been used. Wearable sensors include elastic bands with built-in
electrodes [116], micro-electro-mechanical-systems (MEMS), pulse-oximeters or Bragg-gratings sensors [117].
Most of the commercially available wearable sensors are easy to use, since they provide excellent user inter-
faces and application programming interfaces (APIs) for Python or MATLAB programming environments.
However, an important issue to be taken into consideration before selecting a specific reference sensor is the
possibility of accurately synchronizing the timing of its measurements with that of the data provided by the
employed radar device.

The experimental setup adopted in our measurement campaigns that are currently being accomplished
at the Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences at the University of
Modena and Reggio Emilia (Hospital of Modena) on healthy volunteers is shown in Fig. 17. Our two radar

20The Valsava maneuver is performed by moderately forceful attempted exhalation against a closed airway; this can be
practically implemented by expiring against a closed glottis.
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Figure 17: Photo of the setup employed in our measurement campaigns; both the IWRxx43 and the Posi-
tion2Go radars are used.

sensors are mounted on a wooden bar, which, in turn, is put on a tripod. Moreover, their antenna arrays
are oriented towards the chest of each subject, always lying down a bed, whose upper part is slightly tilted.
The typical vertical (horizontal) distance dj (d,) between the radars (the tripod) and the subject under
test is approximately equal to 75 cm (50 cm); our tripod allows to move up or down the radars, so that
the distance between them and the subject can be modified. In our measurements, different positions are
being considered for the subject under test. In practice, he/she is sitting or lying down on the bed with
different tilting angles; in the first case, his/her movements are very small and this makes the estimation
of HR and BR potentially very accurate, whereas, in the second one, the tension of his/her muscles may
affect the estimation of vital sign parameters. In our setup, the reference sensor is the Shimmer3 device
manufactured by Shimmer [118]. This device, controlled by means of a simple user interface, is able to send
data over a Bluetooth connection and is equipped with five electrodes (right hand side mid-axillary, left hand
side mid-axillary, right leg, left leg, V1; see [118, p. 6, Fig. 3-2]), that need to be placed in specific positions
of the chest of the subject under test. In our acquisitions, the reference ECG signal is read from the voltage
difference between the left leg and right hand side mid-axillary (LL-RA) electrodes. The breathing signal,
instead, is generated by measuring the impedance between these two electrodes; in practice, these electrodes
are used to inject a weak high frequency (10 KHz) alternating current in the chest tissues and the voltage
variations due to chest displacement are measured. Then, an estimate of the chest impedance variations is
obtained by computing the ratio between the measured voltage and the injected current; finally, breathing
dynamics are inferred from such variations (further details about this method can be found in [119]).
Thanks to the availability of a proper API, Shimmer3 measurements can be easily synchronized in
time with those acquired through the IWRxx43 radar or the P2G radar, so that data acquisition can be
accomplished in real time. In fact, the Shimmer3 device offers the possibility of sharing the time reference
(namely, the CPU timestamp) with our radar devices; this has allowed us to synchronise the reference and the
probing signals with great accuracy. As already mentioned above, in our experiment, each data acquisition
refers to an observation interval lasting Tp = 60 s. However, since the radars and the reference sensor are
characterized by different frame rates, the samples of each of the two signals (namely, the ECG and breathing
signals) provided by the Shimmer3 sensor are stored in a sequence of vectors, each having size N, g = 15317,
whereas the received signal samples provided by the IWRxx43 (P2G) radar are stored in a 3D matrix of size
N x Ny x Nepp = 256 x 4 x 997 (N x Ny X Ngpag = 256 x 2 x 933). It is also worth mentioning that,
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in general, if the construction of a dataset requires that acquisitions originating from the given reference
sensor and those coming from the employed radar device have the same length, a subsampling or upsampling
procedure can be adopted for the reference or the radar signals.

Independently of the nature of the algorithm to be tested on the acquired measurements, it is highly
recommended to build up a reasonably large dataset, since the chest dynamics of distinct subjects can exhibit
very different characteristics. Moreover, in our measurement campaigns, in order to guarantee a sufficient
variability in the generated dataset, the subjects under test are being observed in different conditions. In
practice, the following conditions are being considered in our data acquisitions: a) breathing normally, at
rest; b) during inspiratory (expiratory) apnoea (for as long as he/she could, ending the acquisition with
normal breathing); ¢) hyperventilating (for as long as he/she could); d) during the Valsalva maneuver; e)
after making an effort. In the last case, the subject under test was required to move up a step and down
from it for at least one minute).

VIII.C. Heart rate estimation

Extracting HR from radar measurements represents a substantially more challenging task than BR estima-
tion. In this paragraph we apply the estimation methods described in Par. 1) to the measurements acquired
through our two FMCW radar systems described in Par. VIII.A.. Our objective is estimating the BR and
HR of a single subject lying down on a bed at a distance R,.y = d, = 0.75 cm from the radar sensor; in
doing so, the experimental setup described in Par. VIII.B. and shown in Fig. 17 is adopted. The signal
samples acquired through the four (two) VAs of the IWRxx43 (P2G) radar in the k-th chirp interval, with
k=0,1,...,Nc.x —1 and x = TI (P2G) are processed by a beamforming algorithm [37]; this allows to con-
structively combine the echoes impinging on the RX array along a specific direction and to produce a single
N-th dimensional column vector xj; this vector feeds the range estimation and bin selection block shown in
Fig. 9. The processing accomplished by the last block is based on (60) (a tape-meter is used to compute the
reference range Riof). Moreover, this block produces the couple (I [k], ¢[k]), consisting of the bin index [ [k]
and the phase estimate @Z[k], for any k. It is worth mentioning that: a) that an estimate }?[k] of the target
range is evaluated as

Rk) = 1 [K] Ko, (85)
where R
[k = arg max [X[L K2, (36)
U <U<lpm

X[l, k] is defined by (60), I, = 21, lyy = 33, Ky, = 32.6 (I, = 2, Iy = 3, Ky = 2.6) for z =TI (z =P2G);
b) Ny =512 and R,, = 0.65 m, Ry; = 1 m have been selected for both radar systems. Note that R[k] (85)
does not necessary coincide with the reference range R,.s, since:

a) Some errors are unavoidably introduced in the range measurement procedure. In fact, it not easy to
identify exactly the point of the chest on which the beam radiated by the employed radar is focused,
since the antennas of both radar devices are not highly directive.

b) The range estimate Rl[k1] computed in the k;-th chirp interval may be slightly different®! from the
estimate R[ks| obtained in the ko-th chirp interval, with k; # ko.

The elements of the unwrapped phase vector

12; £ [&[0]71&[1]’ ) ¢[Nc,x - 1]]T7 (87)

computed on the basis of the measurements that have been acquired through the TI (P2G) radar in a
single observation interval, are represented by the red (green) line in Fig. 18 (note that in order to ease
the interpretation of these results, the elements of the two phase vectors have been normalised??); in this
case, AD followed by DC offset removal and phase unwrapping is employed. The results illustrated in Fig.

2INote that, in principle, information about chest displacement are contained in the sequence {R[0], R[1], ..., R[Ncx — 1]},
but, in general, its elements are too noisy for a reliable detection of vital signs.

22 A min-maz normalization has been applied to the vector 113 (87); the k-th element @[k} of the normalised phase vector is
evaluated as ¥[k] = (b[k] — min(e)))/(max(eh) — min(ep)), with k =0, 1, ..., Nex — 1.
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Figure 18: Representation of the breath signal acquired through our reference sensor (blue line), and of
the unwrapped phase extracted from the associated IWRxx43 radar measurement (red line) and P2G radar
measurement (green line).
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Figure 19: Representation of the amplitude spectrum of the breath signal acquired through our reference
sensor (blue line), and of the unwrapped phases extracted from the associated IWRxx43 radar measurement
(red line) and P2G radar measurement (green line).
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18 deserve the following comments: a) the two radar signals represent the dynamics of the chest due to
both breathing and cardiac activities; b) the phase trajectories computed on the basis of the measurements
provided by the two radars overlap, even if these devices operate at different frequencies, and exhibit similar
evolutions as the signal provided by our reference sensor (Shimmer3; see the blue line appearing in Fig. 18).
The amplitude spectrum generated by applying an FFT of order Nj = N.g = 15317 to each of the signals
represented in Fig. 18 is shown in Fig. 19. These results evidence that: a) the spectral peak associated with
breathing (in correspondence of 21 acts/min) is much larger than the one related to heart beat (visible at
approximately 61 acts/min); b) the second order harmonic of breathing is clearly visible at approximately
21 x 2 = 42 acts/min, whereas its third harmonic is expected at 21 x 3 = 63 acts/min. The heart signal
can be extracted from the unwrapped phase through band-pass filtering [21]. In this case, a fourth order
band-pass Butterworth is used to select the spectral components whose frequencies belong to the interval
[0.91 Hz, 3 Hz]; its output is shown, for both radars, in Fig. 20 (the ECG signal generated by the reference
sensor is also represented). Note that, in the considered observation interval, the peak-to-peak period of
the radar waveforms is comparable to the NN peak interval characterizing the ECG signal. However, the
heart and the ECG signal are not perfectly aligned; this suggests that the heart frequency, i.e. the distance
between two consecutive peaks, is not completely stable during the observation time. This is confirmed by
the amplitude spectrum of the bandpass filter output generated in response to the two radar signals; the
resulting two spectra are represented in Fig. 21, where the amplitude spectrum of the response of the same
band-pass filter to the breathing signal acquired by the reference sensor is also shown. Note that, in all these
amplitude spectra, three spectral peaks are visible between 60 and 70 acts/min, i.e. in the frequency range
in which the spectral contribution due to heartbeat is expected. This problem originates from the fact that:
a) the third order harmonic of the breathing signal is close to the fundamental frequency of the heart beat,
so that the spectral contribution of the former signal may partially overlap with that of the latter one; b)
as suggested by the time-domain signals shown in Fig. 18, the HR changes during our observation interval
(lasting 60 s) and this entails some spectral broadening. In principle, the last phenomenon can be mitigated
by reducing the duration of the observation interval over which spectra are computed; however, an excessive
shortening of this interval may lead to an inaccurate estimation of the frequency components due to heart
activity.

Finally, it is worth noting that the use of a band-pass filter represents a conceptually simple solution to
the problem of extracting the HR components from the phase signal provided by a radar device. Actually,
this filter needs to be adapted to the specific conditions of the patient under test. For instance, if his/her BR
increases unexpectedly (for instance, in the case of hyperventilation), the spectral components associated
with the breathing activity may not be cancelled by this filter and may overlap with the components due to
heart beat.

VIII.D. Estimation accuracy

Let us suppose that an N-dimensional set D 2 {(b,, h,, b, hy); r = 0,1,..., N — 1}, where b, and h,
denote the estimates of the BR b, and of HR h,., respectively, is available after that all our radar-based
measurements have been processed. Then, the accuracy achieved in vital sign estimation can be assessed by
evaluating the mean absolute error (MAE)

1 N-1
Eme = 5 D 18 [i] — @l (88)
i=0
the peak absolute error (PAE)
éz £ arg  1mmax ‘jr[l] - wr[i]la (89)
0<i<N—1
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Figure 20: Representation of the ECG signal acquired through our reference sensor (blue line), of the heart
signal extracted from the associated IWRxx43 radar measurement (red line) and P2G radar measurement
(green line).
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Figure 21: Representation of the amplitude spectrum of the heart signal acquired through our reference
sensor (blue line), and of the unwrapped phase extracted from the associated IWRxx43 radar measurement
(red line) and P2G radar measurement (green line).
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Table 6: Root mean square error (£;), peak absolute error (¢,), mean absolute error (&, ), correlation of

variation (7,) and Pearson coefficient (p,) referring to the BR (HR) estimates {b,} ({h,}) computed on the
basis of our data set (the measurement unit, m.u., is specified for each parameter).

Errors m.u. TI Radar P2G Radar
(&v, &n) acts/ min  (0.75, 1.90) (1.15, 1.70)
(&v, én) acts/min  (2.80, 4.80) (5.50, 4.00)
(Emp, Emn) acts/min  (0.45, 1.60) (0.60, 1.40)
(> 1) % (4.40, 3.24)  (6.80, 2.90)
(P, Pn) %o (90, 82) (84, 85)

where = b (x = h) if BR (HR) is considered. Other relevant parameters are represented by the correlation
of variation (CV)

g
Yol ——t (91)
RS ST
and the Pearson coefficient
SN - ) SN (i) - 7))
VEN @i - 2002 SN (@l — 202

; (92)

A
Pz =

where

(1] (94)

x="b (x =h) if BR (HR) is considered and z,[i] represents the BR (HR) provided by the adopted reference
sensor. Note that value of the parameter p, (92) falls in the interval [—1, 1]; a positive (negative) unitary
value is found when the two available datasets (namely, the datasets generated through the employed radar
device and reference sensor) exhibit a positive (negative) correlation, whereas a null value means that they
are completely uncorrelated.

Typical values of the MAE, the RMSE, the CV and the Pearson coefficient evaluated in radar-based
monitoring of vital signs can be found in [20,51,77]. In those manuscripts, a reasonable estimation accuracy
is achieved if: a) the MAE and RMSE for BR (HR) estimation are in the order of some acts (beats) per
minute; b) the CV is close to 5% for both BR and HR estimation; c¢) the Pearson coeflicient is greater than
70%. It is also important to remember that estimation accuracy can be improved through the development of
a proper measurement setup; for instance, a small laser device can be employed to verify that the employed
radar device is really pointing toward the center of the chest of the patient under test. Another relevant
technical issue to be taken into consideration is represented, as already mentioned in the previous paragraph,
by the availability of an accurate synchronization between the radar and the reference sensor; unluckily, if
the radar and reference devices have independent local clocks, full synchronization cannot be achieved and
an accurate evaluation of the parameters defined above is not possible.

Let us analyse now some results obtained on the basis of a limited set of measurements acquired in our
experimental campaigns through the IWRxx43 and P2G FMCW radars, and the Shimmer3 reference sensor.
We assume that:

a) The employed setup is the one described in Par. VIIL.B..
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b) All our measurements have been acquired from 13 young subjects lying down on a bed and each of
them refer to an observation interval lasting 60 s.

¢) The HR and BR estimates have been computed by restoring to the processing chain described in Fig.
8 and in Par. 1).

d) The size of the dataset Dry (Dpag) referring to the IWRxx43 (P2G) radar is N = 45 (on the average,
three distinct measurements have been acquired from each subject).

The values of MAE, PAE, RMSE and CV evaluated on the basis of the available datasets are listed in
Table 6, whereas the pairs {(b,, b,)} ({(hr, h,)}) are represented on a Cartesian plane in Fig. 22 (Fig. 23)
for both the IWRxx43 and P2G FMCW radars. Moreover, in Figs. 22 and 23, the lines generated through
a linear fitting of the available pairs are also shown. These results deserve the following comments:

a) The estimates of BR and HR are reasonably good;

b) The radar based-estimates are highly correlated with the measurements provided by our reference
sensor.

¢) The IWRxx43 radar achieves a better accuracy on BR estimation than the P2G radar; on the other
hand, the latter device outperforms the former one in HR estimation, since it operate at a lower
frequency.

d) The accuracy of the HR estimates is worse than those of BR estimates; note also the RMSEs and peak
errors of HR are in the order of few acts/min.

As far as the last issue is concerned, it is important to keep in mind that: a) the HR frequency may
overlap with (or be very close to) the third order harmonic of breath; b) the displacement due to heart is
very small and may be not fully detected by our radar devices, if they are not accurately oriented towards
the chest of the subject under test.

IX. Conclusions

Nowadays, a significant body of literature is available in the field of radar-based monitoring of vital signs.
This manuscript has offered a broad introduction to this field with the aim of explaining some fundamental
concepts, technologies, methods and results to a wide audience. We really hope that our overview of the
available radar technologies, of the employed signal processing methods and of the specific applications being
considered in medicine will stimulate the interest in radar-based monitoring of vital signs. We believe that
radar technology is now mature enough for being taken into account in the medical field. However, there is
still ample room for the development of accurate and computationally efficient estimation techniques, and
for their implementation on commercial hardware platforms. Readers should also keep in mind that most
of the results available in the technical literature refer to a very limited human population and, usually, to
healthy subjects. In fact, studies about the monitoring of real patients in realistic medical scenarios are still
scarce. Despite this, it has become clear that radar systems can represent a viable alternative to wearable
sensors or the only possible option in some critical scenarios, where contactless monitoring is absolutely
required. Furthermore, the technological improvements and the advances in processing techniques achieved
in recent years have made it possible to overcome various limitations. Therefore, thanks to their capability of
continuous and contactless detection, radars may revolutionise patient monitoring in hospitals and in other
healthcare facilities in the near future.
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