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Abstract  

Omicron is a covid family virus of COVID-19 and Delta variant. The Omicron (B.1.1.529.) 
variant of COVID-19 is an extraordinary flow of infections globally and deadly, affecting the 
masses. The B.1.1.529 variant was first identified to WHO on November 24, 2021, from South 
Africa. In South Africa, the epidemiological condition has been determined by three different 
peaks in reported cases, the most recent of which was dominated by the Delta variant. Infections 
have risen sharply, corresponding with the discovery of the B.1.1.529 variant. The variant 
contains many mutations, some of which are potentially harmful. Preliminary research suggests 
that this variant has a higher risk of reinfection than other variants of concern. Nowadays, many 
scientists worldwide focus on problems that either improve existing methods used in DNA 
computing or suggest a new manner with a DNA computing approach. Many researchers are 
working on analyzing several aspects of Omicron from diverse fields. We have developed 
a frequency representation of Omicron to visualize its properties in the spectral domain. 

Introduction  

The WHO declared Omicron (B.1.1.529) as a novel severe acute respiratory syndrome corona 
virus 2 (SARS-CoV-2) strain of concern on November 26, 2021. This variation has an extremely 
high number of mutations, 32, on the spike (S) protein, the principal antigenic target of 
antibodies generated by viruses or immunization. The deadly Delta variation contains only 5 S 
protein mutations, posing a significant potential global risk and spreading internationally. As a 
result, the "panic button" has been pressed in multiple cases worldwide, and many nations have 
instituted travel restrictions to avoid the rapid spread of the Omicron strain. 

In signal analysis theory, time-series data is represented in the time domain. When data features 
are not visible in the time domain, we transform the data to the frequency domain. Certain 
features that are not visible in the time domain become visible in the frequency domain. The 
Fourier transform is a popular tool for representing data in the frequency domain. 

A DNA is a string of characters composed of alphabets from the set {A, T, C, G} with the only 
primitive operations of matching and counting performed. This limitation prevents rigorous 
mathematical operations and transformations from applying to any genomic data. 

By mapping strings to complex numbers, we present a computational model of DNA. This model 
has enabled us to perform any mathematical transformation operations. We presented frequency 
domain representations of Omicron genomes built with this computational model of DNA.  



The rest of the paper is organized as follows. Next section provides an over view of the three 
types of mappings of DNA to the fields of real/complex numbers. Following this, methodology 
is described which provides a mapping and a way to use discrete Fourier transform to get 
frequency representation of a DNA sequence. After this results have been shown and discussed. 

Literature Review 

The representation of biomolecular sequences as strings of characters makes frequency-domain 
analysis difficult. If each of these characters is given a numerical value, the resulting numerical 
sequences are easily processed digital signal processing techniques. 

The conversion of a DNA string of characters into numerical form is required for power spectral 
density (PSD) estimation [1]. To achieve this goal, several researchers have defined modeling 
methodologies. Existing works are categorized into three types with respect to mappings listed 
below. 

1. Mapping to binary sequences 
2. Mapping to field of real numbers 
3. Mapping to field of complex numbers 

1. Mapping to binary sequences 

The Voss[2] representation is a widely used technique that generates xa[n], xt[n], xc[n], and xg[n] 
which are four binary indicator sequences, each of which takes a value of 1 or 0 at position n, 
depending on whether the associated character appears or not. 

xc[n] +  xg[n] + xa[n] + xt[n]= 1 for everyone n. 

As these indicator sequences are redundant, they demonstrate redundancies. 

In [3], a new computational and visual technique for analyzing biomolecular sequences has been 
demonstrated. D Anastassiou et al. show that providing suitable (complex, in general) numerical 
values to each character, for digital signal processing of biomolecular sequences, gives a set of 
innovative and helpful numerical sequences[4]. 

Assuming the letters 'A,' 'T,' 'C,' and 'G' are all mapped to numbers a, t, c and g, in an N-length 
deoxyribonucleic acid (DNA) sequence. This results into the following numerical sequence. 

x[n] =  a.uA[n] + t.uT[n] + c.uC[n] + g.uG[n]  n = 0, 1, 2, … N-1 

where uA[n], uT[n], uC[n] and uG[n] are  binary indicator sequences. This is dependent on whether 

the relevant character is present at position n, takes the value of 1 or 0[6]. The above equation is 
subject to the following condition. 

uA[n] + uT[n] + uC[n] + uG[n] = 1   for all n. 

The most dominant signal in coding sections of genomic sequences is a three-base periodicity 
[5]. Our goal is to determine the periodicity using Fourier techniques. Therefore, we are working 
on developing a method to recognize coding areas in DNA. 



A nucleotide sequence of N nucleotides can be represented referred to this as a symbolic string, 

{xi, i = 1, 2, . . . , N}, here xi can be any of the four characters G, C, A or T, and indicates that a 
certain nucleotide is present in location i. A mapping is defined below. 

ܷఈሺݔ௜ሻ ൌ ቄ1 if	ݔ௜ ൌ 1
0 otherwise

 

Using the operators UG, UC, UA and UT, on a strand of DNA in this order generates four binary 
sequences shown below in Table 1. 

Table 1. Application of binary operators on DNA string generates four binary operators. 

Sequence C C A T A T G A A T C T 
Apply UA 0 0 1 0 1 0 0 1 1 0 0 0 
Apply UT 0 0 0 1 0 1 0 0 0 1 0 1 
Apply UG 0 0 0 0 0 0 1 0 0 0 0 0 
Apply Uc 1 1 0 0 0 0 0 0 0 0 1 0 

 

2. Mapping to the field of real numbers 

Fixed mapping and mapping depending based on some sort of optimality criterion are the two 
types of numerical mapping. Binary integer and complex representations are examples of fixed 
mappings. In [6]a real-number mapping rule is shown in Figure 1. 

 

 

 

Figure 1. Bijective mapping of nucleotides onto real numbers. 

A generalized form of this mapping f for two real numbers α and β is as follows. 

f: A → -α 

f: G → -β 

f: C → β 

f: T → α 

2. Mapping to the field of complex numbers 

A generalized form of this mapping f is as follows. 

f: {A, T, G, C} → {1, -1, i, -i} 

Specifications of several forms of mapping f are listed in Table 2. 

A = ‐1.5                G = ‐0.5  C = 0.5    T = 1.5     



Table 2. Complex mappings for DNA. 

Name of Method  A T C G Statements /Remarks 
K- Quaternary Code-III +1 +i -i -1 Rao and Shepherd 

K-Quaternary Code-I +1 +i -1 -i Kwan et al. 

Quaternary Code -1 +i -i +1 Manidipa Roy et al. 

 

K-Quaternary Code-I was the best appealing, according to the primary findings of Kwan et. 
al.[7], however, Rao and Shepherd [8]claimed the “K-Quaternary Code-III” be more acceptable. 

To provide projected exons with location accuracy, the Manidipa Roy[9]et al. developed a 
mapping rule (given in Table 2) in which the Y-axis of the K-Quaternary Code-III has been 
reversed, assigning numerical values “a = -1”, “c = -i”, “g = 1”, and “t = +i” to the nucleotide 
sequence. The complex mapping was proven to be one of the most successful mapping rules. 

Cheever et al. [10]were the first to map DNA characters into the complex number plane, i.e., A 
to "1", T  to" െ 1", G to "݅" (where ݅ ൌ 	√െ1) and C to " െ ݅". They made an attempt to locate 
similarities between two sequences by comparing and contrasting their complex sequences using 
this mapping.  

Fixed mapping and mapping depending based on some sort of optimality criterion are the two 
types of numerical mapping that are found. Binary integer and complex representations are 
examples of fixed mappings. Mapping rule is based on the complex mapping's complement 
attribute. 

 

Methodology 

The methodology consists of two steps: a computational model of DNA using quadrature phase-
shift keying and discrete Fourier transform (DFT) computation.  

Computational Model of DNA 

There are four nucleotides, or bases, in DNA: adenine (A), cytosine (C), guanine (G), and 
thymine (T). These bases form specific pairs (A with T and G with C). From this, we construct 
the following rules. 

1. A is orthogonal to G and C 
2. T is orthogonal to G and C 
3. G is orthogonal to A and T 
4. C is orthogonal to A and T 

All the bases have approximately equal masses.  

These rules are shown graphically in Figure 2.  



 

Figure 2. Graphical representation of a computational model of DNA using quadrature phase-shift keying (QPSK). 

Anticlockwise angles of several line segments (shown in Figure 2) are given in Table 3. 

Table 3. Mapping of nucleotides to complex numbers (quadrature phase-shift keying). 

Line segment Angle Mapping Nucleotide 
XOA π/4 e jπ/4 A 

XOC 3 π/4 e j3π/4 C 

XOT 5 π/4 e j5π/4 T 

XOG 7 π/4 e j7π/4 G 

 

Frequency transformation 

Let g be a genome. Using mapping given in Table 3, we get a discrete sequence, say f(n). The 

discrete Fourier transform F(k) of f(n) is defined below. 

ሺ݇ሻܨ  ൌ ∑ ݂ሺ݊ሻ. ݁ି௝ଶగ௡௞/ேேିଵ
௡ୀ଴       (1) 

Where N is the length of the genome g and k = 0, 1, 2, …, N-1, the F(k) is the discrete samples at 
frequency index k. The power spectrum S(k) of the F(k) is defined as | F(k)| where |x| represents 
the absolute value of a complex number x. Therefore, S(k) is computed as: 

 ܵሺ݇ሻ ൌ ห∑ ݂ሺ݊ሻ. ݁ି௝ଶగ௡௞/ேேିଵ
௡ୀ଴ ห      (2) 

For k = 0, 1, 2, …, N-1. The index k is mapped to the normalized frequency by fi = k/N. 

Results 

Data: We computed power spectra S(k) of Omicron and Corona genome sequences (accession 
numbers are given in Table 4, respectively). 



For the computation of S(k), we have padded signals with zeros so that the total length of the 
sequence becomes 32768 (215). This zero-padding enabled us to use the fast Fourier transform 
algorithm to compute S(k) quickly for the computation of discrete Fourier transform. Zeros 
padding does not affect the resolution of S(k); however, it produces the effect of averaging. 

From frequency representations (shown in Figure 3) of Omicron genomes listed in Table 4, this is 
obvious that certain dominant modes of frequencies are observed (Figure 5). The threshold was 
set to 0.2 for extraction of dominant modes.  

From frequency representations (shown in Figure 4) of Corona genomes listed in Table 4, this is 
obvious that certain dominant modes of frequencies are observed (shown in Figure 6 and Figure 7) 
with thresholds 0.2 and 0.4 (respectively) for extraction of dominant modes.  

Table 4. Accession numbers and corresponding lengths of genomes. 

Omicron Covid19 
Accession No. Length Accession No. Length
OM424289.1 29752 MN970004.1 290 
OM424290.1 29752 OL535405.1 29900 
OM424291.1 29752 OU967438.1 29900 
OM319696.1 29779 OL477009.1 675 
OM341396.1 3813 OL671531.1 676 
OM311576.1 29731 MT503048.1 676 

 

 

 



 

Figure 3. Frequency representations of genomes are listed in Table 1. 
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Figure 4. Frequency representations of genomes are listed in Table 2. 
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Figure 5. Dominant modes in frequency plots are shown in Fig. 1, with a threshold 0.2. 
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Figure 6. Dominant modes in Frequency plots are shown in Fig. 2, with a threshold 0.2 
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Figure 7. Dominant modes in Frequency plots are shown in Fig. 2 with a threshold 0.4. 

 

Conclusions  

We have constructed a computational model for DNA based on complex mapping of nucleotides. 
It is also demonstrated how this computational model is helpful for frequency representation of 
genome using digital signal processing-based analysis.  

The genome of Omicron is found to have a highly dominant frequency band with a central 
frequency of 0.1667 (normalized) and bandwidth of 0.0002.It is observed that corona genome 
has more dominant modes in number than Omicron has, and both the genomes have some modes 
in common. 
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