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 16 

1 Details of diffusion model  17 

1.1 Basic diffusion 18 

Let 𝑋଴  be a sample from the data distribution 𝑞(𝑋଴) , and defines a sequence of 19 

increasingly noisy versions of 𝑋  which we call the latent variables 𝑋୲  ( 𝑡 = 1 … 𝑇 ) 20 

through the forward diffusion process, described by 21 

𝑞(𝑋௧|𝑋௧ିଵ) = 𝑁(𝑋௧; ඥ1 − 𝛽௧𝑋௧ିଵ, 𝛽௧𝑰)  (1) 
Then, the form of 𝑞(𝑋௧|𝑋଴)  can be recursively derived through repeated 22 

applications of the reparameterization trick, suppose we have {𝜖௧, 𝜖௧̅}௧ୀ଴
் ~𝑁(0, 𝐼), Then, for 23 

an arbitrary sample 𝑋௧~𝑞(𝑋௧|𝑋଴), we can rewrite it as: 24 

𝑥௧  = ඥ1 − 𝛽௧𝑥௧ିଵ + ඥ𝛽௧𝜖௧ିଵ  25 

      = ඥ𝛼௧(ඥ𝛼௧ିଵ𝑥௧ିଶ + ඥ1 − 𝛼௧ିଵ𝜖௧ିଶ) + ඥ1 − 𝛼௧𝜖௧ିଵ  26 

      = ඥ𝛼௧𝛼௧ିଵ𝑥௧ିଶ + ඥ𝛼௧ − 𝛼௧𝛼௧ିଵ𝜖௧ିଶ + ඥ1 − 𝛼௧𝜖௧ିଵ  27 

       = ඥ𝛼௧𝛼௧ିଵ𝑥௧ିଶ + ඥ1 − 𝛼௧𝛼௧ିଵ𝜖௧̅ିଶ  28 

       = ⋯   29 

       = ට∏ 𝛼௜
௧
௜ୀଵ 𝑥଴ + ට1 − ∏ 𝛼௜

௧
௜ୀଵ 𝜖଴̅  30 

    = ඥ𝛼ത௧𝑋଴ + ඥ1 − 𝛼ത௧𝜖଴̅, where 𝛼ത௧ = ∏ 𝛼௜
௧
௜ୀଵ  (2) 

In equation 3, we have leveraged the property that the sum of two independent 31 

Gaussian random variables retains a Gaussian distribution, with the mean being the sum 32 

of the two individual means and the variance being the sum of their variances. 33 

ඥ𝛼௧ − 𝛼௧𝛼௧ିଵ𝜖௧ିଶ  is a sample from Gaussian 𝑁(0, (𝛼௧ − 𝛼௧𝛼௧ିଵ)𝑰) , ඥ1 − 𝛼௧𝜖௧ିଵ  is a sample 34 

from Gaussian 𝑁(0, (1 − 𝛼𝑡)𝑰) , we can then treat their sum as a random variable 35 

sampled from Gaussian 𝑁(0, (1 − 𝛼௧ + 𝛼௧ − 𝛼௧𝛼௧ିଵ)𝑰) . Hence, the 𝑋௧  can be sampled 36 

directly from 𝑋଴, the transition kernel is  37 

𝑞(𝑋௧|𝑋଴) = 𝑁൫𝑋௧; ඥ𝛼ത௧𝑋଴, ඥ1 − 𝛼ത௧𝑰൯, 𝑤ℎ𝑒𝑟𝑒 𝛼௧ = 1 − 𝛽௧ , 𝛼ത௧ = ∏ 𝛼௜
௧
௜ୀଵ . (3) 



Given 𝑋଴ and a Gaussian vector ϵ ~ 𝑁(0, 𝐼) and applying the transformation 38 

𝑋௧ = ඥ𝛼ത௧𝑋଴ + ඥ1 − 𝛼ത௧𝜖. (4) 
When the 𝛼ത் → 0, 𝑋் is well approximated by Gaussian distribution. During the 39 

forward process, noise is gradually added to the data until it loses its original spatial 40 

structure characteristics and becomes pure noise. If we can solve the reverse process 41 

𝑃(𝑋௧ିଵ|𝑋௧), we can sample 𝑋்~ 𝑁(0, 𝐼) then a sequence of neural networks is employed to 42 

gradually reduce the noise in a series of steps 𝑋் , 𝑋்ିଵ … 𝑋଴ . These properties suggest 43 

learning a learnable Markov chain model 𝑃ఏ(𝑋௧ିଵ|𝑋௧) to approximate the true reverse 44 

process: 45 

𝑃ఏ(𝑋௧ିଵ|𝑋௧) = 𝑁(𝑋௧ିଵ; 𝜇ఏ(𝑋௧), 𝛴ఏ(𝑋௧)), (5) 
Therefore, in a diffusion model, we are only interested in learning conditionals 46 

𝑃ఏ(𝑋௧ିଵ|𝑋௧), the diffusion model can be optimized by maximizing the variational lower 47 

bound (VLB) of the log-likelihood of the data 𝑋଴,  48 

𝔼௤(௑బ)(−𝑙𝑜𝑔𝑃ఏ(𝑋଴)) ≤ 𝔼௤(௑బ)ൣ−𝑙𝑜𝑔𝑃ఏ(𝑋଴) + 𝐷௄௅ (𝑞(𝑋ଵ:்|𝑋଴)|ห𝑃ఏ(𝑋ଵ:்|𝑋଴)൯൧  49 

                                                  = 𝔼௤(௑బ) ቂ−𝑙𝑜𝑔𝑃ఏ(𝑋଴) + ∫ 𝑞(𝑋ଵ:்|𝑋଴)𝑙𝑜𝑔
௤൫𝑋ଵ:்ห𝑋଴൯

௉ഇ(௑బ:೅)/௉ഇ(௑బ)
𝑑 𝑋ଵ:்ቃ  50 

                                                    = 𝔼௤(௑బ) ቂ−𝑙𝑜𝑔𝑃ఏ(𝑋଴) + ∫ 𝑞(𝑋ଵ:்|𝑋଴)𝑙𝑜𝑔
௤൫𝑋ଵ:்ห𝑋଴൯

௉ഇ(௑బ:೅)
𝑑 𝑋ଵ:் + 𝑙𝑜𝑔𝑃ఏ(𝑋଴)ቃ  51 

                                           = 𝔼௤(௑బ:೅)𝑙𝑜𝑔
௤൫𝑋ଵ:்ห𝑋଴൯

௉ഇ(௑బ:೅)
= 𝐿𝑉𝐿𝐵  (6) 

We can rewrite variational lower bound (VLB) as, 52 

𝐿௏௅஻ = 𝔼𝑞(𝒙0𝑇)[𝑙𝑜𝑔 
𝑞(𝒙1:𝑇∣𝒙0)

𝑝
𝜃

(𝒙0:𝑇)
]  53 

                       = 𝔼௤[𝑙𝑜𝑔 
ැ ௤(𝒙೟∣𝒙೟షభ)

೅

೟సభ

௣ഇ(𝒙೅) ැ ௣ഇ(𝒙೟షభ∣𝒙೟)
೅

೟సభ

]  54 

                       = 𝔼௤[−𝑙𝑜𝑔 𝑝ఏ(𝒙்) + ෍ 𝑙𝑜𝑔 
௤(𝒙೟∣𝒙೟షభ)

௣ഇ(𝒙೟షభ∣𝒙೟)
]

்

௧ୀଵ
  55 

                        = 𝔼௤[−𝑙𝑜𝑔 𝑝ఏ(𝒙்) + ෍ 𝑙𝑜𝑔 
௤(𝒙೟∣𝒙೟షభ)

௣ഇ(𝒙೟షభ∣𝒙೟)

்

௧ୀଶ
+ 𝑙𝑜𝑔 

௤(𝒙భ∣𝒙బ)

௣ഇ(𝒙బ∣𝒙భ)
]  56 

                        = 𝔼௤[−𝑙𝑜𝑔 𝑝ఏ(𝒙்) + ෍ 𝑙𝑜𝑔 (
௤(𝒙೟షభ∣𝒙೟,𝒙బ)

௣ഇ(𝒙೟షభ∣𝒙೟)
⋅

௤(𝒙೟∣𝒙బ)

௤(𝒙೟షభ∣𝒙బ)
)

்

௧ୀଶ
+ 𝑙𝑜𝑔 

௤(𝒙భ∣𝒙బ)

௣ഇ(𝒙బ∣𝒙భ)
]  57 

                        = 𝔼௤[−𝑙𝑜𝑔 𝑝ఏ(𝒙்) + ෍ 𝑙𝑜𝑔 
௤(𝒙೟షభ∣𝒙೟,𝒙బ)

௣ഇ(𝒙೟షభ∣𝒙೟)

்

௧ୀଶ
+ ෍ 𝑙𝑜𝑔 

௤(𝒙೟∣𝒙బ)

௤(𝒙೟షభ∣𝒙బ)

்

௧ୀଶ
+ 𝑙𝑜𝑔 

௤(𝒙భ∣𝒙బ)

௣ഇ(𝒙బ∣𝒙భ)
]  58 

                        = 𝔼௤[−𝑙𝑜𝑔 𝑝ఏ(𝒙்) + ෍ 𝑙𝑜𝑔 
௤(𝒙೟షభ∣𝒙೟,𝒙బ)

௣ഇ(𝒙೟షభ∣𝒙೟)

்

௧ୀଶ
+ 𝑙𝑜𝑔 

௤(𝒙೅∣𝒙బ)

௤(𝒙భ∣𝒙బ)
+ 𝑙𝑜𝑔 

௤(𝒙భ∣𝒙బ)

௣ഇ(𝒙బ∣𝒙భ)
]  59 

                        = 𝔼௤[𝑙𝑜𝑔 
௤(𝒙೅∣𝒙బ)

௣ഇ(𝒙೅)
+ ෍ 𝑙𝑜𝑔 

௤(𝒙೟షభ∣𝒙೟,𝒙బ)

௣ഇ(𝒙೟షభ∣𝒙೟)

்

௧ୀଶ
− 𝑙𝑜𝑔𝑝ఏ(𝑋଴|𝑋ଵ)]   60 

                   = 𝔼௤[𝐷௄௅(𝑞(𝑋்|𝑋଴)||𝑝ఏ(𝑋்)) + ෍ 𝐷௄௅(𝑞(𝑋௧ିଵ|𝑋௧, 𝑋଴)||𝑝ఏ(𝑋௧ିଵ|𝑋௧) − 𝑙𝑜𝑔𝑝ఏ(𝑋଴|𝑋ଵ)

்

௧ୀଶ

] (7) 

This formulation also has an elegant interpretation, which is revealed when 61 

inspecting each individual term: 62 

1. 𝐿଴ = 𝔼𝑞[𝑙𝑜𝑔𝑝
𝜃
(𝑋0|𝑋1)] can be interpreted as a reconstruction term. 63 

2. 𝐿் = 𝔼𝑞[𝐷𝐾𝐿(𝑞(𝑋𝑇|𝑋0)||𝑝
𝜃
(𝑋𝑇))]  represents how close the distribution of the final 64 

noisified input is to the standard Gaussian prior, is equal to zero under our 65 



assumptions. 66 

3. 𝐿௧ = 𝔼𝑞[∑ 𝐷𝐾𝐿(𝑞൫𝑋𝑡−1ห𝑋𝑡 , 𝑋
0
൯||𝑝

𝜃
(𝑋𝑡−1|𝑋𝑡)

𝑇
𝑡=2 ]  is a denoising matching term. The 67 

𝑞(𝑋௧ିଵ|𝑋௧ , 𝑋଴)  acts as a ground-truth signal and 𝑝ఏ(𝑋௧ିଵ|𝑋௧) is our desired denoising 68 

transition step. This term is therefore minimized when the two denoising steps 69 

match as closely as possible. It is the primary optimization objective. 70 

If we have knowledge of 𝑋଴ , we can obtain 𝑞(𝑋௧ିଵ|𝑋௧ , 𝑋଴)  through the Bayes' 71 

theorem, 72 

𝑞(𝑋௧ିଵ|𝑋௧, 𝑋଴) =  𝑞(𝑋௧|𝑋௧ିଵ, 𝑋଴)
௤(௑೟షభ|௑బ)

௤(௑೟|௑బ)
  73 

                        ∝ 𝑒𝑥𝑝 (−
1

2
(

൫𝑋𝑡−ඥ𝛼𝑡𝑋𝑡−1൯
2

𝛽
𝑡

+
൫𝑋𝑡−1−ඥ𝛼ത𝑡−1𝑋0൯

2

1−𝛼ത𝑡−1

−
൫𝑋𝑡−ඥ𝛼ത𝑡𝑋0൯

2

1−𝛼ത𝑡

))   74 

                            = 𝑒𝑥𝑝 (−
ଵ

ଶ
(ቀ

ఈ೟

ఉ೟
+

ଵ

ଵିఈഥ೟షభ
ቁ 𝑋௧ିଵ

ଶ + ൬
ଶඥఈ೟

ఉ೟
𝑋௧ +

ଶඥఈഥ೟షభ

ଵିఈഥ೟షభ
𝑋଴൰ 𝑋௧ିଵ + 𝐶(𝑋௧, 𝑋଴)))   75 

                          = 𝑁(𝑋௧ିଵ; 𝜇෤(𝑋௧, 𝑋଴), 𝛽෨(𝑡)𝐼)  (8) 
Recall equation 8 and equation 5, we can obtain, 76 

 𝜇෥𝜃(𝑋𝑡, 𝑋0) = 1

ඥ𝛼ഥ𝑡
(𝑋𝑡 − 1−𝛼𝑡

ට1−𝛼ഥ 𝑡

𝜖𝜃(𝑋𝑡, 𝑡))  (9) 

Let us consider the 𝐿௧ = 𝐷𝐾𝐿(𝑞൫𝑋𝑡−1ห𝑋𝑡, 𝑋
0
൯||𝑝

𝜃
(𝑋𝑡−1|𝑋𝑡)) , given equation 6 and 77 

equation 8, we can get the loss function, 78 

𝐿௧ = 𝔼𝑥0,𝜖[
1

2∥𝛴𝜃(𝑥𝑡,𝑡)∥
2
2 ∥ 𝜇

~

𝑡
(𝑥𝑡, 𝑥0) − 𝜇

𝜃
(𝑥𝑡, 𝑡) ∥

2
]  79 

                 = 𝔼௫బ,ఢ[
ଵ

ଶ∥ఀഇ∥మ
మ ∥

ଵ

ඥఈ೟
(𝑥௧ −

ଵିఈ೟

ඥଵିఈ೟

𝜖௧) −
ଵ

ඥఈ೟
(𝑥௧ −

ଵିఈ೟

ඥଵିఈ೟

𝜖ఏ(𝑥௧ , 𝑡)) ∥ଶ]  80 

                 = 𝔼𝐱బ,𝝐[
(ଵିఈ೟)మ

ଶఈ೟(ଵିఈ೟)∥𝚺ഇ∥మ
మ ∥ 𝝐௧ − 𝝐ఏ(𝐱௧ , 𝑡) ∥ଶ]  81 

   = 𝔼𝐱బ,ച𝝐[
(ଵିఈ೟)మ

ଶఈ೟(ଵିఈ೟)∥𝚺ഇ∥మ
మ ∥ 𝝐௧ − 𝝐ఏ(ඥ𝛼௧𝐱଴ + ඥ1 − 𝛼௧𝝐௧ , 𝑡) ∥ଶ]  (10) 

Ho et al. (2020) propose to reweight various terms in 𝐿௏௅஻  for better sample 82 

quality, to compute this objective, we generate samples 𝑋௧~𝑞(𝑋௧|𝑋଴), then train a model 83 

𝜖ఏ to predict the added noise using a standard mean-squared error loss: 84 

𝐿௦௜௠௣௟௘ = 𝔼௧~[ଵ,்],௑బ~௤(௑బ),஫ ~ ே(଴,ூ)[||ϵ − 𝜖ఏ(ඥ𝛼௧x଴ + ඥ1 − 𝛼௧𝜖௧, 𝑡)||ଶ]. (11) 
  

2.3 Conditional diffusion 85 

So far, we have focused on modeling the data distribution p(x). However, we are 86 

often also interested in the conditional distribution of P(𝑋୲|y), as it enables us to better 87 

investigate how different conditional information influences the generation of variable 88 

X. Begin with the score-based formulation of a diffusion model, the goal is to learn 89 

∇ log P(𝑋୲|y), by Bayes rules, we can get the equivalent: 90 

∇ log P(𝑋୲|y) = 𝛻 𝑙𝑜𝑔(
௉൫𝑦ห𝑋௧൯ ௉(௑೟)

௉(௬)
)  (12) 

                                    = 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧) + 𝛻 𝑙𝑜𝑔 𝑃(𝑦|𝑋௧) − 𝛻 𝑙𝑜𝑔 𝑃(𝑦)  (13) 
                           = ∇ log 𝑃(𝑋୲)ᇣᇧᇧᇤᇧᇧᇥ

௨௡௖௢௡ௗ௜௧௜௢௡௔௟ ௦௖௢௥௘

+ ∇ log P(y|𝑋୲)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௖௢௡ௗ௜௧௜௢௡௔௟ ௦௖௢௥௘

  (14) 

To better control the conditional information, a hyperparameter γ is introduced to 91 



scale the gradient of the conditioning information. The score function can then be 92 

summarized as: 93 

       𝛻 𝑙𝑜𝑔 𝑃(𝑋௧|𝑦) = 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧) + 𝛾 𝛻 𝑙𝑜𝑔 𝑃(𝑦|𝑋௧). (15) 
Intuitively speaking, the γ = 0 the diffusion model can ignore the conditional 94 

information entirely, while a large γ value would cause the model to heavily incorporate 95 

the conditional information during sampling. In order to implement effective control 96 

over the conditional information, we use classifier-free guidance (Ho & Salimans, 2021). 97 

To get the score function under Classifier-Free Guidance, we can rearrange: 98 

       𝛻 𝑙𝑜𝑔 𝑃(𝑦|𝑋௧) = 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧|𝑦) − 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧). (16) 
Substituting equation (16) into equation (15) then we get: 99 

       𝛻 𝑙𝑜𝑔 𝑃(𝑋௧|𝑦) = 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧) + 𝛾(𝛻 𝑙𝑜𝑔 𝑃(𝑋௧|𝑦) − 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧)). (17) 
                                 = (1 − 𝛾)𝛻 𝑙𝑜𝑔 𝑃(𝑋௧)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

௨௡௖௢௡ௗ௜௧௜௢௡௔௟ ௦௖௢௥௘

+ 𝛾𝛻 𝑙𝑜𝑔 𝑃(𝑋௧|𝑦)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௖௢௡ௗ௜௧௜௢௡௔௟ ௦௖௢௥௘

  (18) 

 From Tweedie’s formula and equation 5, we can get, 100 

              𝛻𝑙𝑜𝑔𝑝(𝑥𝑡) = − 1

ට1−𝛼𝑡

𝜖   (19) 

The equation 19 means that estimating 𝜖  is equivalent to estimating a scaled 101 

version of the score function. So, in this paper, we model the conditional distribution of 102 

precipitation frames in the future given the past precipitation frames 𝑷 = [𝑝ଵ, 𝑝ଶ, … 𝑝୑], we 103 

learn two sets of neural networks, 𝜖ఏ(𝑋௧, 𝑡)  and 𝜖ఏ(𝑋௧, 𝑡, 𝑃) , to approximate the 104 

unconditional and conditional score functions 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧)  and 𝛻 𝑙𝑜𝑔 𝑃(𝑋௧|𝑦) , our 105 

conditional diffusion loss function is: 106 

       𝐿௖௢௡ௗ௜௧௜௢௡ = 𝔼௧~[ଵ,்],௑బ~௤(௑బ),஫ ~ ே(଴,ூ)[||𝜖 − 𝜖ఏ(𝑋௧, 𝑡, 𝑃)||ଶ]. (19) 
 107 

2 Details of baseline model 108 

2.1 Generative models of radar 109 

DGMR holds the current state of the art in precipitation nowcasting, the generator 110 

is built with convolutional and convolutional GRU layers and it was trained with two 111 

adversarial loss and a regularization loss. The first loss is defined by a spital 112 

discriminator, which ensures spital consistency. The second loss is defined by a 113 

temporal discriminator, which is a 3D convolutional neural network that aims to impose 114 

temporal consistency. The regularization term encourages the prediction’s mean 115 

precipitation fields to match the mean of past precipitation amount. 116 

We utilized Google-Colab to load the saved DGMR model and pconducted 117 

inference on our test dataset, see https://github.com/deepmind/deepmind-118 

research/tree/master/nowcasting. DGMR exhibits the capability to generate forecasts 119 

up to 90 minutes. However, for the purpose of comparison, we only evaluated its 120 

performance using the first 30 minutes of forecasted results, calculating relevant 121 

metrics.  122 

2.2 U-Net 123 

We use a U-Net encoder–decoder model as baseline similarly to how it was used 124 

in related studies (Ayzel et al., 2020). This type of model first employs an encoder that 125 

reduces the spatial resolution using pooling and convolutional layers, while the decoder 126 

then increases the resolution by applying up-sampling and convolutional layers to the 127 



learned patterns. To prevent gradient vanishing and share the low-level patterns of the 128 

precipitation fields, skip connections are used from the encoder to the decoder 129 

(Srivastava et al., 2015). In this paper, U-Net serves as the baseline for deterministic 130 

forecasting using deep learning.  131 

2.3 PySTEPS 132 

PySTEPS is an open-source Python library designed for radar precipitation 133 

forecasting and analysis, it is available at https://github.com/pySTEPS/pysteps. It offers 134 

a comprehensive range of algorithms, among which STEPS is a widely used 135 

precipitation nowcasting system based on ensembles, considered to be state-of-the-art 136 

of non-ML-based method. In this study, we adopt PySTEPS as a non-machine learning 137 

baseline.  138 

 139 

3 Details of metrics 140 

we use the M to denote number of the ensemble members, and 𝑓௠ to denote the 141 

ensemble member, so the ensemble mean can be written as, 142 

 𝑓ഥ = 1
𝑀

∑ 𝑓𝑚
𝑀
𝑚=1   (20) 

3.1 MAE 143 

The (spatial) mean-absolute-error (MAE) at forecast time step t between ensemble 144 

means 𝑓 ̅ and observation 𝑓௢௕௦௘௥ is defined as, 145 

𝑀𝐴𝐸௧( 𝑓,̅ 𝑓௢௕௦௘௥) =  
ଵ

௉
∑ ห 𝑓̅ − 𝑓௢௕௦௘௥ห௉

௣ୀଵ   (21) 

where 𝑝  indexes all the geospatial locations. And we can consider extreme value 146 

prediction accuracy under different precipitation intensities, we use an intensity mask 147 

[𝑓௢௕௦௘௥ > 4] and [𝑓௢௕௦௘௥ > 8] to get the masked prediction and observation 𝑓௠̅ , 𝑓௠_௢௕௦௘௥ 148 

𝑀𝐴𝐸௧,௠௜ௗ( 𝑓௠̅, 𝑓௠_௢௕௦௘௥) =  
ଵ

௉
∑ ห 𝑓௠̅ − 𝑓௠_௢௕௦௘௥ห௉

௣ୀଵ   (22) 

 149 

3.2 Correlation  150 

The spital correlation between ensemble mean and observation is defined as. 151 

𝐶𝑜𝑟𝑟௧( 𝑓̅, 𝑓௢௕௦௘௥) =  
∑ (௙̅೛ି  ௙̅೛

തതതത)(௙೚್ೞ೐ೝ,೛ି ௙೚್ೞ೐ೝ,೛
തതതതതതതതതതതത)೛
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  (23) 

where  𝑓௣̅
തതത  means to average in space. In deployment, we flatten the prediction and 152 

observation then use the corrcoef function from the NumPy library. 153 

 154 

3.3 Critical Success Index 155 

The Critical Success Index (CSI) is a statistical measure that quantifies the 156 

accuracy of spatial prediction by evaluating the correct identification of specific events 157 

or outcomes.  158 

The CSI is defined as the ratio of true positives (TP) to the sum of true positives, 159 

false positives (FP), and false negatives (FN). Mathematically, it is expressed as, 160 



𝐶𝑆𝐼 =  
்௉

்௉ାி௉ାிே
  (24) 

 TP represents the number of true positive outcomes, which signifies the accurate 161 

prediction of events or occurrences. 162 

 FP corresponds to false positives, indicating instances where the event was 163 

predicted, but did not materialize. 164 

 FN denotes false negatives, signifying cases where the event occurred but was not 165 

correctly predicted. 166 

The CSI values range between 0 and 1, where a CSI of 1 indicates perfect spatial 167 

accuracy in prediction, implying that all positive outcomes were correctly forecasted 168 

without any false alarms. Conversely, a CSI of 0 suggests that none of the events were 169 

accurately predicted. 170 

 171 

3.4 Continuous Ranked Probability Score 172 

CRPS is used to evaluate the calibration and sharpness. It quantifies the 173 

discrepancy between the forecasted cumulative distribution function (CDF) and the 174 

observed CDF, defined as,  175 

𝐶𝑅𝑃𝑆 =  ∫ [𝐹(𝑓௠) − 1(𝑡 ≤ 𝑧)]ଶ𝑑𝑧
ାஶ

ିஶ
  (25) 

where F denotes the CDF of the prediction distribution and 1(t ≤ z) is an indicator 176 

function that is 1 if t ≤ z and 0 otherwise. In the case of a deterministic forecast (like 177 

Unet) the CRPS reduces to the mean absolute error (MAE).  178 

 179 

3.5 Spread-skill ratio 180 

The SSR evaluates the reliability of the ensemble. It is a ratio that quantifies the 181 

balance between calibration and sharpness, providing insights into the trade-off 182 

between these two critical aspects of predictive modeling. 183 

𝑆𝑆𝑅 =  
ௌ௣௥௘௔ௗ

ோெௌா
  (26) 

where the spread is defined as, 184 

𝑆𝑝𝑟𝑒𝑎𝑑 =  ට
ଵ

௉
∑ 𝑉𝑎𝑟(𝑓௠,௣)௉

௣ୀଵ   (27) 

and the RMSE is defined as, 185 

𝑅𝑀𝑆𝐸 =  ට
ଵ

௉
∑ (𝑓̅ − 𝑓௢௕௦௘௥)ଶ௉

௣ୀଵ   (28) 

 186 

4 Additional results 187 

4.1 Skill evaluation 188 

Figure S1 includes PySTEPS metrics calculated over the entire test dataset. Due 189 

to UNet's blurred predictions, it falls short of PySTEPS in terms of CSI8.  190 



 191 
Figure S1. The full version of Figure 2, incorporating metrics for PySTEPS. 192 
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 213 

4.2 Additional case 214 

 215 

Figure S2. An additional case in Section 5.1 216 

 217 



 218 
Figure S3. An additional case in Section 5.1 219 

 220 



 221 

Figure S4. An additional case in Section 5.1 222 

 223 

4.3 Reliability cases 224 

 225 
Figure S5. An additional case in Section 5.3 226 



 227 
Figure S6. An additional case in Section 5.3 228 

 229 
Figure S7. An additional case in Section 5.3 230 

 231 
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