References
1. Nothaft, H. and C.M. Szymanski,New discoveries in bacterial N-glycosylation to expand the
synthetic biology toolbox. Curr Opin Chem Biol, 2019. 53 : p.
16-24.
2. Koomey, M., O-linked protein
glycosylation in bacteria: snapshots and current perspectives. Curr
Opin Struct Biol, 2019. 56 : p. 198-203.
3. Eichler, J., N-glycosylation
in Archaea-New roles for an ancient posttranslational modification. Mol
Microbiol, 2020. 114 (5): p. 735-741.
4. Joshi, H.J., et al.,SnapShot: O-Glycosylation Pathways across Kingdoms. Cell, 2018.172 (3): p. 632-632 e2.
5. Kint, N., J. Unay, and P.H.
Viollier, Specificity and modularity of flagellin nonulosonic acid
glycosyltransferases. Trends Microbiol, 2022. 30 (2): p.
109-111.
6. Yao, Q., et al., A structural
mechanism for bacterial autotransporter glycosylation by a dodecameric
heptosyltransferase family. Elife, 2014. 3 .
7. Macek, B., et al., Protein
post-translational modifications in bacteria. Nat Rev Microbiol, 2019.17 (11): p. 651-664.
8. Schulz, B.L., et al.,Identification of bacterial protein O-oligosaccharyltransferases
and their glycoprotein substrates. PLoS One, 2013. 8 (5): p.
e62768.
9. Knoot, C.J., et al.,Discovery and characterization of a new class of O-linking
oligosaccharyltransferases from the Moraxellaceae family. Glycobiology,
2022.
10. Harding, C.M., et al.,Glycoengineering a polyvalent pneumococcal bioconjugate vaccine
using E. coli as a host. Nat Commun, 2019. 10 (1): p. 891.
11. Harding, C.M., et al.,Acinetobacter strains carry two functional
oligosaccharyltransferases, one devoted exclusively to type IV pilin,
and the other one dedicated to O-glycosylation of multiple proteins.Mol Microbiol, 2015. 96 (5): p. 1023-41.
12. Iwashkiw, J.A., et al.,Identification of a general O-linked protein glycosylation system
in Acinetobacter baumannii and its role in virulence and biofilm
formation. PLoS Pathog, 2012. 8 (6): p. e1002758.
13. Ahmad Izaham, A.R. and N.E.
Scott, Open database searching enables the identification and
comparison of bacterial glycoproteomes without defining glycan
compositions prior to searching. Mol Cell Proteomics, 2020.
14. Fathy Mohamed, Y., et al.,A general protein O-glycosylation machinery conserved in
Burkholderia species improves bacterial fitness and elicits glycan
immunogenicity in humans. J Biol Chem, 2019.
15. Lithgow, K.V., et al., A
general protein O-glycosylation system within the Burkholderia cepacia
complex is involved in motility and virulence. Mol Microbiol, 2014.92 (1): p. 116-37.
16. Egge-Jacobsen, W., et al.,O-linked glycosylation of the PilA pilin protein of Francisella
tularensis: identification of the endogenous protein-targeting
oligosaccharyltransferase and characterization of the native
oligosaccharide. J Bacteriol, 2011. 193 (19): p. 5487-97.
17. Castric, P., pilO, a gene
required for glycosylation of Pseudomonas aeruginosa 1244 pilin.Microbiology, 1995. 141 ( Pt 5) : p. 1247-54.
18. Elhenawy, W., et al.,Protein O-linked glycosylation in the plant pathogen Ralstonia
solanacearum. Glycobiology, 2016. 26 (3): p. 301-11.
19. Power, P.M., et al.,Genetic characterization of pilin glycosylation in Neisseria
meningitidis. Microbiology, 2000. 146 ( Pt 4) : p. 967-79.
20. Hadjineophytou, C., et al.,Genetic determinants of genus-Level glycan diversity in a
bacterial protein glycosylation system. PLoS Genet, 2019.15 (12): p. e1008532.
21. Anonsen, J.H., et al.,Characterization of a Unique Tetrasaccharide and Distinct
Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria
elongata subsp. glycolytica. J Bacteriol, 2016. 198 (2): p.
256-67.
22. Bagdonaite, I., et al.,Glycoproteomics. Nature Reviews Methods Primers, 2022.2 (1): p. 48.
23. Nothaft, H., et al.,Diversity in the protein N-glycosylation pathways within the
Campylobacter genus. Mol Cell Proteomics, 2012. 11 (11): p.
1203-19.
24. Scott, N.E., et al.,Simultaneous glycan-peptide characterization using hydrophilic
interaction chromatography and parallel fragmentation by CID, higher
energy collisional dissociation, and electron transfer dissociation MS
applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell
Proteomics, 2011. 10 (2): p. M000031-MCP201.
25. Scott, N.E., et al., The
bacterial arginine glycosyltransferase effector NleB preferentially
modifies Fas-associated death domain protein (FADD). J Biol Chem, 2017.292 (42): p. 17337-17350.
26. Anonsen, J.H., et al., An
extended spectrum of target proteins and modification sites in the
general O-linked protein glycosylation system in Neisseria gonorrhoeae.J Proteome Res, 2012. 11 (12): p. 5781-93.
27. Magdeldin, S., et al.,Off-Line Multidimensional Liquid Chromatography and Auto Sampling
Result in Sample Loss in LC/LC-MS/MS. J Proteome Res, 2014.13 (8): p. 3826-36.
28. Winter, D.L., M.R. Wilkins, and
W.A. Donald, Differential Ion Mobility-Mass Spectrometry for
Detailed Analysis of the Proteome. Trends Biotechnol, 2019.37 (2): p. 198-213.
29. Cumeras, R., et al., Review
on ion mobility spectrometry. Part 1: current instrumentation. Analyst,
2015. 140 (5): p. 1376-90.
30. Steigenberger, B., et al.,Benefits of Collisional Cross Section Assisted Precursor Selection
(caps-PASEF) for Cross-linking Mass Spectrometry. Mol Cell Proteomics,
2020. 19 (10): p. 1677-1687.
31. Schnirch, L., et al.,Expanding the depth and sensitivity of cross-link identification
by differential ion mobility using FAIMS. Anal Chem, 2020.
32. Adoni, K.R., et al., FAIMS
Enhances the Detection of PTM Crosstalk Sites. J Proteome Res, 2022.21 (4): p. 930-939.
33. Li, H., et al., Ion
Mobility-Mass Correlation Trend Line Separation of Glycoprotein Digests
without Deglycosylation. Int J Ion Mobil Spectrom, 2013.16 (2): p. 105-115.
34. Mukherjee, S., et al.,Oxonium Ion-Guided Optimization of Ion Mobility-Assisted
Glycoproteomics on the timsTOF Pro. Mol Cell Proteomics, 2023.22 (2): p. 100486.
35. Ahmad Izaham, A.R., et al.,What Are We Missing by Using Hydrophilic Enrichment? Improving
Bacterial Glycoproteome Coverage Using Total Proteome and FAIMS
Analyses. J Proteome Res, 2021. 20 (1): p. 599-612.
36. Ulasi, G.N., et al.,Comprehensive mapping of O-glycosylation in flagellin from
Campylobacter jejuni 11168: A multienzyme differential ion mobility mass
spectrometry approach. Proteomics, 2015. 15 (16): p. 2733-45.
37. Creese, A.J. and H.J. Cooper,Separation and identification of isomeric glycopeptides by high
field asymmetric waveform ion mobility spectrometry. Anal Chem, 2012.84 (5): p. 2597-601.
38. Fang, P., et al.,Evaluation and Optimization of High-Field Asymmetric Waveform
Ion-Mobility Spectrometry for Multiplexed Quantitative Site-Specific
N-Glycoproteomics. Anal Chem, 2021.
39. McDonald, J.B., et al.,Characterisation of N-linked protein glycosylation in the
bacterial pathogen Campylobacter hepaticus. Sci Rep, 2023.13 (1): p. 227.
40. Imperiali, B., Bacterial
carbohydrate diversity - a Brave New World. Curr Opin Chem Biol, 2019.53 : p. 1-8.
41. Parge, H.E., et al.,Structure of the fibre-forming protein pilin at 2.6 A resolution.Nature, 1995. 378 (6552): p. 32-8.
42. Stimson, E., et al.,Meningococcal pilin: a glycoprotein substituted with digalactosyl
2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol, 1995.17 (6): p. 1201-14.
43. Borud, B., et al., Genetic,
structural, and antigenic analyses of glycan diversity in the O-linked
protein glycosylation systems of human Neisseria species. J Bacteriol,
2010. 192 (11): p. 2816-29.
44. Wang, N., et al., Allelic
polymorphisms in a glycosyltransferase gene shape glycan repertoire in
the O-linked protein glycosylation system of Neisseria. Glycobiology,
2021. 31 (4): p. 477-491.
45. Borud, B., et al., Extended
glycan diversity in a bacterial protein glycosylation system linked to
allelic polymorphisms and minimal genetic alterations in a
glycosyltransferase gene. Mol Microbiol, 2014. 94 (3): p.
688-99.
46. Aas, F.E., et al.,Neisseria gonorrhoeae O-linked pilin glycosylation: functional
analyses define both the biosynthetic pathway and glycan structure. Mol
Microbiol, 2007. 65 (3): p. 607-24.
47. Power, P.M., K.L. Seib, and M.P.
Jennings, Pilin glycosylation in Neisseria meningitidis occurs by
a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia
coli. Biochem Biophys Res Commun, 2006. 347 (4): p. 904-8.
48. Vik, A., et al., Broad
spectrum O-linked protein glycosylation in the human pathogen Neisseria
gonorrhoeae. Proc Natl Acad Sci U S A, 2009. 106 (11): p.
4447-52.
49. Ku, S.C., et al., The pilin
O-glycosylation pathway of pathogenic Neisseria is a general system that
glycosylates AniA, an outer membrane nitrite reductase. Biochem Biophys
Res Commun, 2009. 378 (1): p. 84-9.
50. Gault, J., et al.,Neisseria meningitidis Type IV Pili Composed of Sequence
Invariable Pilins Are Masked by Multisite Glycosylation. PLoS Pathog,
2015. 11 (9): p. e1005162.
51. Naess, L.M., et al.,Genetic, Functional, and Immunogenic Analyses of the O-Linked
Protein Glycosylation System in Neisseria meningitidis Serogroup A ST-7
Isolates. J Bacteriol, 2023. 205 (3): p. e0045822.
52. Hadjineophytou, C., et al.,Sculpting the Bacterial O-Glycoproteome: Functional Analyses of
Orthologous Oligosaccharyltransferases with Diverse Targeting
Specificities. mBio, 2022: p. e0379721.
53. Pino, L.K., et al.,Acquiring and Analyzing Data Independent Acquisition Proteomics
Experiments without Spectrum Libraries. Mol Cell Proteomics, 2020.19 (7): p. 1088-1103.
54. Ludwig, C., et al.,Data-independent acquisition-based SWATH-MS for quantitative
proteomics: a tutorial. Mol Syst Biol, 2018. 14 (8): p. e8126.
55. Wolfgang, M., et al.,Components and dynamics of fiber formation define a ubiquitous
biogenesis pathway for bacterial pili. EMBO J, 2000. 19 (23):
p. 6408-18.
56. Kellogg, D.S., Jr., et al.,Neisseria gonorrhoeae. II. Colonial variation and pathogenicity
during 35 months in vitro. J Bacteriol, 1968. 96 (3): p.
596-605.
57. Rappsilber, J., M. Mann, and Y.
Ishihama, Protocol for micro-purification, enrichment,
pre-fractionation and storage of peptides for proteomics using
StageTips. Nat Protoc, 2007. 2 (8): p. 1896-906.
58. Rappsilber, J., Y. Ishihama, and
M. Mann, Stop and go extraction tips for matrix-assisted laser
desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment
in proteomics. Anal Chem, 2003. 75 (3): p. 663-70.
59. Caval, T., J. Zhu, and A.J.R.
Heck, Simply Extending the Mass Range in Electron Transfer Higher
Energy Collisional Dissociation Increases Confidence in N-Glycopeptide
Identification. Anal Chem, 2019. 91 (16): p. 10401-10406.
60. Teo, G.C., et al., Fast
Deisotoping Algorithm and Its Implementation in the MSFragger Search
Engine. J Proteome Res, 2021. 20 (1): p. 498-505.
61. da Veiga Leprevost, F., et al.,Philosopher: a versatile toolkit for shotgun proteomics data
analysis. Nature Methods, 2020. 17 (9): p. 869-870.
62. Geiszler, D.J., et al.,PTM-Shepherd: Analysis and Summarization of Post-Translational and
Chemical Modifications From Open Search Results. Mol Cell Proteomics,
2021. 20 : p. 100018.
63. Kong, A.T., et al.,MSFragger: ultrafast and comprehensive peptide identification in
mass spectrometry-based proteomics. Nat Methods, 2017. 14 (5):
p. 513-520.
64. Yu, F., et al.,Identification of modified peptides using localization-aware open
search. Nature Communications, 2020. 11 (1): p. 4065.
65. Brademan, D.R., et al.,Interactive Peptide Spectral Annotator: A Versatile Web-based Tool
for Proteomic Applications. Mol Cell Proteomics, 2019. 18 (8
suppl 1): p. S193-S201.
66. Tyanova, S., et al., The
Perseus computational platform for comprehensive analysis of
(prote)omics data. Nat Methods, 2016. 13 (9): p. 731-40.
67. Wattam, A.R., et al.,PATRIC, the bacterial bioinformatics database and analysis
resource. Nucleic Acids Res, 2014. 42 (Database issue): p.
D581-91.
68. Wickham, H., et al.,Welcome to the Tidyverse. Journal of open source software, 2019.4 (43): p. 1686.
69. Perez-Riverol, Y., et al.,The PRIDE database and related tools and resources in 2019:
improving support for quantification data. Nucleic Acids Res, 2019.47 (D1): p. D442-D450.
70. Vizcaino, J.A., et al.,2016 update of the PRIDE database and its related tools. Nucleic
Acids Res, 2016. 44 (D1): p. D447-56.
71. Dermit, M., et al., Peptide
Correlation Analysis (PeCorA) Reveals Differential Proteoform
Regulation. J Proteome Res, 2021. 20 (4): p. 1972-1980.
72. Merrihew, G.E., et al., A
peptide-centric quantitative proteomics dataset for the phenotypic
assessment of Alzheimer’s disease. Sci Data, 2023. 10 (1): p.
206.
73. Frazier, A.E., et al.,Fatal perinatal mitochondrial cardiac failure caused by recurrent
de novo duplications in the ATAD3 locus. Med, 2021. 2 (1): p.
49-73.
74. Gebhart, C., et al.,Characterization of exogenous bacterial oligosaccharyltransferases
in Escherichia coli reveals the potential for O-linked protein
glycosylation in Vibrio cholerae and Burkholderia thailandensis.Glycobiology, 2012. 22 (7): p. 962-74.
75. Harding, C.M. and M.F. Feldman,Glycoengineering bioconjugate vaccines, therapeutics, and
diagnostics in E. coli. Glycobiology, 2019. 29 (7): p. 519-529.
76. Tan, S., H.T. Tan, and M.C.
Chung, Membrane proteins and membrane proteomics. Proteomics,
2008. 8 (19): p. 3924-32.
77. Speers, A.E. and C.C. Wu,Proteomics of integral membrane proteins–theory and
application. Chem Rev, 2007. 107 (8): p. 3687-714.
78. Anonsen, J.H., et al.,Novel protein substrates of the phospho-form modification system
in Neisseria gonorrhoeae and their connection to O-linked protein
glycosylation. Infect Immun, 2012. 80 (1): p. 22-30.
79. Abouelhadid, S., et al.,Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a
Major Enteric Bacterial Pathogen. MBio, 2019. 10 (2).
80. Cain, J.A., et al.,Proteomics reveals multiple phenotypes associated with N-linked
glycosylation in Campylobacter jejuni. Mol Cell Proteomics, 2019.
81. Oppy, C.C., et al., Loss of
O-linked protein glycosylation in Burkholderia cenocepacia impairs
biofilm formation, siderophore activity and alters transcriptional
regulators mSphere, 2019. 4 : p. e00660-19.
82. Lewis, J.M. and N.E. Scott,CRISPRi-Mediated Silencing of Burkholderia O-Linked Glycosylation
Systems Enables the Depletion of Glycosylation Yet Results in Modest
Proteome Impacts. J Proteome Res, 2023.
83. Wang, G., et al., A
glycoengineered antigen exploiting a conserved protein O-glycosylation
pathway in the Burkholderia genus for detection of glanders infections.Virulence, 2021. 12 (1): p. 493-506.
84. Marceau, M. and X. Nassif,Role of glycosylation at Ser63 in production of soluble pilin in
pathogenic Neisseria. J Bacteriol, 1999. 181 (2): p. 656-61.
85. Abouelhadid, S., et al.,Characterization of Posttranslationally Modified Multidrug Efflux
Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial
Resistance. mBio, 2020. 11 (6).
86. Zhou, C. and B.L. Schulz,Glycopeptide variable window SWATH for improved data independent
acquisition glycoprotein analysis. Anal Biochem, 2020. 597 : p.
113667.
87. Ye, Z., et al., Glyco-DIA:
a method for quantitative O-glycoproteomics with in silico-boosted
glycopeptide libraries. Nat Methods, 2019. 16 (9): p. 902-910.
88. Zacchi, L.F. and B.L. Schulz,SWATH-MS Glycoproteomics Reveals Consequences of Defects in the
Glycosylation Machinery. Mol Cell Proteomics, 2016. 15 (7): p.
2435-47.
89. Schulz, B.L. and M. Aebi,Analysis of glycosylation site occupancy reveals a role for Ost3p
and Ost6p in site-specific N-glycosylation efficiency. Mol Cell
Proteomics, 2009. 8 (2): p. 357-64.
90. Nielsen, M.I., et al.,Global mapping of GalNAc-T isoform-specificities and
O-glycosylation site-occupancy in a tissue-forming human cell line. Nat
Commun, 2022. 13 (1): p. 6257.