References
1. Nothaft, H. and C.M. Szymanski,New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox. Curr Opin Chem Biol, 2019. 53 : p. 16-24.
2. Koomey, M., O-linked protein glycosylation in bacteria: snapshots and current perspectives. Curr Opin Struct Biol, 2019. 56 : p. 198-203.
3. Eichler, J., N-glycosylation in Archaea-New roles for an ancient posttranslational modification. Mol Microbiol, 2020. 114 (5): p. 735-741.
4. Joshi, H.J., et al.,SnapShot: O-Glycosylation Pathways across Kingdoms. Cell, 2018.172 (3): p. 632-632 e2.
5. Kint, N., J. Unay, and P.H. Viollier, Specificity and modularity of flagellin nonulosonic acid glycosyltransferases. Trends Microbiol, 2022. 30 (2): p. 109-111.
6. Yao, Q., et al., A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family. Elife, 2014. 3 .
7. Macek, B., et al., Protein post-translational modifications in bacteria. Nat Rev Microbiol, 2019.17 (11): p. 651-664.
8. Schulz, B.L., et al.,Identification of bacterial protein O-oligosaccharyltransferases and their glycoprotein substrates. PLoS One, 2013. 8 (5): p. e62768.
9. Knoot, C.J., et al.,Discovery and characterization of a new class of O-linking oligosaccharyltransferases from the Moraxellaceae family. Glycobiology, 2022.
10. Harding, C.M., et al.,Glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host. Nat Commun, 2019. 10 (1): p. 891.
11. Harding, C.M., et al.,Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins.Mol Microbiol, 2015. 96 (5): p. 1023-41.
12. Iwashkiw, J.A., et al.,Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog, 2012. 8 (6): p. e1002758.
13. Ahmad Izaham, A.R. and N.E. Scott, Open database searching enables the identification and comparison of bacterial glycoproteomes without defining glycan compositions prior to searching. Mol Cell Proteomics, 2020.
14. Fathy Mohamed, Y., et al.,A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. J Biol Chem, 2019.
15. Lithgow, K.V., et al., A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol, 2014.92 (1): p. 116-37.
16. Egge-Jacobsen, W., et al.,O-linked glycosylation of the PilA pilin protein of Francisella tularensis: identification of the endogenous protein-targeting oligosaccharyltransferase and characterization of the native oligosaccharide. J Bacteriol, 2011. 193 (19): p. 5487-97.
17. Castric, P., pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin.Microbiology, 1995. 141 ( Pt 5) : p. 1247-54.
18. Elhenawy, W., et al.,Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum. Glycobiology, 2016. 26 (3): p. 301-11.
19. Power, P.M., et al.,Genetic characterization of pilin glycosylation in Neisseria meningitidis. Microbiology, 2000. 146 ( Pt 4) : p. 967-79.
20. Hadjineophytou, C., et al.,Genetic determinants of genus-Level glycan diversity in a bacterial protein glycosylation system. PLoS Genet, 2019.15 (12): p. e1008532.
21. Anonsen, J.H., et al.,Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J Bacteriol, 2016. 198 (2): p. 256-67.
22. Bagdonaite, I., et al.,Glycoproteomics. Nature Reviews Methods Primers, 2022.2 (1): p. 48.
23. Nothaft, H., et al.,Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteomics, 2012. 11 (11): p. 1203-19.
24. Scott, N.E., et al.,Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics, 2011. 10 (2): p. M000031-MCP201.
25. Scott, N.E., et al., The bacterial arginine glycosyltransferase effector NleB preferentially modifies Fas-associated death domain protein (FADD). J Biol Chem, 2017.292 (42): p. 17337-17350.
26. Anonsen, J.H., et al., An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeae.J Proteome Res, 2012. 11 (12): p. 5781-93.
27. Magdeldin, S., et al.,Off-Line Multidimensional Liquid Chromatography and Auto Sampling Result in Sample Loss in LC/LC-MS/MS. J Proteome Res, 2014.13 (8): p. 3826-36.
28. Winter, D.L., M.R. Wilkins, and W.A. Donald, Differential Ion Mobility-Mass Spectrometry for Detailed Analysis of the Proteome. Trends Biotechnol, 2019.37 (2): p. 198-213.
29. Cumeras, R., et al., Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst, 2015. 140 (5): p. 1376-90.
30. Steigenberger, B., et al.,Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry. Mol Cell Proteomics, 2020. 19 (10): p. 1677-1687.
31. Schnirch, L., et al.,Expanding the depth and sensitivity of cross-link identification by differential ion mobility using FAIMS. Anal Chem, 2020.
32. Adoni, K.R., et al., FAIMS Enhances the Detection of PTM Crosstalk Sites. J Proteome Res, 2022.21 (4): p. 930-939.
33. Li, H., et al., Ion Mobility-Mass Correlation Trend Line Separation of Glycoprotein Digests without Deglycosylation. Int J Ion Mobil Spectrom, 2013.16 (2): p. 105-115.
34. Mukherjee, S., et al.,Oxonium Ion-Guided Optimization of Ion Mobility-Assisted Glycoproteomics on the timsTOF Pro. Mol Cell Proteomics, 2023.22 (2): p. 100486.
35. Ahmad Izaham, A.R., et al.,What Are We Missing by Using Hydrophilic Enrichment? Improving Bacterial Glycoproteome Coverage Using Total Proteome and FAIMS Analyses. J Proteome Res, 2021. 20 (1): p. 599-612.
36. Ulasi, G.N., et al.,Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach. Proteomics, 2015. 15 (16): p. 2733-45.
37. Creese, A.J. and H.J. Cooper,Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal Chem, 2012.84 (5): p. 2597-601.
38. Fang, P., et al.,Evaluation and Optimization of High-Field Asymmetric Waveform Ion-Mobility Spectrometry for Multiplexed Quantitative Site-Specific N-Glycoproteomics. Anal Chem, 2021.
39. McDonald, J.B., et al.,Characterisation of N-linked protein glycosylation in the bacterial pathogen Campylobacter hepaticus. Sci Rep, 2023.13 (1): p. 227.
40. Imperiali, B., Bacterial carbohydrate diversity - a Brave New World. Curr Opin Chem Biol, 2019.53 : p. 1-8.
41. Parge, H.E., et al.,Structure of the fibre-forming protein pilin at 2.6 A resolution.Nature, 1995. 378 (6552): p. 32-8.
42. Stimson, E., et al.,Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol, 1995.17 (6): p. 1201-14.
43. Borud, B., et al., Genetic, structural, and antigenic analyses of glycan diversity in the O-linked protein glycosylation systems of human Neisseria species. J Bacteriol, 2010. 192 (11): p. 2816-29.
44. Wang, N., et al., Allelic polymorphisms in a glycosyltransferase gene shape glycan repertoire in the O-linked protein glycosylation system of Neisseria. Glycobiology, 2021. 31 (4): p. 477-491.
45. Borud, B., et al., Extended glycan diversity in a bacterial protein glycosylation system linked to allelic polymorphisms and minimal genetic alterations in a glycosyltransferase gene. Mol Microbiol, 2014. 94 (3): p. 688-99.
46. Aas, F.E., et al.,Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure. Mol Microbiol, 2007. 65 (3): p. 607-24.
47. Power, P.M., K.L. Seib, and M.P. Jennings, Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. Biochem Biophys Res Commun, 2006. 347 (4): p. 904-8.
48. Vik, A., et al., Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc Natl Acad Sci U S A, 2009. 106 (11): p. 4447-52.
49. Ku, S.C., et al., The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem Biophys Res Commun, 2009. 378 (1): p. 84-9.
50. Gault, J., et al.,Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation. PLoS Pathog, 2015. 11 (9): p. e1005162.
51. Naess, L.M., et al.,Genetic, Functional, and Immunogenic Analyses of the O-Linked Protein Glycosylation System in Neisseria meningitidis Serogroup A ST-7 Isolates. J Bacteriol, 2023. 205 (3): p. e0045822.
52. Hadjineophytou, C., et al.,Sculpting the Bacterial O-Glycoproteome: Functional Analyses of Orthologous Oligosaccharyltransferases with Diverse Targeting Specificities. mBio, 2022: p. e0379721.
53. Pino, L.K., et al.,Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Mol Cell Proteomics, 2020.19 (7): p. 1088-1103.
54. Ludwig, C., et al.,Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol, 2018. 14 (8): p. e8126.
55. Wolfgang, M., et al.,Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J, 2000. 19 (23): p. 6408-18.
56. Kellogg, D.S., Jr., et al.,Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J Bacteriol, 1968. 96 (3): p. 596-605.
57. Rappsilber, J., M. Mann, and Y. Ishihama, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc, 2007. 2 (8): p. 1896-906.
58. Rappsilber, J., Y. Ishihama, and M. Mann, Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem, 2003. 75 (3): p. 663-70.
59. Caval, T., J. Zhu, and A.J.R. Heck, Simply Extending the Mass Range in Electron Transfer Higher Energy Collisional Dissociation Increases Confidence in N-Glycopeptide Identification. Anal Chem, 2019. 91 (16): p. 10401-10406.
60. Teo, G.C., et al., Fast Deisotoping Algorithm and Its Implementation in the MSFragger Search Engine. J Proteome Res, 2021. 20 (1): p. 498-505.
61. da Veiga Leprevost, F., et al.,Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nature Methods, 2020. 17 (9): p. 869-870.
62. Geiszler, D.J., et al.,PTM-Shepherd: Analysis and Summarization of Post-Translational and Chemical Modifications From Open Search Results. Mol Cell Proteomics, 2021. 20 : p. 100018.
63. Kong, A.T., et al.,MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods, 2017. 14 (5): p. 513-520.
64. Yu, F., et al.,Identification of modified peptides using localization-aware open search. Nature Communications, 2020. 11 (1): p. 4065.
65. Brademan, D.R., et al.,Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications. Mol Cell Proteomics, 2019. 18 (8 suppl 1): p. S193-S201.
66. Tyanova, S., et al., The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods, 2016. 13 (9): p. 731-40.
67. Wattam, A.R., et al.,PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res, 2014. 42 (Database issue): p. D581-91.
68. Wickham, H., et al.,Welcome to the Tidyverse. Journal of open source software, 2019.4 (43): p. 1686.
69. Perez-Riverol, Y., et al.,The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res, 2019.47 (D1): p. D442-D450.
70. Vizcaino, J.A., et al.,2016 update of the PRIDE database and its related tools. Nucleic Acids Res, 2016. 44 (D1): p. D447-56.
71. Dermit, M., et al., Peptide Correlation Analysis (PeCorA) Reveals Differential Proteoform Regulation. J Proteome Res, 2021. 20 (4): p. 1972-1980.
72. Merrihew, G.E., et al., A peptide-centric quantitative proteomics dataset for the phenotypic assessment of Alzheimer’s disease. Sci Data, 2023. 10 (1): p. 206.
73. Frazier, A.E., et al.,Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. Med, 2021. 2 (1): p. 49-73.
74. Gebhart, C., et al.,Characterization of exogenous bacterial oligosaccharyltransferases in Escherichia coli reveals the potential for O-linked protein glycosylation in Vibrio cholerae and Burkholderia thailandensis.Glycobiology, 2012. 22 (7): p. 962-74.
75. Harding, C.M. and M.F. Feldman,Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology, 2019. 29 (7): p. 519-529.
76. Tan, S., H.T. Tan, and M.C. Chung, Membrane proteins and membrane proteomics. Proteomics, 2008. 8 (19): p. 3924-32.
77. Speers, A.E. and C.C. Wu,Proteomics of integral membrane proteins–theory and application. Chem Rev, 2007. 107 (8): p. 3687-714.
78. Anonsen, J.H., et al.,Novel protein substrates of the phospho-form modification system in Neisseria gonorrhoeae and their connection to O-linked protein glycosylation. Infect Immun, 2012. 80 (1): p. 22-30.
79. Abouelhadid, S., et al.,Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. MBio, 2019. 10 (2).
80. Cain, J.A., et al.,Proteomics reveals multiple phenotypes associated with N-linked glycosylation in Campylobacter jejuni. Mol Cell Proteomics, 2019.
81. Oppy, C.C., et al., Loss of O-linked protein glycosylation in Burkholderia cenocepacia impairs biofilm formation, siderophore activity and alters transcriptional regulators mSphere, 2019. 4 : p. e00660-19.
82. Lewis, J.M. and N.E. Scott,CRISPRi-Mediated Silencing of Burkholderia O-Linked Glycosylation Systems Enables the Depletion of Glycosylation Yet Results in Modest Proteome Impacts. J Proteome Res, 2023.
83. Wang, G., et al., A glycoengineered antigen exploiting a conserved protein O-glycosylation pathway in the Burkholderia genus for detection of glanders infections.Virulence, 2021. 12 (1): p. 493-506.
84. Marceau, M. and X. Nassif,Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J Bacteriol, 1999. 181 (2): p. 656-61.
85. Abouelhadid, S., et al.,Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance. mBio, 2020. 11 (6).
86. Zhou, C. and B.L. Schulz,Glycopeptide variable window SWATH for improved data independent acquisition glycoprotein analysis. Anal Biochem, 2020. 597 : p. 113667.
87. Ye, Z., et al., Glyco-DIA: a method for quantitative O-glycoproteomics with in silico-boosted glycopeptide libraries. Nat Methods, 2019. 16 (9): p. 902-910.
88. Zacchi, L.F. and B.L. Schulz,SWATH-MS Glycoproteomics Reveals Consequences of Defects in the Glycosylation Machinery. Mol Cell Proteomics, 2016. 15 (7): p. 2435-47.
89. Schulz, B.L. and M. Aebi,Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol Cell Proteomics, 2009. 8 (2): p. 357-64.
90. Nielsen, M.I., et al.,Global mapping of GalNAc-T isoform-specificities and O-glycosylation site-occupancy in a tissue-forming human cell line. Nat Commun, 2022. 13 (1): p. 6257.