REFERENCES
Apel, K. & Hirt, H. (2004) REACTIVE OXYGEN SPECIES: Metabolism,
oxidative stress, and signal transduction. Ann. Rev. Plant Biol. ,
55, 373–399. doi:10.1146/annurev.arplant.55.031903.141701.
Asada, K. (2006) Production and scavenging of reactive oxygen species in
chloroplasts and their functions. Plant Physiol. , 141, 391–396.
doi:10.1104/pp.106.082040.
Agnez-Lima, L.F., Melo, J.T., Silva, A.E., Oliveira, A.H., Timoteo,
A.R., Lima-Bessa, K.M. et al. (2012) DNA damage by singlet oxygen and
cellular protective mechanisms. Mutat Res Rev Mutat
Res .,751(1),15-28. doi: 10.1016/j.mrrev.2011.12.005.
Baptista, M.S., Cadet, J., Di Mascio, P., Ghogare, A.A., Greer, A.,
Hamblin, M.R.et al. (2017) Type I and Type II Photosensitized Oxidation
Reactions: Guidelines and Mechanistic Pathways. Photochem
Photobiol. , 93(4), 912-919. doi: 10.1111/php.12716.
Beltrán-García, M.J., Prado, F.M., Oliveira, M.S., Ortiz-Mendoza, D.,
Scalfo, A.C., Pessoa, A. Jr. et al. (2014) Singlet molecular oxygen
generation by light-activated DHN-melanin of the fungal pathogenMycosphaerella fijiensis in black Sigatoka disease of bananas.PLoS One , 9(3), e91616. doi: 10.1371/journal.pone.0091616. PMID:
24646830; PMCID: PMC3960117.
Berenbaum, M. (1978). Toxicity of a furanocoumarin to armyworms: A case
of biosynthetic escape from insect herbivores. Science 201,
532–534. doi:10.1126/science.201.4355.532.
Berenbaum, M.R.& Larson, R.A. (1988) Flux of singlet oxygen from leaves
of phototoxic plants. Experientia , 44, 1030–1032.
https://doi.org/10.1007/BF01939914.
Breen, S., Williams, S.J., Outram, M., Kobe, B., Solomon, P.S. (2017)
Emerging Insights into the Functions of Pathogenesis-Related Protein 1.Trends Plant Sci. 22(10), 871-879. doi:
10.1016/j.tplants.2017.06.013.
Chen, T., Cohen, D., Itkin, M., Malitsky, S., Fluhr, R. (2021)
Lipoxygenase functions in 1O2production during root responses to osmotic stress. Plant
Physiol. ,185(4),1638-1651. doi: 10.1093/plphys/kiab025.
Chen, T. & Fluhr, R. (2018) Singlet Oxygen Plays an Essential Role in
the Root’s Response to Osmotic Stress. Plant Physiol ., 177(4),
1717-1727. doi: 10.1104/pp.18.00634.
Chen, S., Kim, C., Lee, J.M., Lee, H.A., Fei, Z., Wang, L.et al. (2015)
Blocking the QB-binding site of photosystem II by tenuazonic acid, a
non-host-specific toxin of Alternaria alternata, activates singlet
oxygen-mediated and EXECUTER-dependent signalling in Arabidopsis.Plant Cell Environ ., 38(6),1069-80. doi: 10.1111/pce.12462.
D’Alessandro, S., Ksas, B., and Havaux, M. (2018) Decoding
ß-cyclocitral-mediated retrograde signaling reveals the role of a
detoxification response controlled by SCL14 and ANAC102 in plant
tolerance to photooxidative stress. The Plant Cell ,
tpc.00578.2018. doi:10.1105/tpc.18.00578.
Danon A., Miersch O., Felix G., Camp R.G., Apel K. (2005) Concurrent
activation of cell death-regulating signaling pathways by singlet oxygen
in Arabidopsis thaliana. Plant J. 41(1):68-80. doi:
10.1111/j.1365-313X.2004.02276.x.
Di Mascio, P., Martinez, G.R., Miyamoto, M., Ronsein, G.R., Medeiros,
M.H.G. (2019) Singlet Molecular Oxygen Reactions with Nucleic Acids,
Lipids, and Proteins. Chem. Rev. , 119 (3), 2043–2086.
,https://doi.org/10.1021/acs.chemrev.8b00554
Dmitrieva, V.A., Tyutereva, E.V., Voitsekhovskaja, O.V. (2020) Singlet
Oxygen in Plants: Generation, Detection, and Signaling Roles. Int
J Mol Sci. , 21(9), 3237. doi: 10.3390/ijms21093237.
Dogra, V., Duan, J., Lee, K. P., Lv, S., Liu, R., and Kim, C. (2017).
FtsH2-dependent proteolysis of EXECUTER1 is essential in mediating
singlet oxygen-triggered retrograde signaling in Arabidopsis
thaliana . Front Plant Sci 8. doi:10.3389/fpls.2017.01145.
Dogra, V. & Kim, C. (2020). Singlet Oxygen Metabolism: From Genesis to
Signaling. Front Plant Sci. , 10. doi:10.3389/fpls.2019.01640.
Dogra V., Singh R.M., Li M., Li M., Singh S., Kim C. 2021. EXECUTER2
modulates the EXECUTER1 signalosome through its singlet oxygen-dependent
oxidation. Mol Plant. 15(3):438-453. doi:
10.1016/j.molp.2021.12.016.
Flors C. & Nonell, S. (2006) Light and singlet oxygen in plant defense
against pathogens: phototoxic phenalenone phytoalexins. Acc Chem
Res. , 39(5), 293-300. doi: 10.1021/ar0402863. PMID: 16700528
Galvez-Valdivieso, G. & Mullineaux, P. M. (2010) The role of reactive
oxygen species in signaling from chloroplasts to the nucleus.Physiol Plant ,138, 430–439.
Gorman, A. A. & Rodgers, M. A. (1992) Current perspectives of singlet
oxygen detection in biological environments. J. Photochem.
Photobiol. B. , 14, 159–176. doi:10.1016/1011-1344(92)85095-c.
Grun C., Berger S., Matthes D., Mueller M.J. (2007) Early accumulation
of non-enzymatically synthesised oxylipins in Arabidopsis
thaliana after infection with Pseudomonas syringae . Funct
Plant Biol. 34(1):65-71. doi: 10.1071/FP06205.
Havaux M. (2020) β-Cyclocitral and derivatives: Emerging molecular
signals serving multiple biological functions. Plant Physiol
Biochem . 155:35-41. doi: 10.1016/j.plaphy.2020.07.032.
Hölscher, D., Dhakshinamoorthy, S., Alexandrov, T., Becker,
M., Bretschneider, T., Buerkert, A. et al. (2014) Phenalenone-Type
Phytoalexins Mediate Resistance of Banana Plants (Musa Spp.) to
the Burrowing Nematode Radopholus
similis. PNAS. , 111 (1), 105– 110. DOI:
10.1073/pnas.1314168110.
Hou Z., Yang Y., Hedtke B., Grimm B. (2019) Fluorescence in blue light
(FLU) is involved in inactivation and localization of glutamyl-tRNA
reductase during light exposure. Plant J. 97(3):517-529. doi:
10.1111/tpj.14138.
Hou, S. & Tsuda, K. (2022) Salicylic acid and jasmonic acid crosstalk
in plant immunity. Essays Biochem. , 66(5), 647-656. doi:
10.1042/EBC20210090.
Koh E., Carmieli R., Mor A., Fluhr R. (2016) Singlet Oxygen-Induced
Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell
Death. Plant Physiol. 171(3):1616-25. doi: 10.1104/pp.15.02026.
Koh, E. & Fluhr, R. (2016) Singlet oxygen detection in biological
systems: Uses and limitations. Plant Signal Behav ., 11(7),
e1192742. doi: 10.1080/15592324.2016.1192742.
Koh, E., Alexander, B., Fluhr, R. (2022) Plastid and cytoplasmic origins
of 1O2-mediated transcriptomic
responses. Front. Plant Sci .,13, 982610. doi:
10.3389/fpls.2022.982610.
Koh E., Cohen D., Brandis A., Fluhr R. (2021) Attenuation of cytosolic
translation by RNA oxidation is involved in singlet oxygen-mediated
transcriptomic responses. Plant Cell Environ. 44(11):3597-3615.
doi: 10.1111/pce.14162.
Koh, E., Chaturvedi, A.K., Javitt, G., Brandis, A., Fluhr, R. (2023)
Multiple paths of plant host toxicity are associated with the fungal
toxin cercosporin. Plant Cell Environ ., 46(8), 2542-2557. doi:
10.1111/pce.14613. Epub 2023 May 22. PMID: 37212197.
Laloi, C.& Havaux, M. (2015) Key players of singlet oxygen-induced cell
death in plants Front. Plant Sci. , 6, (39).
DOI:10.3389/fpls.2015.00039.
Lazzaro, A., Corominas, M., Martí, C., Flors, C., Izquierdo, L.R.,
Grillo, T.A. et al. (2004) Light- and singlet oxygen-mediated antifungal
activity of phenylphenalenone phytoalexins. Photochem Photobiol
Sci. , 3(7), 706-710. doi: 10.1039/b401294a. Epub 2004 May 5. PMID:
15239009.
Lee, K. P., Kim, C., Landgraf, F., Apel, K. (2007). EXECUTER1- and
EXECUTER2-dependent transfer of stress-related signals from the plastid
to the nucleus of Arabidopsis thaliana . Proc. Natl Acad.
Sci. USA 104, 10270–10275. doi:10.1073/pnas.0702061104.
Liang, P., Kolodieznyi, D., Creeger, Y., Ballou, B., Bruchez, M.P.
(2020) Subcellular Singlet Oxygen and Cell Death: Location Matters.Front Chem. , 8, 592941. doi: 10.3389/fchem.2020.592941.
Lu Y, Yao J. (2018) Chloroplasts at the Crossroad of Photosynthesis,
Pathogen Infection and Plant Defense. Int J Mol Sci. , 9(12),3900.
doi: 10.3390/ijms19123900.
Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R.,
Apel, K. (2001) FLU: a negative regulator of chlorophyll biosynthesis in
Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 98, 12826–12831.
Mehler, A. H. (1951) Studies on reactions of illuminated chloroplasts.
II. Stimulation and inhibition of the reaction with molecular oxygen.Arch. Biochem. Biophys. , 34, 339–351.
doi:10.1016/0003-9861(51)90012-4.
Mitra S., Estrada-Tejedor R., Volke D.C., Phillips M.A., Gershenzon J.,
Wright L.P. (2021) Negative regulation of plastidial isoprenoid pathway
by herbivore-induced β-cyclocitral in Arabidopsis thaliana .Proc Natl Acad Sci U S A. 118(10):e2008747118. doi:
10.1073/pnas.2008747118.
Mor, A., Koh, E., Weiner, L., Rosenwasser, S., Sibony-Benyamini, H.,
Fluhr, R. (2014) Singlet oxygen signatures are detected independent of
light or chloroplasts in response to multiple stresses. Plant
Physiology , 165, 249–261.
Narusaka, Y., Narusaka, M., Seki, M., Ishida, J., Shinozaki, K., Nan,
Y.et al. (2005) Cytological and molecular analyses of non-host
resistance of Arabidopsis thaliana to Alternaria alternata. Mol
Plant Pathol. , 6(6), 15-27. doi: 10.1111/j.1364-3703.2005.00310.x.
Nguyen, D. A., Muhammad, M. K., & Lee, G. L. (2020).
Phytophotodermatitis. Dermatol. Man. Outdoor Hazards , 43-56.
Ochsenbein, C., Przybyla, D., Danon, A., Landgraf, F., Göbel, C.,
Imboden, A. et al. (2006) The role of EDS1 (enhanced disease
susceptibility) during singlet oxygen-mediated stress responses of
Arabidopsis. Plant J. , 47(3), 445-456.
Op den Camp, R. G. L., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C.,
Danon, A. (2003). Rapid induction of distinct stress responses after the
release of singlet oxygen in Arabidopsis. The Plant Cell ,15,
2320–2332. doi:10.1105/tpc.014662.
Otalvaro, F., Echeverri, F., Quinones, W., Torres, F., Schneider, B.
(2002). Correlation between Phenylphenalenone Phytoalexins and
Phytopathological Properties in Musa and the Role of a
Dihydrophenylphenalene Triol. Molecules , 7(3),
331–340. DOI: 10.3390/70300331
Phua, S.Y., De Smet, B., Remacle, C., Chan, K.X., Van Breusegem, F.
(2021) Reactive oxygen species and organellar signaling. J Exp
Bot. , 72(16),5807-5824. doi: 10.1093/jxb/erab218. PMID: 34009340.
Pospíšil, P.& Prasad, A. (2014) Formation of singlet oxygen and
protection against its oxidative damage in Photosystem II under abiotic
stress. J. Photochem. Photobiol. B. , 137,39-48. doi:
10.1016/j.jphotobiol.2014.04.025.
Prasad, A., Sedlářová, M., Kale, R.S. , Pospíšil, P. (2017)
Lipoxygenase in singlet oxygen generation as a response to
wounding: in vivo imaging in Arabidopsis
thaliana . Sci Rep 7, article 9831.
https://doi.org/10.1038/s41598-017-09758-1
Prasad, A., Sedlářová, M., Pospíšil, P. (2018) Singlet oxygen imaging
using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic
organisms. Sci Rep. , 8(1),13685. doi:
10.1038/s41598-018-31638-5.
Przybyla, D., Göbel, C., Imboden, A., Hamberg, M., Feussner, I., Apel,
K. (2008) Enzymatic, but not non-enzymatic,1O2-mediated peroxidation of
polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress
response program in the flu mutant of Arabidopsis
thaliana. Plant J. , 54(2), 236-248.
https://doi.org/10.1111/j.1365-313X.2008.03409.x
Ramel, F., Birtic, S., Ginies, C., Soubigou-Taconnat, L.,
Triantaphylidès, C., Havaux, M. (2012a) Carotenoid oxidation products
are stress signals that mediate gene responses to singlet oxygen in
plants. Proc. Natl. Acad. Sci. USA , 109, 5535–5540.
doi:10.1073/pnas.1115982109.
Ramel, F., Birtic, S., Cuiné, C. Triantaphylidès,C., Ravanat, J.L.
Havaux, M. (2012b) Chemical quenching of singlet oxygen by carotenoids
in plants. Plant Physiol ., 158,1267-1278.
Ramel, F., Ksas, B., Akkari, E., Mialoundama, A. S., Monnet, F.,
Krieger-Liszkay, A. (2013) Light-induced acclimation of the Arabidopsischlorina1 mutant to singlet oxygen. Plant Cell , 25,
1445–1462. doi:10.1105/tpc.113.109827.
Rezende, J.S., Zivanovic, M., Costa de Novaes, M.I., Chen, Z-Y. (2020)
he AVR4 effector is involved in cercosporin biosynthesis and likely
affects the virulence of Cercospora cf. flagellaris on
soybean. Mol. Plant Pathol. , 21(1), 53–65.
Sandalio, L.M & Romero-Puertas, M.C. (2015) Peroxisomes sense and
respond to environmental cues by regulating ROS and RNS signalling
networks. Ann. Bot. ,116(4), 475–485.
Shumbe L., Chevalier A., Legeret B., Taconnat L., Monnet F., Havaux M.
(2016) Singlet Oxygen-Induced Cell Death in Arabidopsis under High-Light
Stress Is Controlled by OXI1 Kinase. Plant Physiol.170(3):1757-71. doi: 10.1104/pp.15.01546.
Shumbe, L., D’Alessandro, S., Shao, N., Chevalier, A., Ksas, B., Bock,
R.et al. (2017) METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for
acclimation of Arabidopsis to singlet oxygen and acts downstream of
β-cyclocitral. Plant Cell Environ. , 40, 216–226.
Song, R., Feng, Y., Wang, D., Xu, Z., Li, Z., Shao, X.
(2017) Phytoalexin Phenalenone Derivatives Inactivate Mosquito Larvae
and Root-knot Nematode as Type-II Photosensitizer. Sci Rep , 7,
42058. https://doi.org/10.1038/srep42058
Tabrizi T.S., Sawicki A., Zhou S., Luo M., Willows R.D. (2016)
GUN4-Protoporphyrin IX Is a Singlet Oxygen Generator with Consequences
for Plastid Retrograde Signaling. J Biol Chem . 291(17):8978-84.
doi: 10.1074/jbc.C116.719989.
Thorning, F., Henke, P., Ogilby, P.R. (2022) Perturbed and Activated
Decay: The Lifetime of Singlet Oxygen in Liquid Organic Solvents.J. Am. Chem. Soc. , 144 (24), 10902-10911. DOI:
10.1021/jacs.2c03444.
Triantaphylidès, C. & Havaux, M. (2009) Singlet oxygen in plants:
Production, detoxification and signaling. Trends in Plant
Science , 14, 219–228. doi:10.1016/j.tplants.2009.01.008
Triantaphylidès, C., Krischke, M., Hoeberichts, F. A., Ksas, B.,
Gresser, G., Havaux, M., et al. (2008). Singlet oxygen is the major
reactive oxygen species involved in photooxidative damage to plants.Plant Physiol. 148, 960–968. doi:10.1104/pp.108.125690.
Wagner D., Przybyla D., Op den Camp R., Kim C., Landgraf F., Lee K.P.,
Würsch M., Laloi C., Nater M., Hideg E., Apel K. (2004) The genetic
basis of singlet oxygen-induced stress responses of Arabidopsis
thaliana. Science . 306(5699):1183-5. doi:
10.1126/science.1103178.
Wang, L., Kim, C., Xu, X., Piskurewicz, U., Dogra, V., Singh, S., et al.
(2016). Singlet oxygen- and EXECUTER1-mediated signaling is initiated in
grana margins and depends on the protease FtsH2. Proc. Natl. Acad.
Sci. USA 113, E3792–E3800. doi:10.1073/pnas.1603562113.
Wang L., Leister D., Guan L., Zheng Y., Schneider K., Lehmann M., Apel
K., Kleine T. (2020) The Arabidopsis SAFEGUARD1 suppresses
singlet oxygen-induced stress responses by protecting grana margins.Proc Natl Acad Sci U S A . 117(12):6918-6927. doi:
10.1073/pnas.1918640117.
You, Y. (2018) Chemical tools for the generation and detection of
singlet oxygen. Org. Biomol. Chem. , 16(22), 4044-4060.
Zeng, L., Wang, J.Z., He, X., Ke, H., Lemos, M., Gray, W.M.et al. (2022)
A plastidial retrograde signal potentiates biosynthesis of systemic
stress response activators. New Phytol. , 233(4),1732-1749. doi:
10.1111/nph.17890.
Zhang, S., Apel, K., Kim, C. (2014) Singlet oxygen-mediated and
EXECUTER-dependent signaling and acclimation of Arabidopsis thaliana
exposed to light stress. Phil. Trans. R. Soc. B , 369, 20130227.
http://dx.doi.org/10.1098/rstb.2013.0227