Bibliography

Almeida, M. and Coelho, P. (2023). A first assessment of ERA5 and ERA5‐Land reanalysis air temperature in Portugal. International Journal of Climatology, 43(14), pp.6643-6663.
Amorim, A.M., Gonçalves, A.B., Nunes, L.M. and Sousa, A.J. (2012). Optimizing the location of weather monitoring stations using estimation uncertainty. International Journal of Climatology, 32(6), pp.941-952.
Anon, (2019). How Atmospheric Sounding Transformed Weather Prediction - NASA. [online] Available at: https://www.nasa.gov/history/how-atmospheric-sounding-transformed-weather-prediction-jdzlx/ [Accessed 5 Feb. 2024].
Auffhammer, M., Hsiang, S.M., Schlenker, W. and Sobel, A., 2013. Using weather data and climate model output in economic analyses of climate change. Review of Environmental Economics and Policy.
Baker, Z. (2017). Climate state: Science-state struggles and the formation of climate science in the US from the 1930s to 1960s. Social Studies of Science, 47(6), 861–887.
Baker, N. and Phillips, K. (2022). ‘Mares’ tails and mackerel scales’: The many bizarre ways humans have tried to predict the weather. (2022). ABC News. [online] 6 Jul. Available at: https://www.abc.net.au/news/2022-07-07/the-history-of-weather-forecasting/101181492.
Barry, R.G. and Chorley, R.J., 2009. Atmosphere, weather and climate. Routledge.
BBC (n.d.). Factors Affecting Climate - Factors Affecting Climate - CCEA - GCSE Geography Revision - CCEA. [online] BBC Bitesize. Available at: https://www.bbc.co.uk/bitesize/guides/zgyw4qt/revision/2.
Bengtsson, L. and Shukla, J., 1988. Integration of space and in situ observations to study global climate change. Bulletin of the American Meteorological Society, 69(10), pp.1130-1143.
Bengtsson, L., Arkin, P., Berrisford, P., Bougeault, P., Folland, C.K., Gordon, C., Haines, K., Hodges, K.I., Jones, P., Kallberg, P. and Rayner, N., 2007. The need for a dynamical climate reanalysis. Bulletin of the American Meteorological Society, 88(4), pp.495-501.
Bowman, D.M.J.S., Balch, J.K., Artaxo, P., et al. (2009). Fire in the Earth system. Science, 324(5926), 481-484
Bouktif, S., Fiaz, A., Ouni, A. and Serhani, M.A., 2018. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies, 11(7), p.1636.
Bracegirdle, T.J. (2013). Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. International Journal of  Climatology, 33, pp. 843-851
Che-Castaldo C, Crisafulli CM. Long-term monitoring of Mount St. Helens micrometeorology. Ecology. 2023 Mar;104(3):e3950. doi: 10.1002/ecy.3950. Epub 2023 Jan 6. PMID: 36484720.
Chen, G., Shi, Y., Wang, R., Ren, C., Ng, E., Fang, X. and Ren, Z., 2022. Integrating weather observations and local-climate-zone-based landscape patterns for regional hourly air temperature mapping using machine learning. Science of The Total Environment, 841, p.156737.
Cucchi, M., Weedon, G.P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H. and Buontempo, C., 2020. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth System Science Data, 12(3), pp.2097-2120.
Dee, D.P., Balmaseda, M., Balsamo, G., Engelen, R., Simmons, A.J. and Thépaut, J.N., 2014. Toward a consistent reanalysis of the climate system. Bulletin of the American Meteorological Society, 95(8), pp.1235-1248.
Doddy Clarke, E.; Griffin, S.; McDermott, F.; Monteiro Correia, J.; Sweeney, C. Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere 2021, 12, 624.
Edwards P.N (2010).  A VAST MACHINE: Computer models, climate data, and the politics of global warming. The MIT Press Cambridge, Massachusetts London, England.
Essa, Y.H., Cagnazzo, C., Madonna, F., Cristofanelli, P., Yang, C., Serva, F., Caporaso, L. and Santoleri, R., 2022. Intercomparison of Atmospheric Upper-Air Temperature From Recent Global Reanalysis Datasets. Frontiers in Earth Science, 10, p.935139.
Fabry, F. (1996). Radar Meteorology: Principles and Practice. Cambridge University Press.
Ghajarnia, N., Akbari, M., Saemian, P., Ehsani, M.R., Hosseini‐Moghari, S.M., Azizian, A., Kalantari, Z., Behrangi, A., Tourian, M.J., Klöve, B. and Haghighi, A.T., 2022. Evaluating the evolution of ECMWF precipitation products using observational data for Iran: From ERA40 to ERA5. Earth and Space Science, 9(10), p.e2022EA002352.
Gleixner, S., Demissie, T. and Diro, G.T., 2020. Did ERA5 improve temperature and precipitation reanalysis over East Africa?. Atmosphere, 11(9), p.996.
Gong, A.; Chen, H.; Ni, G. Improving the Completion of Weather Radar Missing Data with Deep Learning. Remote Sens. 2023, 15, 4568.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D. and Simmons, A., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), pp.1999-2049.
Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B. and Wright, J.S., 2019. From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations. Atmospheric Chemistry and Physics, 19(5), pp.3097-3124.
Holmes, T.R., Hain, C.R., Anderson, M.C. and Crow, W.T. (2016). Cloud tolerance of remote-sensing technologies to measure land surface temperature. Hydrology and Earth System Sciences, 20(8), pp.3263-3275.
Houghton, J., 2005. Global warming. Reports on progress in physics, 68(6), p.1343.
Hu, Q., Li, Z., Wang, L., Huang, Y., Wang, Y. and Li, L., 2019. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water, 11(3), p.579
Huang, X., Han, S. and Shi, C., 2021. Multiscale assessments of three reanalysis temperature data systems over China. Agriculture, 11(12), p.1292.
Jiao, D., Xu, N., Yang, F. and Xu, K., 2021. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 11(1), p.17956.
Jones, P.G. and Thornton, P.K., 2013. Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agricultural Systems, 114, pp.1-5.
Kalnay, E., 2003. Atmospheric modeling, data assimilation, and predictability. Cambridge University Press.
Karl, T.R., Tarpley, J.D., Quayle, R.G., Diaz, H.F., Robinson, D.A. and Bradley, R.S., 1989. The recent climate record: What it can and cannot tell us. Reviews of Geophysics, 27(3), pp.405-430.
Kirsanov, A.; Rozinkina, I.; Rivin, G.; Zakharchenko, D.; Olchev, A. Effect of Natural Forest Fires on Regional Weather Conditions in Siberia. Atmosphere 2020, 11, 1133.
Li, Z., Gong, X., Liu, M., Tang, H., Yao, Y., Liu, M. and Yang, F., 2022. A Temperature Refinement Method Using the ERA5 Reanalysis Data. Atmosphere, 13(10), p.1622.
Li, X., Chen, H., Hua, W., Ma, H., Li, X., Sun, S., Lu, Y., Pang, X., Zhang, X. and Zhang, Q. (2023). Modeling the effects of realistic land cover changes on land surface temperatures over China. Climate Dynamics, 61(3), pp.1451-1474.
Maraun, D. and Widmann, M., 2018. Statistical downscaling and bias correction for climate research. Cambridge University Press.
Mauelshagen, F. (2014). Redefining historical climatology in the Anthropocene. The Anthropocene Review, 1(2), 171-204.
McNicholl, B., Lee, Y.H., Campbell, A.G. and Dev, S., 2021. Evaluating the reliability of air temperature from ERA5 reanalysis data. IEEE Geoscience and Remote Sensing Letters, 19, pp.1-5.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H. and Martens, B. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth system science data, 13(9), pp.4349-4383.
Ning, J., Gao, Z., Meng, R., Xu, F. and Gao, M. (2018). Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta. Frontiers of earth science, 12, pp.444-456.
Oke, T.R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
Parker, W.S., 2016. Reanalyses and observations: What’s the difference?. Bulletin of the American Meteorological Society, 97(9), pp.1565-1572.
Pitman, A.J., 2003. The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(5), pp.479-510.
Ramirez-Villegas, J. and Challinor, A., 2012. Assessing relevant climate data for agricultural applications. Agricultural and forest meteorology, 161, pp.26-45
Robock, A., 2000. Volcanic eruptions and climate. Reviews of geophysics, 38(2), pp.191-219.
Rummukainen, M., 2012. Changes in climate and weather extremes in the 21st century. Wiley Interdisciplinary Reviews: Climate Change, 3(2), pp.115-129.
Schauberger, B., Jägermeyr, J. and Gornott, C., 2020. A systematic review of local to regional yield forecasting approaches and frequently used data resources. European Journal of Agronomy, 120, p.126153.
Salcedo-Sanz, S., Ghamisi, P., Piles, M., Werner, M., Cuadra, L., Moreno-Martínez, A., Izquierdo-Verdiguier, E., Muñoz-Marí, J., Mosavi, A. and Camps-Valls, G., 2020. Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Information Fusion, 63, pp.256-272.
Shi, H., Cao, X., Li, Q., Li, D., Sun, J., You, Z. and Sun, Q., 2021. Evaluating the accuracy of ERA5 wave reanalysis in the water around China. Journal of Ocean University of China, 20, pp.1-9.
Tetzner, D., Thomas, E. and Allen, C. (2019). A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies. Geosciences, 9(7), p.289.
Trenberth, K.E. and Olson, J.G., 1988. An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts. Bulletin of the American Meteorological Society, 69(9), pp.1047-1057.
Trenberth, K.E., Koike, T. and Onogi, K. (2008). Progress and prospects for reanalysis for weather and climate. Eos, Transactions American Geophysical Union, 89(26), pp.234-235.
Velikou, K., Lazoglou, G., Tolika, K. and Anagnostopoulou, C., 2022. Reliability of the ERA5 in replicating mean and extreme temperatures across Europe. Water, 14(4), p.543.
Wolfe, J., Mar 5,2000. www.earthdata.nasa.gov. [online]
[date of visit: 24 01 2024].
Yilmaz, M., 2023. Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment, 856, p.159182.
Yu, Y., Xiao, W., Zhang, Z., Cheng, X., Hui, F. and Zhao, J., 2021. Evaluation of 2-m air temperature and surface temperature from ERA5 and ERA-I using buoy observations in the Arctic during 2010–2020. Remote Sensing, 13(14), p.2813.
Zhu, J., Xie, A., Qin, X., Wang, Y., Xu, B. and Wang, Y. (2021). An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. Atmosphere, 12(2), p.217.