Reference:
1. Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells
and inflammation. Science. 2016;354(6312):572-7.
2. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular
mechanisms of pain. Cell. 2009;139(2):267-84.
3. Chen O, Donnelly CR, Ji RR. Regulation of pain by neuro-immune
interactions between macrophages and nociceptor sensory neurons. Curr
Opin Neurobiol. 2020;62:17-25.
4. Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and
functions. BMC Biology. 2017;15(1).
5. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and
Fibrosis. Immunity. 2016;44(3):450-62.
6. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili
SA, Mardani F, et al. Macrophage plasticity, polarization, and function
in health and disease. J Cell Physiol. 2018;233(9):6425-40.
7. Tu H, Chu H, Guan S, Hao F, Xu N, Zhao Z, et al. The role of the
M1/M2 microglia in the process from cancer pain to morphine tolerance.
Tissue Cell. 2021;68:101438.
8. Raoof R, Martin Gil C, Lafeber F, de Visser H, Prado J, Versteeg S,
et al. Dorsal Root Ganglia Macrophages Maintain Osteoarthritis Pain. J
Neurosci. 2021;41(39):8249-61.
9. Yaraee R, Ebtekar M, Ahmadiani A, Sabahi F. Neuropeptides (SP and
CGRP) augment pro-inflammatory cytokine production in HSV-infected
macrophages. Int Immunopharmacol. 2003;3(13-14):1883-7.
10. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M,
David S. TNF and increased intracellular iron alter macrophage
polarization to a detrimental M1 phenotype in the injured spinal cord.
Neuron. 2014;83(5):1098-116.
11. Malcangio M. Role of the immune system in neuropathic pain. Scand J
Pain. 2019;20(1):33-7.
12. Essandoh K, Li Y, Huo J, Fan GC. MiRNA-Mediated Macrophage
Polarization and its Potential Role in the Regulation of Inflammatory
Response. Shock. 2016;46(2):122-31.
13. Simeoli R, Montague K, Jones HR, Castaldi L, Chambers D, Kelleher
JH, et al. Exosomal cargo including microRNA regulates sensory neuron to
macrophage communication after nerve trauma. Nat Commun. 2017;8(1):1778.
14. Xian X, Cai LL, Li Y, Wang RC, Xu YH, Chen YJ, et al. Neuron secrete
exosomes containing miR-9-5p to promote polarization of M1 microglia in
depression. J Nanobiotechnology. 2022;20(1):122.
15. Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, et al.
Nociceptors are interleukin-1beta sensors. J Neurosci.
2008;28(52):14062-73.
16. Jin X, Gereau RWt. Acute p38-mediated modulation of
tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor
necrosis factor-alpha. J Neurosci. 2006;26(1):246-55.
17. Liu Q. Upregulation of interleukin-6 on Cav3.2 T-type calcium
channels in dorsal root ganglion neurons contributes to neuropathic pain
in rats with spinal nerve ligation. Experimental neurology.
2019;317:226-43.
18. Marino Y, Arangia A, Cordaro M, Siracusa R, D’Amico R, Impellizzeri
D, et al. Analysis of the Influence of IL-6 and the Activation of the
Jak/Stat3 Pathway in Fibromyalgia. Biomedicines. 2023;11(3).
19. Zhang X, Huang J, McNaughton PA. NGF rapidly increases membrane
expression of TRPV1 heat-gated ion channels. EMBO J.
2005;24(24):4211-23.
20. Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW,
et al. Macrophage-derived insulin-like growth factor-1 is a key
neurotrophic and nerve-sensitizing factor in pain associated with
endometriosis. FASEB J. 2019;33(10):11210-22.
21. Ma W, Quirion R. Does COX2-dependent PGE2 play a role in neuropathic
pain? Neurosci Lett. 2008;437(3):165-9.
22. Domoto R, Sekiguchi F, Tsubota M, Kawabata A. Macrophage as a
Peripheral Pain Regulator. Cells. 2021;10(8).
23. Ji R-R, Xu Z-Z, Gao Y-J. Emerging targets in
neuroinflammation-driven chronic pain. Nature Reviews Drug Discovery.
2014;13(7):533-48.
24. Pineau I, Lacroix S. Proinflammatory cytokine synthesis in the
injured mouse spinal cord: multiphasic expression pattern and
identification of the cell types involved. J Comp Neurol.
2007;500(2):267-85.
25. Gheorghe RO, Grosu AV, Bica-Popi M, Ristoiu V. The Yin/Yang Balance
of Communication between Sensory Neurons and Macrophages in Traumatic
Peripheral Neuropathic Pain. Int J Mol Sci. 2022;23(20).
26. De Logu F, Nassini R, Materazzi S, Carvalho Gonçalves M, Nosi D,
Rossi Degl’Innocenti D, et al. Schwann cell TRPA1 mediates
neuroinflammation that sustains macrophage-dependent neuropathic pain in
mice. Nature Communications. 2017;8(1).
27. De Logu F, Marini M, Landini L, Souza Monteiro de Araujo D,
Bartalucci N, Trevisan G, et al. Peripheral Nerve Resident Macrophages
and Schwann Cells Mediate Cancer-Induced Pain. Cancer Res.
2021;81(12):3387-401.
28. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et
al. CD36 ligands promote sterile inflammation through assembly of a
Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11(2):155-61.
29. Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, et al. Toll-like
receptor 2/4 heterodimer mediates inflammatory injury in intracerebral
hemorrhage. Ann Neurol. 2014;75(6):876-89.
30. Matsuda M, Huh Y, Ji RR. Roles of inflammation, neurogenic
inflammation, and neuroinflammation in pain. J Anesth. 2019;33(1):131-9.
31. Hu X, Du L, Liu S, Lan Z, Zang K, Feng J, et al. A TRPV4-dependent
neuroimmune axis in the spinal cord promotes neuropathic pain. J Clin
Invest. 2023;133(5).
32. Tanaka T, Okuda H, Isonishi A, Terada Y, Kitabatake M, Shinjo T, et
al. Dermal macrophages set pain sensitivity by modulating the amount of
tissue NGF through an SNX25-Nrf2 pathway. Nat Immunol.
2023;24(3):439-51.
33. Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central
processing of neuropathic pain. Pharmacol Ther. 2010;126(1):56-68.
34. Zigmond RE, Echevarria FD. Macrophage biology in the peripheral
nervous system after injury. Prog Neurobiol. 2019;173:102-21.
35. Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases
pain behaviors and nerve regeneration by downregulating monocyte
chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush
model. Pain. 2022;163(1):e106-e20.
36. Dansereau MA, Midavaine E, Begin-Lavallee V, Belkouch M, Beaudet N,
Longpre JM, et al. Mechanistic insights into the role of the chemokine
CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and
pain hypersensitivity. J Neuroinflammation. 2021;18(1):79.
37. Xie RG, Gao YJ, Park CK, Lu N, Luo C, Wang WT, et al. Spinal CCL2
Promotes Central Sensitization, Long-Term Potentiation, and Inflammatory
Pain via CCR2: Further Insights into Molecular, Synaptic, and Cellular
Mechanisms. Neurosci Bull. 2018;34(1):13-21.
38. Yu X, Liu H, Hamel KA, Morvan MG, Yu S, Leff J, et al. Dorsal root
ganglion macrophages contribute to both the initiation and persistence
of neuropathic pain. Nat Commun. 2020;11(1):264.
39. Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and
molecular mechanisms and therapeutic potential. Nat Rev Neurosci.
2018;19(3):138-52.
40. Zhang L, Xie W, Zhang J, Shanahan H, Tonello R, Lee SH, et al. Key
role of CCR2-expressing macrophages in a mouse model of low back pain
and radiculopathy. Brain Behav Immun. 2021;91:556-67.
41. Denk F, Crow M, Didangelos A, Lopes DM, McMahon SB. Persistent
Alterations in Microglial Enhancers in a Model of Chronic Pain. Cell
Rep. 2016;15(8):1771-81.
42. Hong HS, Son Y. Substance P ameliorates collagen II-induced
arthritis in mice via suppression of the inflammatory response. Biochem
Biophys Res Commun. 2014;453(1):179-84.
43. Lim JE, Chung E, Son Y. A neuropeptide, Substance-P, directly
induces tissue-repairing M2 like macrophages by activating the
PI3K/Akt/mTOR pathway even in the presence of IFNgamma. Sci Rep.
2017;7(1):9417.
44. Yuan K, Zheng J, Shen X, Wu Y, Han Y, Jin X, et al. Sensory nerves
promote corneal inflammation resolution via CGRP mediated transformation
of macrophages to the M2 phenotype through the PI3K/AKT signaling
pathway. International immunopharmacology. 2022;102.
45. Wang N, Liang H, Zen K. Molecular mechanisms that influence the
macrophage m1-m2 polarization balance. Front Immunol. 2014;5:614.
46. Shen KF, Zhu HQ, Wei XH, Wang J, Li YY, Pang RP, et al.
Interleukin-10 down-regulates voltage gated sodium channels in rat
dorsal root ganglion neurons. Exp Neurol. 2013;247:466-75.
47. Xiao YQ. Cross-talk between ERK and p38 MAPK mediates selective
suppression of pro-inflammatory cytokines by transforming growth
factor-beta. The Journal of biological chemistry. 2002;277(17):14884-93.
48. Lantero A. Transforming growth factor-β in normal nociceptive
processing and pathological pain models. Molecular neurobiology.
2012;45(1):76-86.
49. Zhang J, Li Z, Chen F, Liu H, Wang H, Li X, et al. TGF-beta1
suppresses CCL3/4 expression through the ERK signaling pathway and
inhibits intervertebral disc degeneration and inflammation-related pain
in a rat model. Exp Mol Med. 2017;49(9):e379.
50. Bang S, Xie YK, Zhang ZJ, Wang Z, Xu ZZ, Ji RR. GPR37 regulates
macrophage phagocytosis and resolution of inflammatory pain. J Clin
Invest. 2018;128(8):3568-82.
51. Qu L, Caterina MJ. Accelerating the reversal of inflammatory pain
with NPD1 and its receptor GPR37. J Clin Invest. 2018;128(8):3246-9.
52. Porta C. Molecular and epigenetic basis of macrophage polarized
activation. Seminars in immunology. 2015;27(4):237-48.
53. Zhang Q, Bang S, Chandra S, Ji RR. Inflammation and Infection in
Pain and the Role of GPR37. Int J Mol Sci. 2022;23(22).
54. van der Vlist M, Raoof R, Willemen H, Prado J, Versteeg S, Martin
Gil C, et al. Macrophages transfer mitochondria to sensory neurons to
resolve inflammatory pain. Neuron. 2022;110(4):613-26 e9.
55. Iwai H, Ataka K, Suzuki H, Dhar A, Kuramoto E, Yamanaka A, et al.
Tissue-resident M2 macrophages directly contact primary sensory neurons
in the sensory ganglia after nerve injury. J Neuroinflammation.
2021;18(1):227.
56. Parisien M. Acute inflammatory response via neutrophil activation
protects against the development of chronic pain. Science translational
medicine. 2022;14(644).