Bibliography

Acosta, M. C., & Premoli, A. C. (2010). Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus , Nothofagaceae). Molecular Phylogenetics and Evolution , 54, 235-242. doi:10.1016/j.ympev.2009.08.008.
Arkhipov, S. A., Volkova, V. S., Zolnikov, I. D., Zykina, V. S., Krukover, A. A., & Kul’kova, L. A. (2005). West Siberia. In: Velichko A. A., Nechaev V. P. (eds) Cenozoic climatic and environmental changes in Russiae. Geological Society of America Special Paper 382, 67–88
Babik, W., Taberlet, P., Ejsmond, M. J. A. N., & Radwan, J. (2009). New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Molecular Ecology Resources , 9, 713–719. doi:10.1111/j.1755-0998.2009.02622.x
Berger, S. A., Krompass, D., & Stamatakis, A. (2011). Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Systematic Biology , 60, 291-302.doi:10.1093/sysbio/syr010
Bijarpasi, M. M., Müller, M., & Gailing, O. (2020). Genetic diversity and structure of Oriental and European Beech populations from Iran and Europe. Silvae Genetica , 69, 55–62. doi:10.2478/sg-2020-0008
Bryant, D., & Moulton, V. (2004). Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution , 21, 255–265.doi:10.1093/molbev/msh018
Carver, T., & Bleasby, A. (2003). The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics , 19, 1837-1843.doi:10.1093/bioinformatics/btg251
Chokchaichamnankit, P., & Anamthawat-Jonsson, K. (2015). Cytogenetics of the rare and endangered Trigonobalanus doichangensis(Fagaceae) from Northern Thailand. Journal of Tropical Forest Science , 27, 60-68
Chokchaichamnankit, P., Anamthawat-Jonsson, K., & Chulalaksananukul, W. (2008). Chromosomal mapping of 18S–25S and 5S ribosomal genes on 15 species of Fagaceae from Northern Thailand. Silvae Genetica , 57, 5–13. doi:10.1515/sg-2008-0002
Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.-X. (2013, updated). The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.http://www.stratigraphy.org/index.php/ics-chart-timescale
Dagtekin, D., Şahan, E. A., Denk, T., Köse, N., & Dalfes, H. N. (2020). Past, present and future distributions of Oriental Beech (Fagus orientalis ) under climate change projections. PLoS ONE , 15, e0242280.doi:10.1371/journal.pone.0242280
De Castro, O., Di Maio, A., Lozada García, J. A., Piacenti, D., Vázquez-Torres, M., & De Luca, P. (2013). Plastid DNA sequencing and nuclear SNP genotyping help resolve the puzzle of AmericanPlatanus . Annals of Botany , 112, 589–602. doi:0.1093/aob/mct134
Denk, T. (1999a). The taxonomy of Fagus in western Eurasia, 1:Fagus sylvatica subsp. orientalis (= F. orientalis ). Feddes Repertorium , 110, 177–200. doi:10.1002/fedr.19991100305
Denk, T. (1999b). The taxonomy of Fagus in western Eurasia, 2:Fagus sylvatica subsp. sylvatica . Feddes Repertorium , 110, 381–412.doi:10.1002/fedr.19991100510
Denk, T. (2003). Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Systematics and Evolution , 240, 55–81.doi:10.1007/s00606-003-0018-x
Denk, T. (2004). Revision of Fagus from the Cenozoic of Europe and southwestern Asia and its phylogenetic implications. Documenta Naturae , 150, 1–72
Denk, T., Grimm, G., Stögerer, K., Langer, M., & Hemleben, V. (2002). The evolutionary history of Fagus in western Eurasia: evidence from genes, morphology and the fossil record. Plant Systematics and Evolution , 232, 213-236. doi:10.1007/s006060200044
Denk, T., & Grimm, G. W. (2009). The biogeographic history of beech trees. Review of Palaeobotany and Palynology , 158, 83–100. doi:10.1016/j.revpalbo.2009.08.007
Denk, T., & Grimm, G. W. (2010). The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers.Taxon , 59, 351-366. doi:10.1002/tax.592002
Denk, T., Grimm, G. W., & Hemleben, V. (2005). Patterns of molecular and morphological differentiation in Fagus : implications for phylogeny. American Journal of Botany , 92, 1006–1016. doi:10.3732/ajb.92.6.1006
Edgar, R. C, Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection.Bioinformatics , 27, 2194-2200.doi:10.1093/bioinformatics/btr381
Ekblom, R., & Galindo, J. (2010). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity , 107, 1-15. doi:10.1038/hdy.2010.152
Fang, J., & Lechowicz, J. M. (2006). Climatic limits for the present distribution of beech (Fagus L.) species in the world.Journal of Biogeography , 33, 1804–1819. doi:10.1111/j.1365-2699.2006.01533.x
Follieri, M. (1958). La foresta colchica fossile di Riano Romano. I. Studio dei fossili vegetali macroscopici. Annali di Botanica , 26, 129–142
Forest, F., & Bruneau, A. (2000). Phylogenetic analysis, organization, and molecular evolution of the non-transcribed spacer of 5S ribosomal RNA genes in Corylus (Betulaceae). International Journal of Plant Science , 161, 793-806.doi:10.1086/314294
Forest, F., Moat, J., Baloch, E., Brummitt, N. A., Bachman, S. P., Ickert-Bond, S., … Buerki, S. (2018). Gymnosperms on the EDGE.Scientific Reports , 8, 6053. doi:10.1038/s41598-018-24365-4
Forest, F., Savolainen, V., Chase, M. W., Lupia, R., Bruneau, A., & Crane, P. R. (2005). Teasing apart molecular- versus fossil-based error estimates when dating phylogenetic trees: A case study in the birch Family (Betulaceae). Systematic Botany , 30, 118-133.doi:10.1600/0363644053661850
Fradkina, A. F., Alekseev, M. N., Andreev, A. A., & Klimanov, V. A. (2005). East Siberia. In: Velichko, A. A., & Nechaev, V. P. (eds) Cenozoic Climatic and Environmental Changes in Russia. London. The Geological Society of America (Special Paper 382), pp 105–120
Galián, J. A., Rosato, M., & Rossellò, J. A. (2014). Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions.Systematic Biology , 63, 219–230. doi:10.1093/sysbi o/syt101
Galván-Hernández, D. M., Octavio-Aguilar, P., Lazcano-Cruz, L., & Sánchez-González, A. (2020). Morphological and genetic differentiation in isolated populations of Mexican beech Fagus grandifolia subsp.mexicana . Journal of Forest Research (in press).doi:10.1007/s11676-020-01247-y
Glenn, T. C. (2011). Field guide to next-generation DNA sequencers.Molecular Ecology Resources , 11, 759-769.doi:10.1111/j.1755-0998.2011.03024.x
Göker, M., & Grimm, G. W. (2008). General functions to transform associate data to host data, and their use in phylogenetic inference from sequences with intra-individual variability. BMC Evolutionary Biology , 8, 86. doi:10.1186/14712 148-8-86
Gömöry, D., & Paule, L. (2010). Reticulate evolution patterns in western Eurasian beeches. Botanica Helveticae , 120, 63–74.doi:10.1007/s00035-010-0068-y
Gömöry, D., Paule, L., & Mačejovský, V. (2018). Phylogeny of beech in western Eurasia as inferred by approximate Bayesian computation.Acta Societatis Botanicorum Poloniae , 87, 3582. doi:10.5586/asbp.3582
Gömöry, D., Paule, L., & Vyšný, J. (2007). Patterns of allozyme variation in western Eurasian Fagus . Botanical Journal of the Linnean Society , 154, 165–174. doi:10.1111/j.1095-8339.2007.00666.x
Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution , 27, 221-224. doi:10.1093/molbev/msp259 .
Grimm, G. W., & Denk, T. (2008). ITS Evolution in Platanus(Platanaceae): Homoeologues, Pseudogenes and Ancient Hybridization.Annals of Botany , 101, 403-19. doi:10.1093/aob/mcm305
Grimm, G. W., & Denk, T. (2010). The reticulate origin of modern plane trees (Platanus , Platanaceae) – a nuclear marker puzzle.Taxon , 59, 134-147.doi:10.1002/tax.591014
Grimm, G. W., & Denk, T. (2012). Reliability and resolution of the coexistence approach - A revalidation using modern-day data.Review of Palaeobotany and Palynology , 172, 33–47. doi:10.1016/j.revpalbo.2012.01.006
Grimm, G. W., & Denk, T. (2014). The Colchic region as refuge for relict tree lineages: Cryptic speciation in field maples. Turkish Journal of Botany , 38, 1050-1066. doi:10.3906/bot-1403-87
Grimm, G. W., Denk, T., & Hemleben, V. (2007). Coding of intraspecific nucleotide polymorphisms: a tool to resolve reticulate evolutionary relationships in the ITS of beech trees (Fagus L., Fagaceae).Systematics and Biodiversity , 5, 291-309. doi:10.1017/S1477200007002459
Grímsson, F., Grimm, G. W., Zetter, R., & Denk, T. (2016). Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae.Acta Palaeobotanica , 56, 247-255.doi:10.1515/acpa-2016-0016
Hatziskakis, S., Papageorgiou, A. C., Gailing, O., & Finkeldey, R. (2009). High chloroplast haplotype diversity in Greek populations of beech (Fagus sylvatica L.) Plant Biology , 11, 425–433. doi:10.1111 ⁄ j.1438-8677.2008.00111.x
Hipp, A. L., Manos, P. S., Hahn, M., Avishai, M., Bodénès, C., Cavender-Bares, J., … Valencia-Avalos, S. (2020). Genomic landscape of the global oak phylogeny. New Phytologist , 226, 1198–1212. http://doi.org/10.1111/nph.16162
Hipp, A. L., Whittemore, A. T., Garner, M., Hahn, M., Fitzek, E., Guichoux, E., … Cannon, C. H. (2019). Genomic identity of white oak species in an eastern North American syngameon. Annals of the Missouri Botanical Garden , 104, 455–477.doi:10.3417/2019434
Hofmann, C. C., Kodrul, T. M., Liu, X., and Jin, J. (2019). Scanning electron microscopy investigations of middle to late Eocene pollen from the Changchang Basin (Hainan Island, South China) – insights into the paleobiogeography and fossil history of Juglans , Fagus ,Lagerstroemia , Mortoniodendron , Cornus ,Nyssa , Symplocos and some Icacinaceae in SE Asia.Review of Palaeobotany and Palynology , 265, 41–61.doi:10.1016/j.revpalbo.2019.02.004
Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution , 23, 254–267.doi:10.1093/molbev/msj030
Huson, D. H., & Scornavacca, C. (2012). Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Systematic Biology , 61, 1061–1067.doi:10.1093/sysbio/sys062
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Molecular Biology and Evolution , 30, 772-780.doi:10.1093/molbev/mst010
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated.Meteorologische Zeitschrift , 15, 259-263. doi:10.1127/0941-2948/2006/0130
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied Environmental Microbiology , 79, 5112–20.doi:10.1128/AEM.01043-13
Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., … Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research , 19, 1639–1645.doi:10.1101/gr.092759.109
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms.Molecular Biology and Evolution , 35, 1547–1549. doi:10.1093/molbev/msy096
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., & Taylor, M. I. (2019). How quantitative is metabarcoding: A meta‐analytical approach. Molecular Ecology , 28, 420-430. doi:10.1111/mec.14920
Lei, M., Wang, Q., Wu, Z., López‐Pujol, J., Li, D., & Zhang, Z. (2012). Molecular phylogeography of Fagus engleriana (Fagaceae) in subtropical China: limited admixture among multiple refugia. Tree Genetics & Genomes , 8, 1203–1212. doi:10.1007/s11295-012-0507-6
Lepoittevin, C., Bodénès, C., Chancerel, E., Villate, L., Lang, T., Lesur, I., … Kremer, A. (2015). Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Molecular Ecology Resources , 15, 1446–1459.doi:10.1111/1755-0998.12407
Letunic, I., & Bork, P. (2019). Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research , 47, W256-W259.doi:10.1093/nar/gkz239
Liede-Schumann, S., Grimm, G. W., Nürk, N. M., Potts, A. J., Meve, U., & Hartmann, H. E. K. (2020). Phylogenetic relationships in the southern African genus Drosanthemum (Ruschioideae, Aizoaceae).PeerJ , 8, e8999. doi:10.7717/peerj.8999
López de Heredia, U., Mora-Márquez, F., Goicoechea, P. G., Guillardín-Calvo, L., Simeone, M. C., & Soto, Á. (2020). ddRAD sequencing-based identification of genomic boundaries and permeability in Quercus ilex and Q . suber hybrids.Frontiers in Plant Science , 11, 564414.doi:10.3389/fpls.2020.564414
Maddison, W. P., Maddison, D. R. (2011). Mesquite: a modular system for evolutionary analysis. Version 2.75.https://mesquiteproject.wikispaces.com/
Manchester, S. R., & Dillhoff, R. A. (2004). Fagus (Fagaceae) fruits, foliage and pollen from the Middle Eocene of Pacific Northwestern North America. Canadian Journal of Botany , 82, 1509–1517. doi:10.1139/b04-112
McVay, J. D., Hipp, A. L., & Manos, P. S. (2017). A genetic legacy of introgression confounds phylogeny and biogeography in oaks.Proceedings of the Royal Society of London Series B , 284, 20170300. doi:10.1098/rspb.2017.0300
Meyer, H. W, & Manchester, S. R. (1997). The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Press
Müller, M., Lopez, P. A., Papageorgiou, A. C., Tsiripidis, I., & Gailing, O. (2019). Indications of genetic admixture in the transition zone between Fagus sylvatica L. and Fagus sylvatica ssp.orientalis Greut. & Burd. Diversity , 11, 90.doi:10.3390/d11060090
Nei, M., & Rooney, A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics , 39, 121-152.doi:10.1146/annurev.genet.39.073003.112240
Oh, S.-H., Youm, J.-W., Kim, Y.-I., & Kim, Y.-D. (2016). Phylogeny and evolution of endemic species on Ulleungdo Island, Korea: The case ofFagus multinervis (Fagaceae). Systematic Botany , 41, 617-625. doi:10.1600/036364416X692271
Okaura, T., & Harada, K. (2002). Phylogeographical structure revealed by chloroplast DNA variation in Japanese beech (Fagus crenataBlume). Heredity , 88, 322–329. doi:10.1038/sj.hdy.6800048
Papageorgiou, A. C., Vidalis, A., Gailing, O., Tsiripidis, I., Hatziskakis, S., Boutsios, S., … Finkeldey, R. (2008). Genetic variation of beech (Fagus sylvatica L.) in Rodopi (N.E. Greece).European Journal of Forest Research , 127, 81–88.doi:10.1007/s10342-007-0185-3
Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E., & Stamatakis, A. (2009) How many bootstrap replicates are necessary?. In: Batzoglou S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science, 5541. Springer, Berlin, Heidelberg.doi:10.1007/978-3-642-02008-7_13
Pavlyutkin, B. I., Chekryzhov, I. Yu., & Petrenko, T. I. (2014). Geology and floras of lower Oligocene in the Primorye. Russian Academy of Sciences Far Eastern Branch, Far Eastern Geological Institute, Dalnauka, Vladivostok.
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences , 11, 1633–1644.doi:10.5194/hess-11-1633-2007
Peters, R. (1997). Beech forests. Kluwer Academic Publishers, Dordrecht, Netherlands
Pilotti, M., Brunetti, A., Tizzani, L., & Marani, O. (2009).Platanus x acerifolia genotypes surviving to inoculation withCeratocystis platani (the agent of canker stain): first screening and molecular characterization. Euphytica , 169, 1–17. doi:10.1007/s10681-009-9884-9
Piredda, R., Grimm, G. W., Schulze, E.-D., Denk, T., & Simeone, M. C. (2020). High-throughput sequencing of 5S-IGS in oaks – exploring intragenomic variation and algorithms to recognize target species in pure and mixed samples. Molecular Ecology Resources .doi:10.22541/au.158696014.43811940
Potts, A. J., Hedderson, T. A., & Grimm, G. W. (2014). Constructing phylogenies in the presence of Intra-Individual Site Polymorphisms (2ISPs) with a focus on the nuclear ribosomal cistron. Systematic Biology , 63, 1–16. doi:10.1093/sysbi o/syt052
Premoli, A. C., Mathiasen, P., Acosta, M. C., & Ramos, V. A. (2012). Phylogeographically concordant chloroplast DNA divergence in sympatricNothofagus s.s. How deep can it be? New Phytologist , 193, 261-275. doi:10.1111/j.1469-8137.2011.03861.x
Renner, S. S., Grimm, G. W., Kapli, P., & Denk, T. (2016). Species relationships and divergence times in beeches: new insights from the inclusion of 53 young and old fossils in a birth–death clock model.Philosophical Transactions of the Royal Society of London B , 371, 20150135. doi:10.1098/rstb.2015.0135
Ribeiro, T., Loureiro, J., Santos, C., & Morais-Cecílio, L. (2011). Evolution of rDNA FISH patterns in the Fagaceae. Tree Genetics & Genomes , 7, 1113-1122.doi:10.1007/s11295-011-0399-x
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., … Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied Environmental Microbiology , 75, 7537-7541.doi:10.1128/AEM.01541-09
Shatilova, I., Mchedlishvili, N., Rukhadze, L., & Kvavadze, E. (2011). The history of the flora and vegetation of Georgia (South Caucasus). Georgian National Museum, Tbilisi.
Shen, C. F. (1992). A monograph of the genus Fagus Tourn. Ex L. (Fagaceae). PhD Thesis, The City University of New York, USA.
Simeone, M. C., Cardoni, S., Piredda, R., Imperatori, F., Avishai, M., Grimm, G. W., & Denk, T. (2018). Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation.PeerJ , 6, e5793. doi:10.7717/peerj.5793
Simeone, M. C., Grimm, G. W., Papini, A., Vessella, F., Cardoni, S, Tordoni, E., … Denk, T. (2016). Plastome data reveal multiple geographic origins of Quercus Group Ilex . PeerJ , 4, e1897.doi:10.7717/peerj.1897
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics , 30, 1312-1313.doi:10.1093/bioinformatics/btu033
Volkov, R. A., Komarova, N. Y., & Hemleben, V. (2007). Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Systematics and Biodiversity , 5, 261–76. doi:10.1017/S1477200007002447
Volkov, R. A, Panchuk, I. I., Borisjuk, N. V., Hosiawa-Baranska, M., Maluszynska, J., & Hemleben, V. (2017). Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna .BMC Plant Biology , 17, 21.doi:10.1186/s12870-017-0978-6
Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer-Verlag, New York.
Yan, M., Liu, R., Li, Y., Hipp, A. L., Deng, M., & Xiong, Y. (2019). Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evolutionary Biology , 19, 202. doi:10.1186/s12862-019-1523-z
Zhang, Z.-Y., Wu, R., Wang, Q., Zhang, Z.-R., Lopez-Pujol, J., Fan, D.-M., & Li, D. Z. (2013) Comparative phylogeography of two sympatric beeches in subtropical China: species specific geographic mosaic of lineages. Ecology and Evolution , 3, 4461–4472.doi:10.1002/ece3.829