References:
1. De Smedt S, Wildner G, Kestelyn P. Vernal keratoconjunctivitis: An
update. Br. J. Ophthalmol. 2013;97 :9–14.
2. Saboo US, Jain M, Reddy JC, Sangwan VS. Demographic and clinical
profile of vernal keratoconjunctivitis at a tertiary eye care center in
India. Indian J Ophthalmol 2013;61 :486–489.
3. Kumar Y, Bhatia A. Immunopathogenesis of allergic disorders: Current
concepts. Expert Rev. Clin. Immunol. 2013;9 :211–226.
4. Micera A, Di Zazzo A, Esposito G, Sgrulletta R, Calder VL, Bonini S.
Quiescent and Active Tear Protein Profiles to Predict Vernal
Keratoconjunctivitis Reactivation. Biomed Res Int2016;2016 . doi:10.1155/2016/9672082
5. Schauberger E, Peinhaupt M, Cazares T, Lindsley AW. Lipid Mediators
of Allergic Disease: Pathways, Treatments, and Emerging Therapeutic
Targets. Curr. Allergy Asthma Rep. 2016;16 .
doi:10.1007/s11882-016-0628-3
6. Woodcock J. Sphingosine and ceramide signalling in apoptosis. IUBMB
Life. 2006;58 :462–466.
7. Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya
N, Jagannath MR. Sphingolipid Metabolic Pathway: An Overview of Major
Roles Played in Human Diseases. J Lipids2013;2013 :1–12.
8. Newton J, Lima S, Maceyka M, Spiegel S. Revisiting the sphingolipid
rheostat: Evolving concepts in cancer therapy. Exp. Cell Res.
2015;333 :195–200.
9. Aguilar A, Saba JD. Truth and consequences of sphingosine-1-phosphate
lyase. Adv. Biol. Regul. 2012;52 :17–30.
10. Leonardi A. Allergy and allergic mediators in tears. Exp. Eye Res.
2013;117 :106–117.
11. Bonini S, Sacchetti M, Mantelli F, Lambiase A. Clinical grading of
vernal keratoconjunctivitis. Curr Opin Allergy Clin Immunol2007;7 :436–441.
12. Aluru Venkata Saijyothi, Narayanasamy Angayarkanni, Chandran Syama,
Tatu Utpal, Agarwal Shweta, Srinivasan Bhaskar, Iyer Krishnan Geetha,
Pillai S. Vinay, Maruthamuthu Thennarasu, Rajappa M. Sivakumar PP. Two
dimensional electrophoretic analysis of human tears : Collection method
in dry eye syndrome. Electrophoresis 2010;31 :3420–3427.
13. Gurumurthy S, Iyer G, Srinivasan B, Agarwal S, Angayarkanni N.
Ocular surface cytokine profile in chronic Stevens-Johnson syndrome and
its response to mucous membrane grafting for lid margin keratinisation.Br J Ophthalmol 2018;102 .
doi:10.1136/bjophthalmol-2017-310373
14. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the
comparative CT method. Nat Protoc 2008;3 :1101–1108.
15. Obeid YAH and LM. Sphingolipid metabolism.pdf. 2018;:175–191.
16. Sturgill JL. Sphingolipids and their enigmatic role in asthma. Adv.
Biol. Regul. 2018;70 :74–81.
17. Wu BX, Fan J, Boyer NP, Jenkins RW, Koutalos Y, Hannun YA et al.
Lack of acid sphingomyelinase induces age-related retinal degeneration.PLoS One 2015;10 . doi:10.1371/journal.pone.0133032
18. Lam SM, Tong L, Duan X, Petznick A, Wenk MR, Shui G. Extensive
characterization of human tear fl uid collected using different
techniques unravels the presence of novel lipid amphiphiles. J
Lipid Res 2014;55 :289–298.
19. Winter AW, Salimi A, Ospina LH, Roos JCP. Ophthalmic manifestations
of Gaucher disease: The most common lysosomal storage disorder. Br. J.
Ophthalmol. 2019;103 :315–326.
20. Robciuc A, Hyötyläinen T, Jauhiainen M, Holopainen JM. Ceramides in
the pathophysiology of the anterior segment of the eye. Curr. Eye Res.
2013;38 :1006–1016.
21. Priyadarsini S, Sarker-Nag A, Allegood J, Chalfant C, Karamichos Di.
Description of the Sphingolipid Content and Subspecies in the Diabetic
Cornea. Curr Eye Res 2015;40 :1204–1210.
22. Nixon GF. Sphingolipids in inflammation: Pathological implications
and potential therapeutic targets. Br J Pharmacol2009;158 :982–993.
23. Gomez-Muñoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M,
Ordoñez M. Control of inflammatory responses by ceramide, sphingosine
1-phosphate and ceramide 1-phosphate. Prog. Lipid Res.
2016;61 :51–62.
24. Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide
1-phosphate: Expanding roles in cell signaling. J Cell Sci2005;118 :4605–4612.
25. Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate in
allergic responses, asthma and anaphylaxis. Pharmacol. Ther.
2007;115 :390–399.
26. Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling
mechanisms of ceramide and role in disease. J. Lipid Res.
2019;60 :913–918.
27. Gómez-Muñoz A. Ceramide 1-phosphate/ceramide, a switch between life
and death. Biochim. Biophys. Acta - Biomembr.
2006;1758 :2049–2056.
28. Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME. The
consequences of apoptosis in autoimmunity. J Autoimmun2008;31 :257–262.
29. Choi MJ, Maibach HI. Role of ceramides in barrier function of
healthy and diseased skin. Am. J. Clin. Dermatol.
2005;6 :215–223.
30. Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K,
Colombini M. Ceramide and activated Bax act synergistically to
permeabilize the mitochondrial outer membrane. Apoptosis2010;15 :553–562.
31. Meshcheryakova A, Svoboda M, Tahir A, Köfeler HC, Triebl A,
Mungenast F et al. Exploring the role of sphingolipid machinery during
the epithelial to mesenchymal transition program using an integrative
approach. Oncotarget 2016;7 :22295–22323.
32. Kircik LH, del Rosso JQ, Aversa D. Evaluating clinical use of a
ceramide-dominant, physiologic lipid-based topical emulsion for atopic
dermatitis. J Clin Aesthet Dermatol 2011;4 :34–40.
33. Sun Y, Fox T, Adhikary G, Kester M, Pearlman E. Inhibition of
corneal inflammation by liposomal delivery of short-chain, C-6 ceramide.J Leukoc Biol 2008;83 :1512–1521.
34. Price MM, Oskeritzian CA, Falanga YT, Harikumar KB, Allegood JC,
Alvarez SE et al. A specific sphingosine kinase 1 inhibitor attenuates
airway hyperresponsiveness and inflammation in a mast cell-dependent
murine model of allergic asthma. J Allergy Clin Immunol2013;131 . doi:10.1016/j.jaci.2012.07.014
35. Reines I, Kietzmann M, Mischke R, Tschernig T, Lüth A, Kleuser B et
al. Topical application of sphingosine-1-phosphate and FTY720 attenuate
allergic contact dermatitis reaction through inhibition of dendritic
cell migration. J Invest Dermatol 2009;129 :1954–1962.
36. Liu Y, Jiang J, Xiao H, Wang X, Li Y, Gong Y et al. Topical
application of FTY720 and cyclosporin A prolong corneal graft survival
in mice. Mol Vis 2012;18 :624–633.
37. Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H,
Alhamdan F et al. Histone modifications and their role in epigenetics of
atopy and allergic diseases. Allergy Asthma Clin Immunol2018;14 :39.
38. Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L,
Tschismarov R et al. Conditional Deletion of Histone Deacetylase 1 in T
Cells Leads to Enhanced Airway Inflammation and Increased Th2 Cytokine
Production. J Immunol 2010;185 :3489–3497.
39. Krajewski D, Kaczenski E, Rovatti J, Polukort S, Thompson C, Dollard
C et al. Epigenetic regulation via altered histone acetylation results
in suppression of mast cell function and mast cell-mediated food
allergic responses. Front Immunol 2018;9 .
doi:10.3389/fimmu.2018.02414