References:
1. De Smedt S, Wildner G, Kestelyn P. Vernal keratoconjunctivitis: An update. Br. J. Ophthalmol. 2013;97 :9–14.
2. Saboo US, Jain M, Reddy JC, Sangwan VS. Demographic and clinical profile of vernal keratoconjunctivitis at a tertiary eye care center in India. Indian J Ophthalmol 2013;61 :486–489.
3. Kumar Y, Bhatia A. Immunopathogenesis of allergic disorders: Current concepts. Expert Rev. Clin. Immunol. 2013;9 :211–226.
4. Micera A, Di Zazzo A, Esposito G, Sgrulletta R, Calder VL, Bonini S. Quiescent and Active Tear Protein Profiles to Predict Vernal Keratoconjunctivitis Reactivation. Biomed Res Int2016;2016 . doi:10.1155/2016/9672082
5. Schauberger E, Peinhaupt M, Cazares T, Lindsley AW. Lipid Mediators of Allergic Disease: Pathways, Treatments, and Emerging Therapeutic Targets. Curr. Allergy Asthma Rep. 2016;16 . doi:10.1007/s11882-016-0628-3
6. Woodcock J. Sphingosine and ceramide signalling in apoptosis. IUBMB Life. 2006;58 :462–466.
7. Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N, Jagannath MR. Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. J Lipids2013;2013 :1–12.
8. Newton J, Lima S, Maceyka M, Spiegel S. Revisiting the sphingolipid rheostat: Evolving concepts in cancer therapy. Exp. Cell Res. 2015;333 :195–200.
9. Aguilar A, Saba JD. Truth and consequences of sphingosine-1-phosphate lyase. Adv. Biol. Regul. 2012;52 :17–30.
10. Leonardi A. Allergy and allergic mediators in tears. Exp. Eye Res. 2013;117 :106–117.
11. Bonini S, Sacchetti M, Mantelli F, Lambiase A. Clinical grading of vernal keratoconjunctivitis. Curr Opin Allergy Clin Immunol2007;7 :436–441.
12. Aluru Venkata Saijyothi, Narayanasamy Angayarkanni, Chandran Syama, Tatu Utpal, Agarwal Shweta, Srinivasan Bhaskar, Iyer Krishnan Geetha, Pillai S. Vinay, Maruthamuthu Thennarasu, Rajappa M. Sivakumar PP. Two dimensional electrophoretic analysis of human tears : Collection method in dry eye syndrome. Electrophoresis 2010;31 :3420–3427.
13. Gurumurthy S, Iyer G, Srinivasan B, Agarwal S, Angayarkanni N. Ocular surface cytokine profile in chronic Stevens-Johnson syndrome and its response to mucous membrane grafting for lid margin keratinisation.Br J Ophthalmol 2018;102 . doi:10.1136/bjophthalmol-2017-310373
14. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008;3 :1101–1108.
15. Obeid YAH and LM. Sphingolipid metabolism.pdf. 2018;:175–191.
16. Sturgill JL. Sphingolipids and their enigmatic role in asthma. Adv. Biol. Regul. 2018;70 :74–81.
17. Wu BX, Fan J, Boyer NP, Jenkins RW, Koutalos Y, Hannun YA et al. Lack of acid sphingomyelinase induces age-related retinal degeneration.PLoS One 2015;10 . doi:10.1371/journal.pone.0133032
18. Lam SM, Tong L, Duan X, Petznick A, Wenk MR, Shui G. Extensive characterization of human tear fl uid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res 2014;55 :289–298.
19. Winter AW, Salimi A, Ospina LH, Roos JCP. Ophthalmic manifestations of Gaucher disease: The most common lysosomal storage disorder. Br. J. Ophthalmol. 2019;103 :315–326.
20. Robciuc A, Hyötyläinen T, Jauhiainen M, Holopainen JM. Ceramides in the pathophysiology of the anterior segment of the eye. Curr. Eye Res. 2013;38 :1006–1016.
21. Priyadarsini S, Sarker-Nag A, Allegood J, Chalfant C, Karamichos Di. Description of the Sphingolipid Content and Subspecies in the Diabetic Cornea. Curr Eye Res 2015;40 :1204–1210.
22. Nixon GF. Sphingolipids in inflammation: Pathological implications and potential therapeutic targets. Br J Pharmacol2009;158 :982–993.
23. Gomez-Muñoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordoñez M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog. Lipid Res. 2016;61 :51–62.
24. Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: Expanding roles in cell signaling. J Cell Sci2005;118 :4605–4612.
25. Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. Pharmacol. Ther. 2007;115 :390–399.
26. Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease. J. Lipid Res. 2019;60 :913–918.
27. Gómez-Muñoz A. Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim. Biophys. Acta - Biomembr. 2006;1758 :2049–2056.
28. Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME. The consequences of apoptosis in autoimmunity. J Autoimmun2008;31 :257–262.
29. Choi MJ, Maibach HI. Role of ceramides in barrier function of healthy and diseased skin. Am. J. Clin. Dermatol. 2005;6 :215–223.
30. Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K, Colombini M. Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis2010;15 :553–562.
31. Meshcheryakova A, Svoboda M, Tahir A, Köfeler HC, Triebl A, Mungenast F et al. Exploring the role of sphingolipid machinery during the epithelial to mesenchymal transition program using an integrative approach. Oncotarget 2016;7 :22295–22323.
32. Kircik LH, del Rosso JQ, Aversa D. Evaluating clinical use of a ceramide-dominant, physiologic lipid-based topical emulsion for atopic dermatitis. J Clin Aesthet Dermatol 2011;4 :34–40.
33. Sun Y, Fox T, Adhikary G, Kester M, Pearlman E. Inhibition of corneal inflammation by liposomal delivery of short-chain, C-6 ceramide.J Leukoc Biol 2008;83 :1512–1521.
34. Price MM, Oskeritzian CA, Falanga YT, Harikumar KB, Allegood JC, Alvarez SE et al. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol2013;131 . doi:10.1016/j.jaci.2012.07.014
35. Reines I, Kietzmann M, Mischke R, Tschernig T, Lüth A, Kleuser B et al. Topical application of sphingosine-1-phosphate and FTY720 attenuate allergic contact dermatitis reaction through inhibition of dendritic cell migration. J Invest Dermatol 2009;129 :1954–1962.
36. Liu Y, Jiang J, Xiao H, Wang X, Li Y, Gong Y et al. Topical application of FTY720 and cyclosporin A prolong corneal graft survival in mice. Mol Vis 2012;18 :624–633.
37. Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F et al. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol2018;14 :39.
38. Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L, Tschismarov R et al. Conditional Deletion of Histone Deacetylase 1 in T Cells Leads to Enhanced Airway Inflammation and Increased Th2 Cytokine Production. J Immunol 2010;185 :3489–3497.
39. Krajewski D, Kaczenski E, Rovatti J, Polukort S, Thompson C, Dollard C et al. Epigenetic regulation via altered histone acetylation results in suppression of mast cell function and mast cell-mediated food allergic responses. Front Immunol 2018;9 . doi:10.3389/fimmu.2018.02414