References
Ahas, R., Jaagus, J., & Aasa, A.
(2000). The phenological calendar of Estonia and its correlation with
mean air temperature. Int J Biometeorol , 44(4), 159-166.
Albert, L. P., Restrepo‐Coupe, N.,
Smith, M. N., Wu, J., Chavana‐Bryant, C., Prohaska, N., … & Arain, M.
A. (2019). Cryptic phenology in plants: Case studies, implications, and
recommendations. Global Change Biol , 25(11), 3591-3608.
Aldridge, G., Inouye, D. W.,
Forrest, J. R. K., Barr, W. A., & Miller‐Rushing, A. J. (2011).
Emergence of a mid‐season period of low floral resources in a montane
meadow ecosystem associated with climate change. J Ecol , 99(4),
905–913.
Arft, A. M., Walker, M. D.,
Gurevitch, J. E. T. A., Alatalo, J. M., Bret-Harte, M. S., Dale, M., …
& Hollister, R. D. (1999). Responses of tundra plants to experimental
warming: meta‐analysis of the international tundra experiment.Ecol Monogr , 69(4), 491-511.
Brienen, R. J. W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich,
J., Baliva, M., … Locosselli, G. M. (2020).Forest carbon sink
neutralized by pervasive growth-lifespan trade-offs. Nat Commun ,
11(1), 1–10.
Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., … & Kang, X.
(2013). The impacts of climate change and human activities on
biogeochemical cycles on the Qinghai‐Tibetan Plateau. Global
Change Biol , 19(10), 2940-2955.
Chen, L., Hnninen, H., Rossi, S.,
Smith, N. G., & Liu, J. (2020). Leaf senescence exhibits stronger
climatic responses during warm than during cold autumns. Nat Clim
Change , 1-4.
Chen, X., An, S., Inouye, D. W.,
& Schwartz, M. D. (2015). Temperature and snowfall trigger alpine
vegetation green-up on the world’s roof. Global Change Biol ,
21(10), 3635–3646.
Chuine, I., Bonhomme, M., Legave,
J. M., García de Cortázar‐Atauri, I., Charrier, G., Lacointe, A., &
Améglio, T. (2016). Can phenological models predict tree phenology
accurately in the future? The unrevealed hurdle of endodormancy
break. Global Change Biol , 22(10), 3444-3460.
Cleland, E. E., Allen, J. M.,
Crimmins, T. M., Dunne, J. A., Pau, S., Travers, S. E., …
Wolkovich, E. M. (2012). Phenological tracking enables positive species
responses to climate change. Ecology , 93(8), 1765–1771.
Dong, J., Zhang, G., Zhang, Y., &
Xiao, X. (2013). Reply to Wang et al.: Snow cover and air temperature
affect the rate of changes in spring phenology in the Tibetan Plateau.P Natl Acad Sci USA, 110(31), 201306813.
Dong, S., Shang, Z., Gao, J., & Boone, R. B. (2020). Enhancing
sustainability of grassland ecosystems through ecological restoration
and grazing management in an era of climate change on Qinghai-Tibetan
Plateau. Agr Ecosyst Environ , 287, 106684.
Dorji, T., Totland, Ø., Moe, S.
R., Hopping, K. A., Pan, J., & Klein, J. A. (2013). Plant functional
traits mediate reproductive phenology and success in response to
experimental warming and snow addition in Tibet. Global Change
Biol , 19(2), 459-472.
Duparc, A., Redjadj, C.,
Viard‐Crétat, F., Lavorel, S., Austrheim, G., & Loison, A. (2013).
Co-variation between plant above-ground biomass and phenology in
sub-alpine grasslands. Appl Veg Sci , 16(2), 305–316.
Ernakovich, J. G., Hopping, K. A.,
Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., &
Wallenstein, M. D. (2014). Predicted responses of arctic and alpine
ecosystems to altered seasonality under climate change. Global
Change Biol , 20(10), 3256-3269.
Fridley, J. D. (2012). Extended
leaf phenology and the autumn niche in deciduous forest invasions.Nature , 485(7398), 359–362.
Fu, Y. H., Piao, S., Op de Beeck, M., Cong, N., Zhao, H., Zhang, Y., …
& Janssens, I. A. (2014). Recent spring phenology shifts in western C
entral E urope based on multiscale observations. Global Ecol
Biogeogr , 23(11), 1255-1263.
Fu, Y. H., Piao, S., Zhou, X.,
Geng, X., Hao, F., Vitasse, Y., & Janssens, I. A. (2019). Short
photoperiod reduces the temperature sensitivity of leaf‐out in saplings
of Fagus sylvatica but not in horse chestnut. Global Change Biol ,
25(5), 1696–1703.
Fu, Y. H., Zhao, H., Piao, S.,
Peaucelle, M., Peng, S., Zhou, G., … & Song, Y. (2015). Declining
global warming effects on the phenology of spring leaf unfolding.Nature , 526(7571), 104-107.
Gallinat, A. S., Primack, R. B.,
& Wagner, D. L. (2015). Autumn, the neglected season in climate change
research. Trends Ecol Evol , 30(3), 169–176.
Gonsamo, A., Chen, J. M., & Ooi,
Y. W. (2018). Peak season plant activity shift towards spring is
reflected by increasing carbon uptake by extratropical
ecosystems. Global Change Biol , 24(5), 2117-2128.
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade,
M. (2006). Global temperature change. P Natl Acad Sci USA,
103(39), 14288-14293.
IPCC (2013) Climate Change 2013: The Physical Science Basis.
(Contribution of working group I to the Fifth assessment. Report of the
intergovernmental panel on climate change). Cambridge University Press,
Cambridge,1535.
Jiang, L. L., Wang, S. P., Meng, F. D., Duan, J. C., Niu, H. S., Xu, G.
P., … & Li, Y. M. (2016). Relatively stable response of fruiting
stage to warming and cooling relative to other phenological
events. Ecology , 97(8), 1961-1969.
Jonas, T., Rixen, C., Sturm, M.,
& Stoeckli, V. (2008). How alpine plant growth is linked to snow cover
and climate variability. J Geophys Res-Biogeo , 113(G3).
Kardol, P., Campany, C. E., Souza, L., Norby, R. J., Weltzin, J. F., &
Classen, A. T. (2010). Climate change effects on plant biomass alter
dominance patterns and community evenness in an experimental old‐field
ecosystem. Global Change Biol , 16(10), 2676-2687.
Li, L., Li, Z., Cadotte, M. W.,
Jia, P., Chen, G., Jin, L. S., & Du, G. (2016). Phylogenetic
conservatism and climate factors shape flowering phenology in alpine
meadows. Oecologia , 182(2), 419-428.
Li, S., Dong, S., Shen, H., Han,
Y., Zhang, J., Xu, Y., … & Liu, S. (2019). Different responses of
multifaceted plant diversities of alpine meadow and alpine steppe to
nitrogen addition gradients on Qinghai-Tibetan Plateau. Sci Total
Environ , 688, 1405-1412.
Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., … & Zhao,
X. (2018). Shifting plant species composition in response to climate
change stabilizes grassland primary production. P Natl Acad SciUSA, 201700299.
Liu, Q., Fu, Y. H., Zhu, Z., Liu,
Y., Liu, Z., Huang, M., … & Piao, S. (2016). Delayed autumn phenology
in the Northern Hemisphere is related to change in both climate and
spring phenology. Global Change Biol , 22(11), 3702-3711.
Ma, W., Liu, Z., Wang, Z., Wang, W., Liang, C., Tang, Y., … & Fang,
J. (2010). Climate change alters interannual variation of grassland
aboveground productivity: evidence from a 22-year measurement series in
the Inner Mongolian grassland. J Plant Res , 123(4), 509-517.
Ma, Z., H. Liu, Z. Mi, Z. Zhang, Y. Wang, W. Xu, L. Jiang, and J. He.
(2017). Climate warming reduces the temporal stability of plant
community biomass production. Nat Commun 8:15378.
Millerrushing, A. J., & Primack,
R. B. (2008). Global Warming And Flowering Times In Thoreau’s Concord: A
Community Perspective. Ecology , 89(2), 332-341.
Munson, S. M., & Long, A. L.
(2017). Climate drives shifts in grass reproductive phenology across the
western USA. New Phytol , 213(4), 1945-1955.
Paine, C.E.T., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector,
A. et al. (2012). How to fit nonlinear plant growth models and calculate
growth rates: an update for ecologists. Methods Ecol. Evol ., 3,
245–256.
Piao, S., Cui, M., Chen, A., Wang,
X., Ciais, P., Liu, J., & Tang, Y. (2011). Altitude and temperature
dependence of change in the spring vegetation green-up date from 1982 to
2006 in the Qinghai-Xizang Plateau. Agr Forest Meteorol , 151(12),
1599-1608.
Piao, S., Liu, Q., Chen, A.,
Janssens, I. A., Fu, Y., Dai, J., … & Zhu, X. (2019). Plant phenology
and global climate change: Current progresses and challenges.Global Change Biol , 25(6), 1922-1940.
Piao, S., Tan, J., Chen, A., Fu,
Y. H., Ciais, P., Liu, Q., … & Penuelas, J. (2015). Leaf onset in the
northern hemisphere triggered by daytime temperature. Nat Commun ,
6(1), 6911-6911.
Potter, C. S., Klooster, S., & Brooks, V. (1999). Interannual
variability in terrestrial net primary production: Exploration of trends
and controls on regional to global scales. Ecosystems , 2(1),
36-48.
Rammig, A., Jonas, T., Zimmermann,
N. E., & Rixen, C. (2009). Changes in alpine plant growth under future
climate conditions. Biogeosciences , 7(6), 2013–2024.
Reed, P. B., Pfeifermeister, L.,
Roy, B. A., Johnson, B. R., Bailes, G., Nelson, A. A., … & Bridgham,
S. D. (2019).Prairie plant phenology driven more by temperature than
moisture in climate manipulations across a latitudinal gradient in the
Pacific Northwest, USA. Ecol Evol , 9(6), 3637-3650.
Richardson, A. D., Keenan, T. F.,
Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate
change, phenology, and phenological control of vegetation feedbacks to
the climate system. Agr Forest Meteorol , 169, 156-173.
Shen, M., Piao, S., Dorji, T.,
Liu, Q., Cong, N., Chen, X., … & Zhang, G. (2015). Plant phenological
responses to climate change on the Tibetan Plateau: research status and
challenges. Natl Sci Rev , 2(4), 454-467.
Sherry, R. A., Zhou, X., Gu, S.,
Arnone, J. A., Schimel, D. S., Verburg, P. S., … & Luo, Y. (2007).
Divergence of reproductive phenology under climate warming. P Natl
Acad Sci USA , 104(1), 198-202.
Shi, C., Sun, G., Zhang, H., Xiao,
B., Ze, B., Zhang, N., & Wu, N. (2014). Effects of warming on
chlorophyll degradation and carbohydrate accumulation of Alpine
herbaceous species during plant senescence on the Tibetan Plateau.Plos One , 9(9).
Sparks, T. H., & Menzel, A.
(2002). Observed changes in seasons: An overview. Int J Climatol ,
22(14), 1715–1725.
Sun, S., &
Frelich, L. E. (2011). Flowering
phenology and height growth pattern are associated with maximum plant
height, relative growth rate and stem tissue mass density in herbaceous
grassland species. J Ecol , 99(4), 991-1000.
Suonan, J., Classen, A. T., Sanders, N. J., & He, J. (2019). Plant
phenological sensitivity to climate change on the Tibetan Plateau and
relative to other areas of the world. Ecosphere , 10(1).
Suonan, J., Classen, A. T., Zhang, Z., & He, J. (2017). Asymmetric
winter warming advanced plant phenology to a greater extent than
symmetric warming in an alpine meadow. Funct Ecol , 31(11),
2147–2156.
Swemmer, A. M., Knapp, A. K., & Snyman, H. A. (2007). Intra‐seasonal
precipitation patterns and above‐ground productivity in three perennial
grasslands. J Ecol , 95(4), 780-788.
Vitasse, Y., Delzon, S., Dufrêne,
E., Pontailler, J.-Y., Louvet, J.-M., Kremer, A., & Michalet, R.
(2009). Leaf phenology sensitivity to temperature in European trees: do
within-species populations exhibit similar responses? Agr Forest
Meteorol , 149(5), 735–744.
Walker, M. D., Ingersoll, R. C.,
& Webber, P. J. (1995). Effects of interannual climate variation on
phenology and growth of two alpine forbs. Ecology , 76(4),
1067-1083.
Walther, G. R., Post, E., Convey,
P., Menzel, A., Parmesan, C., Beebee, T. J., … & Bairlein, F. (2002).
Ecological responses to recent climate change. Nature , 416(6879),
389-395.
Wang, H., Liu, H., Cao, G., Ma,
Z., Li, Y., Zhang, F., … & Classen, A. T. (2020). Alpine grassland
plants grow earlier and faster but biomass remains unchanged over 35
years of climate change. Ecol Lett , 23(4), 701-710.
Wang, S. P., Meng, F. D., Duan, J.
C., Wang, Y. F., Cui, X. Y., Piao, S. L., … Zhang, Z. H. (2014).
Asymmetric sensitivity of first flowering date to warming and cooling in
alpine plants. Ecology , 95(12), 3387–3398.
Wang, Y., Yu, S., & Wang, J. (2007). Biomass‐dependent susceptibility
to drought in experimental grassland communities. Ecol Lett ,
10(5), 401-410.
Wingler, A. & Hennessy, D. (2016). Limitation of grassland productivity
by low temperature and seasonality of growth. Front. Plant Sci .,
7, 1130.
Xie, Y., Wang, X., & Silander, J.
A. (2015). Deciduous forest responses to temperature, precipitation, and
drought imply complex climate change impacts. P Natl Acad SciUSA, 112(44), 13585–13590.
Xu, W., M. Zhu, Z. Zhang, Z. Ma, H. Liu, L. Chen, G. Cao, X. Zhao, B.
Schmid, and J. He. (2018). Experimentally simulating warmer and wetter
climate additively improves rangeland quality on the Tibetan Plateau.J Appl Ecol 00:1–12.
Yang, K., Wu, H., Qin, J., Lin,
C., Tang, W., & Chen, Y. (2014). Recent climate changes over the
Tibetan Plateau and their impacts on energy and water cycle: A
review. Global Planet Change , 112, 79-91.
Yang, Z., Jiang, L., Su, F., Zhang, Q., Xia, J., & Wan, S. (2016).
Nighttime warming enhances drought resistance of plant communities in a
temperate steppe. Sci Rep -UK, 6, 23267.
Yu, H., Luedeling, E., & Xu, J.
(2010). Winter and spring warming result in delayed spring phenology on
the Tibetan Plateau. P Natl Acad Sci USA, 107(51), 22151–22156.
Zhang, J., Wu, L., Huang, G., Zhu,
W., & Zhang, Y. (2011). The role of May vegetation greenness on the
southeastern Tibetan Plateau for East Asian summer monsoon prediction.J Geophys Res , 116.
Zhang, Q., Kong, D., Shi, P.,
Singh, V. P., & Sun, P. (2018). Vegetation phenology on the
Qinghai-Tibetan Plateau and its response to climate change (1982–2013).Agr Forest Meteorol , 248, 408-417.
Zhou, B., Li, S., Li, F., Dong,
S., Ma, F., Zhu, S., … Stufkens, P. (2019). Plant functional
groups asynchrony keep the community biomass stability along with the
climate change- a 20-year experimental observation of alpine meadow in
eastern Qinghai-Tibet Plateau. Agr Ecosyst Environ , 282, 49–57.
Zhu, J., Zhang, Y., & Wang, W. (2016). Interactions between warming and
soil moisture increase overlap in reproductive phenology among species
in an alpine meadow. Biol Letters , 12(7), 20150749.
Zhu, Y., Zhang, Y., Zu, J., Wang, Z., Huang, K., Cong, N., & Tang, Z.
(2019). Effects of data temporal resolution on phenology extractions
from the alpine grasslands of the Tibetan Plateau. Ecol
Indic , 104, 365-377.