REFERENCES
1. Hopkins C. Chronic Rhinosinusitis with Nasal Polyps. The New
England journal of medicine . 2019;381:55-63.
2. Fokkens W J, Lund V J, Hopkins C, et al. European Position
Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology .
2020;58:1-464.
3. Lou H, Meng Y, Piao Y, et al. Predictive significance of
tissue eosinophilia for nasal polyp recurrence in the Chinese
population. American journal of rhinology & allergy .
2015;29:350-6.
4. Kucuksezer U C, Ozdemir C, Akdis M, Akdis C A. Chronic
rhinosinusitis: pathogenesis, therapy options, and more. Expert
opinion on pharmacotherapy . 2018;19:1805-15.
5. Steelant B, Seys S F, Boeckxstaens G, et al. Restoring airway
epithelial barrier dysfunction: a new therapeutic challenge in allergic
airway disease. Rhinology . 2016;54:195-205.
6. Sugita K, Kabashima K. Tight junctions in the development of asthma,
chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and
inflammatory bowel diseases. Journal of leukocyte biology .
2020;107:749-62.
7. Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the
pathogenesis and prognosis of respiratory tract diseases in childhood
and adulthood. Tissue barriers . 2017;5:e1367458.
8. Gevaert E, Zhang N, Krysko O, et al. Extracellular
eosinophilic traps in association with Staphylococcus aureus at the site
of epithelial barrier defects in patients with severe airway
inflammation. The Journal of allergy and clinical immunology .
2017;139:1849-60.e6.
9. Zhang N, Van Crombruggen K, Gevaert E, Bachert C. Barrier function of
the nasal mucosa in health and type-2 biased airway diseases.Allergy . 2016;71:295-307.
10. Lam K, Schleimer R, Kern R C. The Etiology and Pathogenesis of
Chronic Rhinosinusitis: a Review of Current Hypotheses. Current
allergy and asthma reports . 2015;15:41.
11. Steelant B, Farré R, Wawrzyniak P, et al. Impaired barrier
function in patients with house dust mite-induced allergic rhinitis is
accompanied by decreased occludin and zonula occludens-1 expression.The Journal of allergy and clinical immunology .
2016;137:1043-53.e5.
12. Murphy J, Ramezanpour M, Roscioli E, et al. Mucosal zinc
deficiency in chronic rhinosinusitis with nasal polyposis contributes to
barrier disruption and decreases ZO-1. Allergy . 2018;73:2095-7.
13. Rahmutula D, Marcus G M, Wilson E E, et al. Molecular basis
of selective atrial fibrosis due to overexpression of transforming
growth factor-β1. Cardiovascular research . 2013;99:769-79.
14. Yang Y, Zhang N, Lan F, et al. Transforming growth
factor-beta 1 pathways in inflammatory airway diseases. Allergy .
2014;69:699-707.
15. Yang Y C, Zhang N, Van Crombruggen K, et al. Transforming
growth factor-beta1 in inflammatory airway disease: a key for
understanding inflammation and remodeling. Allergy .
2012;67:1193-202.
16. Chen L, Xiao L, Liu J, et al. Differential Expression of the
Aryl Hydrocarbon Receptor and Transforming Growth Factor Beta 1 in
Chronic Rhinosinusitis with Nasal Polyps with Allergic Rhinitis.ORL; journal for oto-rhino-laryngology and its related
specialties . 2017;79:295-305.
17. Jiao J, Wang M, Duan S, et al. Transforming growth factor-β1
decreases epithelial tight junction integrity in chronic rhinosinusitis
with nasal polyps. The Journal of allergy and clinical
immunology . 2018;141:1160-3.e9.
18. Ganatra D A, Vasavada A R, Vidya N G, Gajjar D U, Rajkumar S.
Trichostatin A Restores Expression of Adherens and Tight Junction
Proteins during Transforming Growth Factor β-Mediated
Epithelial-to-Mesenchymal Transition. Journal of ophthalmic &
vision research . 2018;13:274-83.
19. Zhang Y, Wu H K, Lv F, Xiao R P. MG53: Biological Function and
Potential as a Therapeutic Target. Molecular pharmacology .
2017;92:211-8.
20. Li Z, Wang L, Yue H, et al. MG53, A Tissue Repair Protein
with Broad Applications in Regenerative Medicine. Cells . 2021;10:
21. Zhang M, Wang H, Wang X, et al. MG53/CAV1 regulates
transforming growth factor-β1 signaling-induced atrial fibrosis in
atrial fibrillation. Cell cycle (Georgetown, Tex) .
2020;19:2734-44.
22. Sermersheim M, Kenney A D, Lin P H, et al. MG53 suppresses
interferon-β and inflammation via regulation of ryanodine
receptor-mediated intracellular calcium signaling. Nature
communications . 2020;11:3624.
23. Zhu H, Hou J, Roe J L, et al. Amelioration of
ischemia-reperfusion-induced muscle injury by the recombinant human MG53
protein. Muscle & nerve . 2015;52:852-8.
24. Chandler H L, Tan T, Yang C, et al. MG53 promotes corneal
wound healing and mitigates fibrotic remodeling in rodents.Communications biology . 2019;2:71.
25. Jia Y, Chen K, Lin P, et al. Treatment of acute lung injury
by targeting MG53-mediated cell membrane repair. Nature
communications. 2014;5:4387.
26. Duann P, Li H, Lin P, et al. MG53-mediated cell membrane
repair protects against acute kidney injury. Science translational
medicine . 2015;7:279ra36.
27. Guo J, Jia F, Jiang Y, et al. Potential role of MG53 in the
regulation of transforming-growth-factor-β1-induced atrial fibrosis and
vulnerability to atrial fibrillation. Experimental cell research .
2018;362:436-43.
28. Zhu H, Lin P, De G, et al. Polymerase transcriptase release
factor (PTRF) anchors MG53 protein to cell injury site for initiation of
membrane repair. The Journal of biological chemistry .
2011;286:12820-4.
29. Weisleder N, Takizawa N, Lin P, et al. Recombinant MG53
protein modulates therapeutic cell membrane repair in treatment of
muscular dystrophy. Science translational medicine .
2012;4:139ra85.
30. Fokkens W J, Lund V J, Mullol J, et al. European Position
Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinology
Supplement . 2012;23:3 p preceding table of contents, 1-298.
31. Ramezanpour M, Bolt H, Psaltis A J, Wormald P J, Vreugde S. Primary
human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6
production. Scientific reports . 2018;8:11325.
32. Suzuki M, Ramezanpour M, Cooksley C, et al. Sirtuin-1
Controls Poly (I:C)-Dependent Matrix Metalloproteinase 9 Activation in
Primary Human Nasal Epithelial Cells. American journal of
respiratory cell and molecular biology . 2018;59:500-10.
33. Li L, Zhao J, Zhou L, et al. Tenofovir alafenamide fumarate
attenuates bleomycin-induced pulmonary fibrosis by upregulating the
NS5ATP9 and TGF-β1/Smad3 signaling pathway. Respiratory research .
2019;20:163.
34. Liao S J, Luo J, Li D, et al. TGF-β1 and TNF-α
synergistically induce epithelial to mesenchymal transition of breast
cancer cells by enhancing TAK1 activation. Journal of cell
communication and signaling . 2019;13:369-80.
35. Sánchez-Duffhues G, García De Vinuesa A, Van De Pol V, et al.Inflammation induces endothelial-to-mesenchymal transition and promotes
vascular calcification through downregulation of BMPR2. The
Journal of pathology . 2019;247:333-46.