REFERENCES
1. Hopkins C. Chronic Rhinosinusitis with Nasal Polyps. The New England journal of medicine . 2019;381:55-63.
2. Fokkens W J, Lund V J, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology . 2020;58:1-464.
3. Lou H, Meng Y, Piao Y, et al. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population. American journal of rhinology & allergy . 2015;29:350-6.
4. Kucuksezer U C, Ozdemir C, Akdis M, Akdis C A. Chronic rhinosinusitis: pathogenesis, therapy options, and more. Expert opinion on pharmacotherapy . 2018;19:1805-15.
5. Steelant B, Seys S F, Boeckxstaens G, et al. Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease. Rhinology . 2016;54:195-205.
6. Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. Journal of leukocyte biology . 2020;107:749-62.
7. Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue barriers . 2017;5:e1367458.
8. Gevaert E, Zhang N, Krysko O, et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation. The Journal of allergy and clinical immunology . 2017;139:1849-60.e6.
9. Zhang N, Van Crombruggen K, Gevaert E, Bachert C. Barrier function of the nasal mucosa in health and type-2 biased airway diseases.Allergy . 2016;71:295-307.
10. Lam K, Schleimer R, Kern R C. The Etiology and Pathogenesis of Chronic Rhinosinusitis: a Review of Current Hypotheses. Current allergy and asthma reports . 2015;15:41.
11. Steelant B, Farré R, Wawrzyniak P, et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression.The Journal of allergy and clinical immunology . 2016;137:1043-53.e5.
12. Murphy J, Ramezanpour M, Roscioli E, et al. Mucosal zinc deficiency in chronic rhinosinusitis with nasal polyposis contributes to barrier disruption and decreases ZO-1. Allergy . 2018;73:2095-7.
13. Rahmutula D, Marcus G M, Wilson E E, et al. Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-β1. Cardiovascular research . 2013;99:769-79.
14. Yang Y, Zhang N, Lan F, et al. Transforming growth factor-beta 1 pathways in inflammatory airway diseases. Allergy . 2014;69:699-707.
15. Yang Y C, Zhang N, Van Crombruggen K, et al. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. Allergy . 2012;67:1193-202.
16. Chen L, Xiao L, Liu J, et al. Differential Expression of the Aryl Hydrocarbon Receptor and Transforming Growth Factor Beta 1 in Chronic Rhinosinusitis with Nasal Polyps with Allergic Rhinitis.ORL; journal for oto-rhino-laryngology and its related specialties . 2017;79:295-305.
17. Jiao J, Wang M, Duan S, et al. Transforming growth factor-β1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps. The Journal of allergy and clinical immunology . 2018;141:1160-3.e9.
18. Ganatra D A, Vasavada A R, Vidya N G, Gajjar D U, Rajkumar S. Trichostatin A Restores Expression of Adherens and Tight Junction Proteins during Transforming Growth Factor β-Mediated Epithelial-to-Mesenchymal Transition. Journal of ophthalmic & vision research . 2018;13:274-83.
19. Zhang Y, Wu H K, Lv F, Xiao R P. MG53: Biological Function and Potential as a Therapeutic Target. Molecular pharmacology . 2017;92:211-8.
20. Li Z, Wang L, Yue H, et al. MG53, A Tissue Repair Protein with Broad Applications in Regenerative Medicine. Cells . 2021;10:
21. Zhang M, Wang H, Wang X, et al. MG53/CAV1 regulates transforming growth factor-β1 signaling-induced atrial fibrosis in atrial fibrillation. Cell cycle (Georgetown, Tex) . 2020;19:2734-44.
22. Sermersheim M, Kenney A D, Lin P H, et al. MG53 suppresses interferon-β and inflammation via regulation of ryanodine receptor-mediated intracellular calcium signaling. Nature communications . 2020;11:3624.
23. Zhu H, Hou J, Roe J L, et al. Amelioration of ischemia-reperfusion-induced muscle injury by the recombinant human MG53 protein. Muscle & nerve . 2015;52:852-8.
24. Chandler H L, Tan T, Yang C, et al. MG53 promotes corneal wound healing and mitigates fibrotic remodeling in rodents.Communications biology . 2019;2:71.
25. Jia Y, Chen K, Lin P, et al. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nature communications. 2014;5:4387.
26. Duann P, Li H, Lin P, et al. MG53-mediated cell membrane repair protects against acute kidney injury. Science translational medicine . 2015;7:279ra36.
27. Guo J, Jia F, Jiang Y, et al. Potential role of MG53 in the regulation of transforming-growth-factor-β1-induced atrial fibrosis and vulnerability to atrial fibrillation. Experimental cell research . 2018;362:436-43.
28. Zhu H, Lin P, De G, et al. Polymerase transcriptase release factor (PTRF) anchors MG53 protein to cell injury site for initiation of membrane repair. The Journal of biological chemistry . 2011;286:12820-4.
29. Weisleder N, Takizawa N, Lin P, et al. Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Science translational medicine . 2012;4:139ra85.
30. Fokkens W J, Lund V J, Mullol J, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinology Supplement . 2012;23:3 p preceding table of contents, 1-298.
31. Ramezanpour M, Bolt H, Psaltis A J, Wormald P J, Vreugde S. Primary human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6 production. Scientific reports . 2018;8:11325.
32. Suzuki M, Ramezanpour M, Cooksley C, et al. Sirtuin-1 Controls Poly (I:C)-Dependent Matrix Metalloproteinase 9 Activation in Primary Human Nasal Epithelial Cells. American journal of respiratory cell and molecular biology . 2018;59:500-10.
33. Li L, Zhao J, Zhou L, et al. Tenofovir alafenamide fumarate attenuates bleomycin-induced pulmonary fibrosis by upregulating the NS5ATP9 and TGF-β1/Smad3 signaling pathway. Respiratory research . 2019;20:163.
34. Liao S J, Luo J, Li D, et al. TGF-β1 and TNF-α synergistically induce epithelial to mesenchymal transition of breast cancer cells by enhancing TAK1 activation. Journal of cell communication and signaling . 2019;13:369-80.
35. Sánchez-Duffhues G, García De Vinuesa A, Van De Pol V, et al.Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. The Journal of pathology . 2019;247:333-46.